The disclosure relates to a LCD panel, and more particularly to a LCD panel integrating a gate driver on array (GOA) circuit.
A typical LCD panel comprises plural gate lines connected to a gate driver and plural data lines connected to a data driver (also referred as a source driver). For effectively reducing the number of data lines to reduce the fabricating cost, a LCD panel with a tri-gate pixel configuration has been disclosed. In the tri-gate pixel configuration, the sub-pixels R, G and B of each pixel are sequentially arranged along the data line. In such way, the number of gate drivers is tripled to constitute a complete frame. As known, a LCD panel integrating a gate driver on array (GOA) circuit may reduce the overall fabricating cost.
For example, the pixel PX11 comprises three sub-pixels, which are controlled by the gate pulses from a first gate line G1, a second gate line G2 and a third gate line G3, respectively. For enhancing the display quality and reducing the overall power consumption of the LCD panel, the data lines are driven by a column inversion driving method. As a result, the driving polarities of every two adjacent data lines are opposite at the same time. Generally, a common voltage Vcom is received by the LCD panel. The data line having a voltage value higher than the common voltage has a positive polarity (+). The data line having a voltage value lower than the common voltage has a negative polarity (−).
The way of arranging the sub-pixels of the LCD panel of
Obviously, in a case that the data lines of the LCD panel are driven by a column inversion driving method to display the bright/dark vertical fringes, the voltage of the even-numbered data lines (e.g. the second data line D2 and the fourth data line D4) are alternately changed between 4V and 0V in response to the gate pulses (G1˜G12) of the gate lines. Similarly, the voltage of the odd-numbered data lines (e.g. the third data line D3 and the fifth data line D5) are alternately changed between 8V and 4V in response to the gate pulses (G1˜G12) of the gate lines. In such way, the bright/dark vertical fringes are shown on the frame.
As can be seen from
Please refer to
In response to a start signal ST, the first shift register unit 411 and the second shift register unit 412 issue the first gate pulse g1 and the second gate pulse g2 to the first gate line G1 and the second gate line G2 according to the first clock signal C1 and the second clock signal C2, respectively. The third shift register unit 413 is informed by the first shift register unit 411 to issue the third gate pulse g3 to the third second gate line G3 according to the third clock signal C3. The fourth shift register unit 414 is informed by the second shift register unit 412 to issue the fourth gate pulse g4 to the fourth gate line G4 according to the fourth clock signal C4. The operations of the shift register units 415˜418 and the successive shift register units are similar to those illustrated above, and are not redundantly described herein. The four clock signals C1˜C4 have the same frequency. In addition, the phase difference between any two adjacent clock signals of the four clock signals C1˜C4 is 90 degrees.
Please refer to
In accordance with an aspect, the present invention provides a LCD device. The LCD device includes plural gate lines, plural data lines, and plural basic arrangement groups. Each of the basic arrangement groups includes a first row, a second row, a third row, a fourth row, a fifth row and a sixth row. The first row includes four sub-pixels corresponding to a first color. In the first row, a switching element of the first sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the (4y+1)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+1)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the fourth sub-pixel has a control terminal connected to the first gate line (6x+1)-th, a first terminal connected to the fourth data line (4y+4)-th, and a second terminal connected to a corresponding storage unit. The second row includes four sub-pixels corresponding to a second color. In the second row, a switching element of the first sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the second data line (4y+2)-th, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+5)-th data line, and a second terminal connected to a corresponding storage unit. The third row includes four sub-pixels corresponding to a third color. In the third row, a switching element of the first sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+1)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit. The fourth row includes four sub-pixels corresponding to the first color. In the fourth row, a switching element of the first sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+5)-th data line, and a second terminal connected to a corresponding storage unit. The fifth row includes four sub-pixels corresponding to the second color. In the fourth row, a switching element of the first sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+1)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit. The sixth row includes four sub-pixels corresponding to the third color. In the sixth row, a switching element of the first sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+7)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+7)-th gate line, a first terminal connected to the (4y+5)-th data line, and a second terminal connected to a corresponding storage unit. In the above formulae, x is zero or a positive integer, and y is zero or a positive integer.
In accordance with another aspect, the present invention provides a LCD device. The LCD device includes plural gate lines, plural data lines, and plural basic arrangement groups. Each of the basic arrangement groups includes a first row, a second row, a third row, a fourth row, a fifth row and a sixth row. The first row includes four sub-pixels corresponding to a first color. In the first row, a switching element of the first sub-pixel has a control terminal connected to the (6x+1)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+1)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the fourth sub-pixel has a control terminal connected to the first gate line (6x+2)-th, a first terminal connected to the fourth data line (4y+5)-th, and a second terminal connected to a corresponding storage unit. The second row includes four sub-pixels corresponding to a second color. In the second row, a switching element of the first sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+1)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the second data line (4y+3)-th, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+2)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit. The third row includes four sub-pixels corresponding to a third color. In the third row, a switching element of the first sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+3)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+5)-th data line, and a second terminal connected to a corresponding storage unit. The fourth row includes four sub-pixels corresponding to the first color. In the fourth row, a switching element of the first sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+1)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+4)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit. The fifth row includes four sub-pixels corresponding to the second color. In the fifth row, a switching element of the first sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+2)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+5)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+5)-th data line, and a second terminal connected to a corresponding storage unit. The sixth row includes four sub-pixels corresponding to the third color. In the sixth row, a switching element of the first sub-pixel has a control terminal connected to the (6x+7)-th gate line, a first terminal connected to the (4y+1)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the second sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+3)-th data line, and a second terminal connected to a corresponding storage unit; a switching element of the third sub-pixel has a control terminal connected to the (6x+7)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit; and a switching element of the fourth sub-pixel has a control terminal connected to the (6x+6)-th gate line, a first terminal connected to the (4y+4)-th data line, and a second terminal connected to a corresponding storage unit. In the above formulae, x is zero or a positive integer, and y is zero or a positive integer.
In accordance with a further aspect, the present invention provides a LCD device. The LCD device includes a visible zone with plural gate lines, and a gate driver module. The gate driver module includes a gate driver and a wiring zone. The gate driver includes a (4z+1)-th shift register unit, a (4z+2)-th shift register unit, a (4z+3)-th shift register unit and a (4z+4)-th shift register unit. The (4z+1)-th shift register unit generates a (4z+1)-th gate pulse according to a first clock signal. The (4z+2)-th shift register unit generates a (4z+2)-th gate pulse according to a second clock signal. The (4z+3)-th shift register unit generates a (4z+3)-th gate pulse according to a third clock signal. The (4z+4)-th shift register unit generates a (4z+4)-th gate pulse according to a fourth clock signal. The wiring zone is used for transmitting the (4z+1)-th gate pulse to the (4z+3) gate line, transmitting the (4z+2)-th gate pulse to the (4z+1)-th gate line, transmitting the (4z+3)-th gate pulse to the (4z+4)-th gate line, transmitting the (4z+4)-th gate pulse to the (4z+2)-th gate line. In the above formulae, z is zero or a positive integer. The first clock signal, the second clock signal, the third clock signal and the fourth clock signal have the same frequency. The phase difference between any two adjacent clock signals of the first clock signal, the second clock signal, the third clock signal and the fourth clock signal is 90 degrees.
The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
The data lines are driven by a column inversion driving method. As a result, the driving polarities of every two adjacent data lines are opposite at the same time. For example, the first data line has a positive polarity, the second data line has a negative polarity, and the rest may be deduced by analogy. A common voltage Vcom is received by the LCD panel. The data line having a voltage value higher than the common voltage has a positive polarity (+). The data line having a voltage value lower than the common voltage has a negative polarity (−).
The pixel array of the LCD panel comprises plural sub-pixels. The sub-pixels are divided into plural basic arrangement groups. In the pixel array of the first embodiment, each basic arrangement group includes 6-by-4 sub-pixels. That is, each basic arrangement group is defined by six gate lines and four data lines. For example, as shown in
A first row of the basic arrangement group 530 comprises four red sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the first data line D1, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the first gate line G1, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the first gate line G1, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit.
A second row of the basic arrangement group 530 comprises four green sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the fifth data line D5, and a second terminal connected to a corresponding storage unit.
A third row of the basic arrangement group 530 comprises four blue sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the first data line D1, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit.
A fourth row of the basic arrangement group 530 comprises four red sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the fifth data line D5, and a second terminal connected to a corresponding storage unit.
A fifth row of the basic arrangement group 530 comprises four green sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the first data line D1, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit.
A sixth row of the basic arrangement group 530 comprises four blue sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the seventh gate line G7, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the seventh gate line G7, a first terminal connected to the fifth data line D5, and a second terminal connected to a corresponding storage unit.
The basic arrangement group 530 is defined by the gate lines G1˜G7 and the data lines D1˜D5. Nevertheless, each basic arrangement group of the pixel array may be defined by the (6x+1)-th gate line to the (6x+7)-th gate line and the (4y+1)-th data line to the (4y+5)-th data line, where x is zero or a positive integer, and y is zero or a positive integer.
In a case that x=y=0, the basic arrangement group 530 is defined by the gate lines G1˜G7 and the data lines D1˜D5. In a case that x=1 and y=0, the basic arrangement group is defined by the gate lines G7˜G13 and the data lines D1˜D5.
During the process of displaying regular frames, the way of arranging the sub-pixels of the LCD panel of
Obviously, in a case that the data lines of the LCD panel are driven by a column inversion driving method to display the bright/dark vertical fringes, the voltage of the even-numbered data lines (e.g. the second data line D2 and the fourth data line D4) are alternately changed between 4V and 0V in response to the gate pulses (G1˜G12) of the gate lines. Similarly, the voltage of the odd-numbered data lines (e.g. the third data line D3 and the fifth data line D5) are alternately changed between 8V and 4V in response to the gate pulses (G1˜G12) of the gate lines. In such way, the bright/dark vertical fringes are shown on the frame.
As can be seen from
The data lines are driven by a column inversion driving method. As a result, the driving polarities of every two adjacent data lines are opposite at the same time. For example, the first data line has a positive polarity, the second data line has a negative polarity, and the rest may be deduced by analogy. A common voltage Vcom is received by the LCD panel. The data line having a voltage value higher than the common voltage has a positive polarity (+). The data line having a voltage value lower than the common voltage has a negative polarity (−).
In the pixel array of the second embodiment, each basic arrangement group includes 6-by-4 sub-pixels. That is, each basic arrangement group is defined by six gate lines and four data lines. For example, as shown in
A first row of the basic arrangement group 630 comprises four red sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the first gate line G1, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the first gate line G1, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the fifth data line D5, and a second terminal connected to a corresponding storage unit.
A second row of the basic arrangement group 630 comprises four green sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the first data line D1, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the second gate line G2, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit.
A third row of the basic arrangement group 630 comprises four blue sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the third gate line G3, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the fifth data line D5, and a second terminal connected to a corresponding storage unit.
A fourth row of the basic arrangement group 630 comprises four red sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the first data line D1, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the fourth gate line G4, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit.
A fifth row of the basic arrangement group 630 comprises four green sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the second data line D2, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the fifth gate line G5, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the fifth data line D5, and a second terminal connected to a corresponding storage unit.
A sixth row of the basic arrangement group 630 comprises four blue sub-pixels. The switching element of the first sub-pixel has a control terminal connected to the seventh gate line G7, a first terminal connected to the first data line D1, and a second terminal connected to a corresponding storage unit. The switching element of the second sub-pixel has a control terminal connected to the sixth gate line G6, a first terminal connected to the third data line D3, and a second terminal connected to a corresponding storage unit. The switching element of the third sub-pixel has a control terminal connected to the seventh gate line G7, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit. The switching element of the fourth sub-pixel has a control terminal connected to the sixth gate line G4, a first terminal connected to the fourth data line D4, and a second terminal connected to a corresponding storage unit.
The basic arrangement group 630 is defined by the gate lines G1˜G7 and the data lines D1˜D5. Nevertheless, each basic arrangement group of the pixel array may be defined by the (6x+1)-th gate line to the (6x+7)-th gate line and the (4y+1)-th data line to the (4y+5)-th data line, where x is zero or a positive integer, and y is zero or a positive integer.
In a case that x=y=0, the basic arrangement group 530 is defined by the gate lines G1˜G7 and the data lines D1˜D5. In a case that x=1 and y=0, the basic arrangement group is defined by the gate lines G7˜G13 and the data lines D1˜D5.
During the process of displaying regular frames, the way of arranging the sub-pixels of the LCD panel of
Obviously, in a case that the data lines of the LCD panel are driven by a column inversion driving method to display the bright/dark vertical fringes, the voltage of the even-numbered data lines (e.g. the second data line D2 and the fourth data line D4) are alternately changed between 4V and 0V in response to the gate pulses (G1˜G12) of the gate lines. Similarly, the voltage of the odd-numbered data lines (e.g. the third data line D3 and the fifth data line D5) are alternately changed between 8V and 4V in response to the gate pulses (G1˜G12) of the gate lines. In such way, the bright/dark vertical fringes are shown on the frame.
As can be seen from
In accordance with the present invention, the gate driver module is specially designed to enhance the displaying quality of the LCD by cross-connecting the layout traces of the wiring zone in a specified manner. By means of the gate driver module, every two adjacent gate lines of the visible zone are no longer overlapped with each other. Since the voltage of the sub-pixel is not adversely affected by the adjacent gate lines, the displaying quality of the frame is enhanced.
Please refer to
In response to a start signal ST, the first shift register unit 721 and the second shift register unit 722 issue the first gate pulse g1 and the second gate pulse g2 to the third gate line G3 and the first gate line G1 according to the first clock signal C1 and the second clock signal C2, respectively. The third shift register unit 723 is informed by the first shift register unit 721 to issue the third gate pulse g3 to the fourth gate line G4 according to the third clock signal C3. The fourth shift register unit 724 is informed by the second shift register unit 722 to issue the fourth gate pulse g4 to the second gate line G2 according to the fourth clock signal C4. The four clock signals C1˜C4 have the same frequency. In addition, the phase difference between any two adjacent clock signals of the four clock signals C1˜C4 is 90 degrees.
Please refer to
In other word, the gate driver 720 comprises a (4z+1)-th shift register unit, a (4z+2)-th shift register unit, a (4z+3)-th shift register unit and a (4z+4)-th shift register unit. According to a first clock signal, the (4z+1)-th shift register unit generates a (4z+1)-th gate pulse. According to a second clock signal, the (4z+2)-th shift register unit generates a (4z+2)-th gate pulse. According to a third clock signal, the (4z+3)-th shift register unit generates a (4z+3)-th gate pulse. According to a fourth clock signal, the (4z+4)-th shift register unit generates a (4z+4)-th gate pulse. By the wiring zone, the (4z+1)-th gate pulse is transmitted to a (4z+3)-th gate line, the (4z+2)-th gate pulse is transmitted to a (4z+1)-th gate line, the (4z+3)-th gate pulse is transmitted to a (4z+4)-th gate line, and the (4z+4)-th gate pulse is transmitted to a (4z+2)-th gate line. In the above formulae, z is zero or a positive integer.
Please refer to
In response to a start signal ST, the first shift register unit 821 and the second shift register unit 822 issue the first gate pulse g1 and the second gate pulse g2 to the third gate line G3 and the first gate line G1 according to the first clock signal C1 and the second clock signal C2, respectively. The third shift register unit 823 is informed by the first shift register unit 821 to issue the third gate pulse g3 to the fourth gate line G4 according to the third clock signal C3. The fourth shift register unit 824 is informed by the second shift register unit 822 to issue the fourth gate pulse g4 to the second gate line G2 according to the fourth clock signal C4. The four clock signals C1˜C4 have the same frequency. In addition, the phase difference between any two adjacent clock signals of the four clock signals C1˜C4 is 90 degrees.
Please refer to
From the above description, the present invention provides a LCD panel with an improved pixel array configuration for using a column inversion driving method to drive the data lines and achieving a stable common voltage Vcom. Moreover, by cross-connecting the layout traces of the wiring zone in a specified manner, the gate pulses outputted from every two gate lines neighboring the sub-pixel are not overlapped with each other, so that the frame can be normally displayed.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
99139245 A | Nov 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7199775 | Igarashi et al. | Apr 2007 | B2 |
20070091044 | Park et al. | Apr 2007 | A1 |
20100110046 | Chen et al. | May 2010 | A1 |
20100123652 | Chen et al. | May 2010 | A1 |
20100156947 | Moon et al. | Jun 2010 | A1 |
20100302215 | Tsai et al. | Dec 2010 | A1 |
20100315402 | Hashimoto | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1746959 | Mar 2006 | CN |
201019026 | May 2010 | TW |
201019296 | May 2010 | TW |
201110085 | Mar 2011 | TW |
Number | Date | Country | |
---|---|---|---|
20120120035 A1 | May 2012 | US |