1. Field of the Invention
The invention relates to a display panel, and more particularly to a liquid crystal display panel with a yield improved in assembling process thereof.
2. Description of the Related Art
The fast development of a multi-media society is benefited from the huge progress of semiconductor components and display devices. For display devices, the Liquid Crystal Display (LCD) gradually dominates the display market, with such features as high resolution, good space utility rate, low power consumption and zero radiation.
According to present technology, since a pillar-shaped spacer can provide more even cell gaps, better transparent ratio and higher contrast for display panel, it has replaced the original ball-shaped spacer. For the panel to bear more stress or vibration, a conventional method is to increase the unit area number of the spacer, or to design block-shaped spacers to enhance the support. However, in such a method, the top and bottom substrates could not be appropriately squeezed due to the rigidity of the plurality of spacers during the assembly process, and the yield in assembling process of the liquid crystal one drop fill (ODF) process is further reduced, leading to gas bubble or liquid crystal vertical flow phenomenon.
Accordingly, the purpose of the invention is to provide a liquid crystal display panel, in which the spacer not only provides strong support but also deforms as sustaining the pressure during an assembly process of a liquid panel display, thereby increasing a process yield in the manufacturing process of the liquid panel display.
The invention provides a liquid crystal display panel comprising a first substrate, a second substrate, a liquid crystal layer and a plurality of spacers. At this structure, the second substrate is disposed over the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate. In addition, the plurality of spacers is also disposed between the first substrate and the second substrate for keeping a gap between the first substrate and the second substrate. The plurality of spacers includes a plurality of support structures, and each of the support structures has a first portion and a second portion. The first portions of the plurality of support structures are connected and adjacent with each other, and the second portions of the plurality of support structures are adjacent with each other to space out a distance.
In some embodiments of the present invention, the minimum height of the second portion of each support structure is ¼ of the total height of each support structure while the maximum height of the second portion of each support structure is ¾ of the total height of each support structure.
In some embodiments of the present invention, the support structures are pillar-shaped. For example, the support structures are any of the round pillars, oval pillars, cross-shaped pillars, L-shaped pillars, regular polygon or irregular polygon pillars.
In some embodiments of the present invention, the distance between the second portions of neighboring support structures is longer than a maximum lateral deformation value of the second portions of the support structures. For example, the distance between the second portions of the support structures is ½ of the width of the second portions of the support structures.
The invention provides a liquid crystal display panel comprising a first substrate, a second substrate, a liquid crystal layer and a plurality of spacers. At this structure, the second substrate is disposed over the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate. In addition, the plurality of spacer is also disposed between the first substrate and the second substrate for keeping a gap between the first substrate and the second substrate. The plurality of spacers has a plurality of protrusions contacting with the first substrate or the second substrate respectively.
In some embodiments of the present invention, the minimum height of the protrusions is ¼ of the height of the plurality of spacers while the maximum height of the protrusions is ¾ of the height of the plurality of spacers.
In some embodiments of the present invention, the protrusions are pillar-shaped. For example, the support structures are any of the round pillars, oval pillars, cross-shaped pillars, L-shaped pillars, regular polygon or irregular polygon pillars.
In some embodiments of the present invention, the distance between the protrusions is longer than a maximum lateral deformation value of the protrusions. For example, the distance between the protrusions is ½ of the width of the protrusions.
In some embodiments of the present invention, the first substrate, for example, is an active element array substrate, such as a thin film transistor array substrate. The second substrate, for example, is a color filter. In some embodiments of the invention, the first portions of these support structures are disposed on the color filter, and the color filter includes a black matrix, on which the spacer is disposed.
In some embodiments of the present invention, the liquid crystal display panel further comprises a sealant, which is disposed between the first substrate and second substrate and seals the liquid crystal layer among the first substrate, the sealant and the second substrate. Besides, in one embodiment, the plurality of spacers is disposed between the sealant and the liquid crystal layer.
The plurality of spacers of the present invention not only increase the process yield of the ODF, but also evenly disperse the outward pressure to prevent damage of the two substrates.
The second substrate 220 is a color filter, for example, comprising a transparent plate 222, a black matrix 224, a color filter layer 226 and a common electrode 228 thereon. It is known to people skilled in the art that the color filter layer on the thin film transistor array (Color Filter on Array, COA) technology has been used in many liquid crystal display panels, and the present invention dose not limit the first substrate 210 and the second substrate 220 to the above module. As show in
In
Additionally, because the spacer 240 is formed on the color filter in this embodiment, that is, so-called SOC technique, the protrusions 240a of the spacer 240, for example, is contacted with the first substrate 210. Certainly, the spacer 240 can be formed on the active element array substrate by one of ordinary skill in the art, and the protrusions 240a of the spacer 240 is contacted with the second substrate 220 (not shown).
Specially, the support structures 242, for example, are pillars, and the first portions 242a and/or second portions 242b may be round pillars (
Note that the height h1 of the second portion 242b of each support structure 242 is larger than or equals to ¼ of total height h of the support structure 242 (0.3 micro meter, for example). That is, the height h1 of each protrusion 240a is larger than or equals to ¼ of the total height h of the spacer 240, so that the spacer 240 has flexibility. When the first substrate 210 and the second substrate 220 bear external pressures, the spacer 240 can be deformed. As a result, during the assembly process, the liquid crystal display 200 can be easily squeezed to have suitable cell gap. On the other hand, the height h1 of each protrusion 240a is smaller than or equals to ¾ of the total height h of the spacer 240, to prevent the spacer 240 from tilting or breaking when the liquid display panel 200 bears too much pressure.
As described above, the spacer in the present invention comprises many partially overlapping support structures, so the overlapping ratio can be controlled to increase the bottom area of the spacer, or reduce the top area of the spacer, to have preferred support and process yield for manufacturing the liquid crystal display. The following are examples with simulation data.
As show in
Moreover, the present invention can control the overlapping ratio of the support structures to reduce the top area of the spacer, thus increasing the flexibility of the spacer.
From
More particularly, due to the flexibility of the spacer A′ and B′, in the assembly process of the liquid crystal display panel, panel can be properly squeezed to keep a suitable cell gap. In other words, the present invention can improve the process yield of the one drop fill (ODF) process of liquid crystal display panel, to avoid liquid crystal vertical flows or bubbles.
Also note that in the present invention, the liquid crystal display panel can be disposed with spacers of different heights according to the film thickness of the two substrates, so as to increase the process yield and maintain the suitable cell gap when the panel sustains outward pressure.
Next, a liquid crystal layer 430 is formed in the area enclosed by the sealant 412 on the first substrate 410 in an ODF process. Then the second substrate 420 is disposed on the first substrate 410, and the two substrates are pressed such that the liquid crystal layer 430 is sealed between the first substrate 410, the sealant 412 and second substrate 420. Finally, the sealant 412 is irradiated by UV light to cure it.
In fact, after the liquid crystal layer 430 is dropped, if some liquid crystal molecules move too fast, and get in touch with the un-solidified sealant 412, the liquid crystal layer 430 would be contaminated and the yield is reduced. Therefore, in an embodiment of the invention, the spacer 422 is disposed between the sealant 412 and the liquid crystal layer 430, arranged in the shape shown in
The present invention utilized support structures whose bottoms are connected to serve as spacers for the liquid crystal display panel so as to enhance the support ability of the spacer by the connecting bottom, and to disperse the outward pressure to avoid damage of the devices due to concentrated pressure. Therefore, in the present invention the density of the support structures need not increased for the panel to have enough support.
Besides, these support structures have enough flexibility so the plurality of spacers can deform when bearing outward pressure. Especially in the ODF process, these flexible support structures enables the panel to be squeezed with proper cell gap to have a good process yield, such that liquid crystal vertical flow or bubbles can be prevented.
In conclusion, the plurality of spacers in the present invention not only increases the process yield of the ODF, but also evenly disperses the outward pressure when the liquid crystal display panel is assembled or during the pressure test, to avoid the damage of deices on the two substrates due to pressure. Moreover, if the plurality of spacers is disposed between the sealant and the liquid crystal layer, this can prevent the liquid crystal molecules to contact with the unsolid sealant and avoid the liquid crystal layer from being contaminated and having worsening optical properties.
While the present invention has been described with embodiments, this description is not intended to limit the invention. Various modifications of the embodiment will be apparent to those skilled in the art. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention.