1. Technical Field
The present invention relates to liquid crystal displays (LCDs), and more particularly to an LCD with a periodical changed voltage difference between a data voltage and a common voltage. The present invention also relates to a driving method of the LCD.
2. Description of Related Art
A liquid crystal display (LCD) utilizes liquid crystal molecules to control light transmissivity of each of pixels of the LCD. The liquid crystal molecules are driven according to external video signals received by the LCD. A conventional LCD generally employs an inversion driving method to drive the liquid crystal molecules to protect the liquid crystal molecules from decay or damage.
Data voltages generated by a data driving circuit (not shown) are provided to the plurality of pixel electrodes 16, and a common voltage generated by a common voltage generating circuit (not shown) is provided to the common electrode 12. In each pixel unit, an electric field is generated between the pixel electrode 16 and the common electrode 12. The electric field controls rotating angles of the liquid crystal molecules of the pixel unit, whereby the rotating angles determine the light transmissivity of the pixel unit. The light transmissivity of the pixel unit determines a brightness of the pixel unit. The LCD 10 displays images via controlling the brightness of each of the pixel units.
A waveform diagram of the data voltage and the common voltage of one of the pixel units is shown in
The direction of the electric field of each pixel unit is alternate in each two continuous frames, but the value of the electric field of each pixel unit is constant in each frame. The rotating angles of the liquid crystal molecules of each pixel unit are merely determined by the value of the electric field of each pixel unit. That is, when the value of the electric field of the pixel unit is constant, the rotating angles of the liquid crystal molecules of the pixel unit are constant.
In fact, the liquid crystal layer 14 is not pure and has a plurality of impurity ions (not shown). The alignment films 13 and 15 are made of organic materials and easily capture the impurity ions. When the value of the electric field of each pixel unit keeps constant for a long time, the rotating angles of the liquid crystal molecules of each pixel unit are constant, correspondingly. That is, each liquid crystal molecule stays in the same position in the liquid crystal layer 14. A moving resistance stressed by the liquid crystal molecules to the impurity ions has little effect on random motions of the impurity ions. Thus, part of the impurity ions are captured by the alignment films 13 and 15 and a residual direct current electric field (not shown) is generated between the first alignment film 13 and the second alignment film 15. Even if the value of the electric field of each pixel unit changes, the residual direct current electric field may still exist. The residual direct current electric field also controls the liquid crystal molecules to rotate, and an extra rotating angle of each liquid crystal molecule exists. If the value of the electric field of each pixel unit changes in a small range, the liquid crystal molecules may stay in the same position as in previous frames. Thus, images of the previous frames still can be watched, which is so-called image residue phenomenon.
It is desired to provide an LCD which overcomes the above-described deficiencies. It is also desired to provide a related driving method for an LCD.
In one aspect, a liquid crystal display includes a plurality of pixel units each including a pixel electrode for receiving data voltages and a common electrode for receiving a common voltage with a constant value. The data voltages applied to each pixel electrodes are equal a sum of a main data voltage having a square waveform and an auxiliary voltage that is periodically changed at intervals each formed by four continuous frames. The auxiliary voltage is less than a voltage difference between the main data voltage and the common voltage. In two frames of the four continuous frames, the voltage differences between the data voltages and the common voltage are substantially equal to an absolute value of Vdata−Vcom, and in remaining two frames of the two continuous frames, the voltage difference between the data voltages and common voltage in one of the remaining two frames is substantially equal to an absolute value of Vdata−Vcom−Vn; and in other one of the remaining two frames is substantially equal to an absolute value of Vdata−Vcom+Vn, where Vcom denotes the constant value of the common voltage, Vdata denotes the main data voltage, and Vn denotes an absolute value of the auxiliary voltage.
In another aspect, a liquid crystal display includes a plurality of pixel units each including a pixel electrode for receiving data voltages and a common electrode for receiving a common voltage with a constant value. The data voltages applied to each pixel electrodes are equal a sum of a main data voltage having a square waveform and a first auxiliary voltage. The common voltage is equal to a main common voltage with a constant value and a second auxiliary voltage. The first and second auxiliary voltage is periodically changed at intervals each formed by four continuous frames. Each of the first and second auxiliary voltages is less than a voltage difference between the main data voltage and the main common voltage, and one of the first and second auxiliary voltages is equal to zero in each frames. In two frames of the four continuous frames, the voltage differences between the data voltages and the common voltage are substantially equal to an absolute value of Vdata−Vcom. In remaining two frames of the two continuous frames, the voltage difference between the data voltages and common voltage in one of the remaining two frames is substantially equal to an absolute value of Vdata−Vcom−Vn; and in other one of the remaining two frames is substantially equal to an absolute value of Vdata−Vcom+Vn, where Vcom denotes the constant value of the main common voltage, Vdata denotes the main data voltage, and Vn denotes an absolute value of the other one of the first and second auxiliary voltages.
Other novel features and advantages will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings. In the drawings, all the views are schematic.
Reference will now be made to the drawings to describe various embodiments of the present invention in detail.
Each TFT 206 includes a gate electrode, a source electrode, and a drain electrode. The gate electrode of each TFT 206 is connected to a corresponding gate line 201, and the source electrode of each TFT 206 is connected to a corresponding data line 202. Further, the drain electrode of each TFT 206 is connected to a corresponding pixel electrode 26.
The control circuit 31 receives and processes external video signals. Timing signals generated in the control circuit 31 are transmitted to the gate driving circuit 32 and the data driving circuit 33, and the processed video signals are transmitted into the data driving circuit 33. The gamma voltage generating circuit 35 generates gamma voltages and the gamma voltages are transmitted to the data driving circuit 33. The gate driving circuit 32 generates corresponding scanning signals according to the timing signals. The data driving circuit 33 latches up the processed video signals according to the timing signals. The data driving circuit 33 receives corresponding gamma voltages according to the processed video signals and generates corresponding data voltages. The gate driving circuit 32 provides the scanning signals to the gate lines 201, and the data driving circuit 33 provides the data voltages to the data lines 202 when the gate lines 201 are scanned. In each pixel unit 240, an electric field is generated between the pixel electrode 26 and the common electrode 22. The electric field controls rotating angles of the liquid crystal molecules of the pixel unit 240 and the rotating angles determine a light transmissivity of the pixel unit 240. The light transmissivity of the pixel unit 240 determines a brightness of the pixel unit 240. The LCD 20 displays images via controlling the brightness of each pixel unit 240.
In frame N−1, the value of the data voltage is Vdata2 and the value of the common voltage is Vcom−Va, where Vdata2>Vcom, Va<Vdata2−Vcom, Va=R1*R4*Vdd/[(R1+R2+R0)*(R1+R2+R0+R4)], Vdata2−Vcom=Vcom−Vdata1. The voltage difference between the pixel electrode 26 and the common electrode 22 is Vdata2−Vcom+Va. The value of the electric field E1 is (Vdata2−Vcom+Va)/d and the direction of the electric field E1 is from the pixel electrode 26 to the common electrode 22. The value of the angle between the direction of the electric field E1 and the direction of the electric dipole moment of the liquid crystal molecule is θ−ψ.
In frame N, the value of the data voltage is Vdata1 and the value of the common voltage is Vcom. The voltage difference between the pixel electrode 26 and the common electrode 22 is Vcom−Vdata1. The value of the electric field E1 is (Vcom−Vdata1)/d and the direction of the electric field E1 is from the common electrode 22 to the pixel electrode 26. The value of the angle between the direction of the electric field E1 and the direction of the electric dipole moment of the liquid crystal molecule is θ.
In frame N+1, the value of the data voltage is Vdata2 and the value of the common voltage is Vcom+Va. The voltage difference between the pixel electrode 26 and the common electrode 22 is Vdata2−Vcom−Va. The value of the electric field E1 is (Vdata2−Vcom−Va)/d and the direction of the electric field E1 is from the pixel electrode 26 to the common electrode 22. The value of the angle between the direction of the electric field E1 and the direction of the electric dipole moment of the liquid crystal molecule is θ+ψ.
In frame N+2, the value of the data voltage is Vdata1 and the value of the common voltage is Vcom. The voltage difference between the pixel electrode 26 and the common electrode 22 is Vcom−Vdata1. The value of the electric field E1 is (Vcom−Vdata1)/d and the direction of the electric field E1 is from the common electrode 22 to the pixel electrode 26. The value of the angle between the direction of the electric field E1 and the direction of the electric dipole moment of the liquid crystal molecule is θ.
The value and the direction of the electric field E1 in frame N+2 are the same as that in frame N−2. That is, frame N−2, frame N−1, frame N, and frame N+1 define a minimum period. The value and the direction of the electric field E1 in the following frames repeat that in one of frame N−2, frame N−1, frame N, and frame N+1.
The value of the electric field of each pixel unit 240 increases or decreases by a value of Va/d in any two continuous frames, and the value of the angle between the direction of the electric field and the direction of the electric dipole moment of the liquid crystal molecule correspondingly increases or decreases by a value of ψ. The ψ is far less than the θ. The little changes of the angle between the direction of the electric field E1 and the direction of the electric dipole moment of the liquid crystal molecule can not be perceived by human eyes. Thus, an influence of the little changes of the value of the electric field can be ignored.
Because the value of the angle between the direction of the electric field and the direction of the electric dipole moment of the liquid crystal molecule has a little change in any two continuous frames, the liquid crystal molecule will not stay in the same position in the liquid crystal layer 24, correspondingly. A random collision probability between the liquid crystal molecule and the impurity ion increases, and a random collision probability among the impurity ions correspondingly increases. A probability that the impurity ions captured by the alignment films 23 and 25 decreases and a value of a residual DC electric field between the first alignment film 23 and the second alignment film 25 correspondingly decreases. The image residue phenomenon of the LCD 20 can be improved effectively.
The values of the data voltage and the common voltage in frame N+2 are the same as that in frame N−2. That is, frame N−2, frame N−1, frame N, and frame N+1 define a minimum period. The values of the data voltage and the common voltage in the following frames repeat that in one of frame N−2, frame N−1, frame N, and frame N+1.
The common voltage is generated by a common voltage generating circuit (not shown), and the common voltage generating circuit is the same as the common voltage generating circuit 34 of
In frame N−1, the value of the data voltage is Vdata2−Vm and the value of the common voltage is Vcom, where Vdata2>Vcom, Vm<Vdata2−Vcom, Vdata2−Vcom=Vcom−Vdata1. The voltage difference between the pixel electrode 96 and the common electrode 92 of the pixel unit is Vdata2−Vcom−Vm. The value of the electric field E2 of the pixel unit is (Vdata2−Vcom−Vm)/d and the direction of the electric field E2 of the pixel unit is from the pixel electrode 96 to the common electrode 92. The value of the angle between the direction of the electric field E2 and the direction of the electric dipole moment of the liquid crystal molecule is α+β.
In frame N, the value of the data voltage is Vdata1 and the value of the common voltage is Vcom. The voltage difference between the pixel electrode 96 and the common electrode 92 of the pixel unit is Vcom−Vdata1. The value of the electric field E2 is (Vcom−Vdata1)/d and the direction of the electric field E2 is from the common electrode 92 to the pixel electrode 96. The value of the angle between the direction of the electric field E2 and the direction of the electric dipole moment of the liquid crystal molecule is α.
In frame N+1, the value of the data voltage is Vdata2+Vm and the value of the common voltage is Vcom. The voltage difference between the pixel electrode 96 and the common electrode 92 of the pixel unit is Vdata2−Vcom+Vm. The value of the electric field E2 is (Vdata2−Vcom+Vm)/d and the direction of the electric field E2 is from the pixel electrode 96 to the common electrode 92. The value of the angle between the direction of the electric field E2 and the direction of the electric dipole moment of the liquid crystal molecule is α−β.
In frame N+2, the value of the data voltage is Vdata1, a value of the common voltage is Vcom. The voltage difference between the pixel electrode 96 and the common electrode 92 of the pixel unit is Vcom−Vdata1. The value of the electric field E2 is (Vcom−Vdata1)/d and the direction of the electric field E2 is from the common electrode 92 to the pixel electrode 96. The value of the angle between the direction of the electric field E2 and the direction of the electric dipole moment of the liquid crystal molecule is α.
The value and the direction of the electric field E2 in frame N+2 are the same as that in frame N−2. That is, frame N−2, frame N−1, frame N, and frame N+1 define a minimum period. The value and the direction of the electric field E2 in the following frames repeat that in one of frame N−2, frame N−1, frame N, and frame N+1.
The value of Vm/d is approximately equal to the value of Va/d, and the value of β is approximately equal to the value of ψ. Thus, the LCD of the third embodiment has the same advantages with the LCD 20 of the first embodiment.
The value of the data voltage and the common voltage in frame N+2 are the same as that in frame N−2. That is, frame N−2, frame N−1, frame N, and frame N+1 define a minimum period. The value of the data voltage and the common voltage in the following frames repeat that in one of frame N−2, frame N−1, frame N, and frame N+1.
The gamma voltage is generated by a gamma voltage generating circuit (not shown), and the gamma voltage generating circuit is the same as the gamma voltage generating circuit 75 of
According to the above descriptions, a change law of the voltage difference between the data voltage and the common voltage of the pixel unit is as follows:
The voltage difference between the data voltage and the common voltage of each pixel unit is a sum of a main voltage and an auxiliary voltage with periodical change. An absolute value of the main voltage is constant. An absolute value of the auxiliary voltage is less than the absolute value of the main voltage. In a minimum period, a sum of the auxiliary voltage is zero. For example, the value of the main voltage is Vcom−Vdata1 or Vdata2−Vcom and the value of the auxiliary voltage is 0, ±Va, ±Vb, ±Vm, or ±Vn. The minimum period is frame N−2, frame N−1, frame N, and frame N+1.
The value of the auxiliary voltage is 0 in frame N−2, the value of the auxiliary voltage is Va in frame N−1, the value of the auxiliary voltage is 0 in frame N, and the value of the auxiliary voltage is −Va in frame N+1.
It is to be further understood that even though numerous characteristics and advantages of preferred and exemplary embodiments have been set out in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and that changes may be made in detail within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
095146237 | Dec 2006 | TW | national |
This application is a divisional application of U.S. patent application Ser. No. 12/001,704, filed Dec. 11, 2007 and entitled “LIQUID CRYSTAL DISPLAY WITH PERIODICAL CHANGED VOLTAGE DIFFERENCE BETWEEN DATA VOLTAGE AND COMMON VOLTAGE AND DRIVING METHOD THEREOF.” The disclosure of such parent application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12001704 | Dec 2007 | US |
Child | 13279351 | US |