Liquid-crystal medium containing monofluoroterphenyl compounds

Information

  • Patent Grant
  • 7390538
  • Patent Number
    7,390,538
  • Date Filed
    Wednesday, June 23, 2004
    20 years ago
  • Date Issued
    Tuesday, June 24, 2008
    16 years ago
Abstract
The present invention relates to a liquid-crystalline medium based on a mixture of polar compounds of positive or negative dielectric anisotropy which is characterised in that it comprises one or more compounds of the general formula I
Description

The present invention relates to a liquid-crystalline medium, to the use thereof for electro-optical purposes, and to electro-optical display devices which contain this medium.


Liquid crystals are used principally as dielectrics in display devices, since the optical properties of such substances can be modified by an applied voltage. Electro-optical devices based on liquid crystals are extremely well known to the person skilled in the art and can be based on various effects. Examples of such devices are cells having dynamic scattering, DAP (deformation of aligned phases) cells, guest/host cells, TN cells having a twisted nematic structure, STN (supertwisted nematic) cells, SBE (super-birefringence effect) cells and OMI (optical mode interference) cells. The commonest display devices are based on the Schadt-Helfrich effect and have a twisted nematic structure.


The liquid-crystal materials must have good chemical and thermal stability and good stability to electric fields and electromagnetic radiation. Further-more, the liquid-crystal materials should have low viscosity and produce short addressing times, low threshold voltages and high contrast in the cells.


They should furthermore have a suitable mesophase, for example a nematic or cholesteric mesophase for the above-mentioned cells, at the usual operating temperatures, i.e. in the broadest possible range above and below room temperature. Since liquid crystals are generally used as mixtures of a plurality of components, it is important that the components are readily miscible with one another. Further properties, such as the electrical conductivity, the dielectric anisotropy and the optical anisotropy, have to satisfy various requirements depending on the cell type and area of application. For example, materials for cells having a twisted nematic structure should have positive dielectric anisotropy and low electrical conductivity.


For example, for matrix liquid-crystal displays with integrated non-linear elements for switching individual pixels (MLC displays), media having large positive dielectric anisotropy, broad nematic phases, relatively low birefringence, very high specific resistance, good UV and temperature stability and low vapour pressure are desired.


Matrix liquid-crystal displays of this type are known. Non-linear elements which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors). The term “active matrix” is then used, where a distinction is made between two types:

    • 1. MOS (metal oxide semiconductor) or other diodes on a silicon wafer as substrate.
    • 2. Thin-film transistors (TFTs) on a glass plate as substrate.


The use of single-crystal silicon as substrate material restricts the display size, since even modular assembly of various part-displays results in problems at the joints.


In the case of the more promising type 2, which is preferred, the electro-optical effect used is usually the TN effect. A distinction is made between two technologies: TFTs comprising compound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon. Intensive work is being carried out worldwide on the latter technology.


The TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counterelectrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image. This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.


The TFT displays usually operate as TN cells with crossed polarisers in transmission and are back-lit.


The term MLC displays here covers any matrix display with integrated non-linear elements, i.e., besides the active matrix, also displays with passive elements, such as varistors or diodes (MIM=metal-insulator-metal).


MLC displays of this type are particularly suitable for TV applications (for example pocket TVs) and for high-information displays for computer applications (for example laptops) and in automobile and aircraft construction. Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, September 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, September 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. With decreasing resistance, the contrast of an MLC display deteriorates, and the problem of after-image elimination may occur. Since the specific resistance of the liquid-crystal mixture generally drops over the life of an MLC display owing to interaction with the interior surfaces of the display, a high (initial) resistance is very important in order to achieve acceptable service lives. In particular in the case of low-volt mixtures, it was hitherto impossible to achieve very high specific resistance values. It is furthermore important that the specific resistance exhibits the smallest possible increase with increasing temperature and after heating and/or UV exposure. The low-temperature properties of the mixtures from the prior art are also particularly disadvantageous. It is demanded that no crystallisation and/or smectic phases occur, even at low temperatures, and the temperature dependence of the viscosity is as low as possible. The known MLC displays do not meet these requirements.


There thus continues to be a great demand for MLC displays having very high specific resistance at the same time as a large working-temperature range, short response times even at low temperatures and low threshold voltage which do not have the said disadvantages, or only do so to a reduced extent.


In addition to liquid-crystal displays which use backlighting, i.e. are operated transmissively and if desired transflectively, reflective liquid-crystal displays are also particularly interesting. These reflective liquid-crystal displays use the ambient light for information display. They thus consume significantly less energy than back-lit liquid-crystal displays having a corresponding size and resolution. Since the TN effect is characterised by very good contrast, reflective displays of this type can even be read well in bright ambient conditions. This is already known of simple reflective TN displays, as used, for example, in watches and pocket calculators. However, the principle can also be applied to high-quality, higher-resolution active matrix-addressed displays, such as, for example, TFT displays. Here, as already in the transmissive TFT-TN displays which are generally conventional, the use of liquid crystals of low birefringence (Δn) is necessary in order to achieve low optical retardation (d·Δn). This low optical retardation results in usually acceptable low viewing-angle dependence of the contrast (cf. German Patent 30 22 818). In reflective displays, the use of liquid crystals of low birefringence is even more important than in trans-missive displays since the effective layer thickness through which the light passes is approximately twice as large in reflective displays as in trans-missive displays having the same layer thickness.


The advantages of reflective displays over transmissive displays, besides the lower power consumption (since backlighting is unnecessary), are the space saving, which results in a very small physical depth, and the reduction in problems due to temperature gradients caused by different degrees of heating by the backlighting.


In TN (Schadt-Helfrich) cells, media are desired which facilitate the following advantages in the cells:

    • extended nematic phase range (in particular at low temperatures),
    • the ability to switch at extremely low temperatures (outdoor use, auto-mobiles, avionics),
    • elevated resistance against UV radiation (longer life),
    • low rotational viscosities,
    • low threshold (addressing) voltage and
    • high birefringence for thinner layer thicknesses and thus shorter response times.


The media available from the prior art do not allow these advantages to be achieved while simultaneously retaining the other parameters.


In the case of supertwisted (STN) cells, media are desired which enable greater multiplexability and/or lower threshold voltages and/or broader nematic phase ranges (in particular at low temperatures). To this end, a further widening of the available parameter latitude (clearing point, smectic-nematic transition or melting point, viscosity, dielectric parameters, elastic parameters) is urgently desired.


In addition, the trend in monitor and TV applications is towards ever-shorter response times. The display manufacturers are reducing the response time through the use of displays of smaller layer thickness. At constant optical path length d·Δn, this requires liquid-crystal mixtures of greater Δn. In addition, the use of liquid-crystal mixtures of low rotational viscosity likewise results in a shortening of the response times.


The present invention thus had the object of providing media for MLC, TN or STN displays of this type, preferably for MLC and TN displays and particularly preferably for transmissive TN displays, which do not have the above-mentioned disadvantages or only do so to a reduced extent, and at the same time preferably have very low rotational viscosities γ1 and relatively high optical anisotropy values Δn. The mixtures according to the invention should preferably find use in transmissive applications.


It has now been found that these objects can be achieved if the media according to the invention are used in displays.


The present invention thus relates to a liquid-crystalline medium based on a mixture of polar compounds of positive or negative dielectric anisotropy which is characterised in that it comprises one or more compounds of the general formula I




embedded image



in which

    • R1 and R2 are each, independently of one another, identically or differently, H, an alkyl radical having from 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF3 or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may each, independently of one another, be replaced by —O—, —S—,




embedded image



—CH═CH—, C≡C—, —CO—, —CO—O—, —O—CO— or —O—CO—O— in such a way that O atoms are not linked directly to one another.


The compounds of the formula I have a broad range of applications. These compounds can either serve as base materials of which liquid-crystalline media are predominantly composed, or they can be added to liquid-crystalline base materials from other classes of compound in order, for example, to modify the dielectric and/or optical anisotropy of a dielectric of this type and/or to optimise its threshold voltage and/or its viscosity.


In the pure state, the compounds of the formula I are colourless and form liquid-crystalline mesophases in a temperature range which is favourably located for electro-optical use. They are stable chemically, thermally and to light.


If R1 and/or R2 are an alkyl radical, this may be straight-chain or branched. It is preferably straight-chain, has 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms and accordingly is preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl or nonyl, furthermore decyl, undecyl or dodecyl. Groups having from 1 to 5 carbon atoms are particularly preferred.


If R1 and/or R2 are an alkoxy radical, this may be straight-chain or branched. It is preferably straight-chain, has 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms and accordingly is preferably methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy or nonoxy, furthermore decoxy or undecoxy.


If R1 and/or R2 are an oxaalkyl radical, this may be straight-chain or branched. It is preferably straight-chain, has 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms and accordingly is preferably 2-oxapropyl (=methoxy-methyl), 2-(=ethoxymethyl) or 3-oxabutyl (=2-methoxyethyl), 2-, 3- or 4-oxapentyl, 2-, 3-, 4- or 5-oxahexyl, 2-, 3-, 4-, 5- or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl.


If R1 and/or R2 are an alkyl radical in which one CH2 group has been replaced by —CH═CH—, this may be straight-chain or branched. It is preferably straight-chain and has from 2 to 10 carbon atoms. Accordingly, it is particularly preferably vinyl, prop-1- or -2-enyl, but-1-, -2- or -3-enyl, pent-1-, -2-, -3- or -4-enyl, hex-1-, -2-, -3-, -4- or -5-enyl, hept-1-, -2-, -3-, -4-, -5- or -6-enyl, oct-1-, -2-, -3-, -4-, -5-, -6- or -7-enyl, non-1-, -2-, -3-, -4-, -5-, -6-, -7- or -8-enyl, or dec-1-, -2-, -3-, -4-, -5-, -6-, -7-, -8- or -9-enyl.


If R1 and/or R2 are an alkyl radical in which one CH2 group has been replaced by —O— and one has been replaced by —CO—, these are preferably adjacent. These thus contain an acyloxy group —CO—O— or an oxycarbonyl group —O—CO—. These are preferably straight-chain and have from 2 to 6 carbon atoms. Accordingly, they are particularly preferably acetoxy, propionyloxy, butyryloxy, pentanoyloxy, hexanoyloxy, acetoxymethyl, propionyloxymethyl, butyryloxymethyl, pentanoyloxymethyl, 2-acetoxyethyl, 2-propionyloxyethyl, 2-butyryloxyethyl, 3-acetoxypropyl, 3-propionyloxypropyl, 4-acetoxybutyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, methoxycarbonyl-methyl, ethoxycarbonylmethyl, propoxycarbonylmethyl, butoxycarbonyl-methyl, 2-(methoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(propoxy-carbonyl)ethyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl or 4-(methoxycarbonyl)butyl.


If R1 and/or R2 are an alkyl radical in which one CH2 group has been replaced by unsubstituted or substituted —CH═CH— and an adjacent CH2 group has been replaced by —CO—, —CO—O— or —O—CO—, this may be straight-chain or branched. It is preferably straight-chain and has from 4 to 12 carbon atoms. Accordingly, it is particularly preferably acryloyloxymethyl, 2-acryloyloxyethyl, 3-acryloyloxypropyl, 4-acryloyloxybutyl, 5-acryloyloxy-pentyl, 6-acryloyloxyhexyl, 7-acryloyloxyheptyl, 8-acryloyloxyoctyl, 9-acryl-oyloxynonyl, 10-acryloyloxydecyl, methacryloyloxymethyl, 2-methacryloyl-oxyethyl, 3-methacryloyloxypropyl, 4-methacryloyloxybutyl, 5-methacryloyl-oxypentyl, 6-methacryloyloxyhexyl, 7-methacryloyloxyheptyl, 8-methacryl-oyloxyoctyl or 9-methacryloyloxynonyl.


If R1 and/or R2 are an alkyl or alkenyl radical which is monosubstituted by CN or CF3, this radical is preferably straight-chain. The substitution by CN or CF3 is possible in any desired position.


If R1 and/or R2 are an alkyl or alkenyl radical which is at least monosubstituted by halogen, this radical is preferably straight-chain and halogen is preferably F or Cl. In the case of polysubstitution, halogen is preferably F. The resultant radicals also include perfluorinated radicals. In the case of monosubstitution, the fluorine or chlorine substituent can be in any desired position, but preferably in the ω-position.


Compounds of the formula I which contain wing groups R1 and/or R2 which are suitable for polymerisation reactions are suitable for the preparation of liquid-crystalline polymers.


Compounds of the formula I containing branched wing groups R1 and/or R2 may occasionally be of importance owing to better solubility in the conventional liquid-crystalline base materials, but in particular as chiral dopants if they are optically active. Smectic compounds of this type are suitable as components of ferroelectric materials.


Compounds of the formula I having SA phases are suitable, for example, for thermally addressed displays.


Branched groups of this type preferably contain not more than one chain branch. Preferred branched radicals R1 and/or R2 are isopropyl, 2-butyl (=1-methylpropyl), isobutyl (=2-methylpropyl), 2-methylbutyl, isopentyl (=3-methylbutyl), 2-methylpentyl, 3-methylpentyl, 2-ethylhexyl, 2-propyl-pentyl, isopropoxy, 2-methylpropoxy, 2-methylbutoxy, 3-methylbutoxy, 2-methylpentoxy, 3-methylpentoxy, 2-ethylhexoxy, 1-methylhexoxy and 1-methylheptoxy.


If R1 and/or R2 are an alkyl radical in which two or more CH2 groups have been replaced by —O— and/or —CO—O—, this may be straight-chain or branched. It is preferably branched and has from 3 to 12 carbon atoms. Accordingly, it is particularly preferably biscarboxymethyl, 2,2-biscarboxy-ethyl, 3,3-biscarboxypropyl, 4,4-biscarboxybutyl, 5,5-biscarboxypentyl, 6,6-biscarboxyhexyl, 7,7-biscarboxyheptyl, 8,8-biscarboxyoctyl, 9,9-bis-carboxynonyl, 10,10-biscarboxydecyl, bis(methoxycarbonyl)methyl, 2,2-bis-(methoxycarbonyl)ethyl, 3,3-bis(methoxycarbonyl)propyl, 4,4-bis(methoxy-carbonyl)butyl, 5,5-bis(methoxycarbonyl)pentyl, 6,6-bis(methoxy-carbonyl)hexyl, 7,7-bis(methoxycarbonyl)heptyl, 8,8-bis(methoxycarbonyl)-octyl, bis(ethoxycarbonyl)methyl, 2,2-bis(ethoxycarbonyl)ethyl, 3,3-bis-(ethoxycarbonyl)propyl, 4,4-bis(ethoxycarbonyl)butyl or 5,5-bis(ethoxy-carbonyl)pentyl.


R1 and/or R2 are preferably, independently of one another, identically or differently, H, a straight-chain alkyl radical having from 1 to 9 carbon atoms or a straight-chain alkenyl radical having from 2 to 9 carbon atoms.


The compounds of the formula I are consequently preferably selected from the group consisting of the compounds of the following sub-formulae Ia to Id, where sub-formula Ia is particularly preferred:




embedded image



where, in the formulae Ia to Id, the term “alkyl1” and “alkyl2” in each case, independently of one another, identically or differently, denotes a hydrogen atom or an alkyl radical having from 1 to 9 carbon atoms, preferably a straight-chain alkyl radical having from 1 to 5 carbon atoms, and the term “alkenyl1” and “alkenyl2” in each case, independently of one another, identically or differently, denotes an alkenyl radical having from 2 to 9 carbon atoms, preferably a straight-chain alkenyl radical having from 2 to carbon atoms.


The compounds of the formula I are consequently particularly preferably selected from the group consisting of the compounds of the following sub-formulae I1 to I25:




embedded image


embedded image


Particularly preferred compounds from the group consisting of the compounds of the sub-formulae I1 to I25 here are compounds in which the total number of carbon atoms in the two alkyl groups is in the range from 4 to 6. These are the compounds I3 to I15, I7 to I9, I11 to I13, I16, I17 and I21. Particular preference is given here to the sub-formulae I8, I9, I12 and I13.


The liquid-crystalline medium particularly preferably comprises one, two or three compounds of the formula I.


The proportion of compounds of the formula I in the mixture as a whole is from 1 to 60% by weight, preferably from 3 to 50% by weight and particularly preferably either from 3 to 12% by weight (embodiment A) or from 15 to 50% by weight (embodiment B).


The compounds of the formula I are prepared by methods known per se, as described in the literature (for example in the standard works, such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise under reaction conditions which are known and suitable for the said reactions. Use can also be made here of variants which are known per se, but are not mentioned here in greater detail.


The compounds of the formula I are preferably prepared as described in EP 0132 377 A2.


The present invention also relates to electro-optical display devices (in particular STN or MLC displays having two plane-parallel outer plates, which, together with a frame, form a cell, integrated non-linear elements for switching individual pixels on the outer plates, and a nematic liquid-crystal mixture of positive dielectric anisotropy and high specific resistance which is located in the cell) which contain the media according to the invention, and to the use of these media for electro-optical purposes. Besides reflective applications, the mixtures according to the invention are also suitable for IPS (in plane switching) applications and OCB (optically controlled birefringence) applications.


The liquid-crystal mixtures according to the invention enable a significant widening of the available parameter latitude.


The achievable combinations of rotational viscosity γ1 and optical anisotropy Δn are far superior to previous materials from the prior art.


The requirement for a high clearing point, nematic phase at low temperature, low rotational viscosity γ1 and high Δn has hitherto only been achieved to an inadequate extent. Although systems such as, for example, the mixture of Comparative Example 2, which is commercially available from Merck, have similar properties to the mixtures according to the invention, they have, however, significantly worse values for the rotational viscosity γ1.


Other mixture systems, such as, for example, the mixture of Comparative Example 1, which is commercially available from Merck, have comparable rotational viscosities γ1, but have significantly worse values for the optical anisotropy Δn.


The liquid-crystal mixtures according to the invention, while retaining the nematic phase down to −20° C., preferably down to −30° C. and particularly preferably down to −40° C., enable clearing points above 65° C., preferably above 70° C. and particularly preferably above 75° C., simultaneously dielectric anisotropy values Δ∈ of ≧4, preferably ≧4.5, and a high value for the specific resistance to be achieved, enabling excellent STN and MLC displays to be obtained. In particular, the mixtures are characterised by low operating voltages. The TN thresholds are below 2.0 V, preferably below 1.9 V and particularly preferably below 1.8 V.


The liquid-crystal mixtures according to the invention have optical anisotropies Δn which, in the case of embodiment A, are preferably ≦0.100 and particularly preferably ≦0.095. In the case of embodiment B, the optical anisotropies are preferably ≧0.160, particularly preferably ≧0.180 and in particular ≧0.200.


It goes without saying that, through a suitable choice of the components of the mixtures according to the invention, it is also possible for higher clearing points to be achieved at higher threshold voltages or lower clearing points to be achieved at lower threshold voltages with retention of the other advantageous properties. At viscosities correspondingly increased only slightly, it is likewise possible to obtain mixtures having greater ΔE and thus lower thresholds. The MLC displays according to the invention preferably operate at the first Gooch and Tarry transmission minimum [C. H. Gooch and H. A. Tarry, Electron. Lett. 10, 2-4, 1974; C. H. Gooch and H. A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], where particularly favourable electro-optical properties, such as, for example, high steepness of the characteristic line and low angle dependence of the contrast (German Patent 30 22 818), are achieved. In addition, significantly higher specific resistances can be achieved using the mixtures according to the invention at the first minimum than in the case of mixtures comprising cyano compounds. Through a suitable choice of the individual components and their proportions by weight, the person skilled in the art is able to set the birefringence necessary for a pre-specified layer thickness of the MLC display using simple routine methods.


The rotational viscosity γ1 of the mixtures according to the invention at 20° C. is preferably ≦180 mPa·s, particularly preferably ≦160 mPa·s. In a specific embodiment (embodiment A), the rotational viscosity γ1 is particularly preferably ≦80 mpa·s and in particular ≦70 mPa·s. The ratio γ1 to (Δn)2 here is preferably ≦8000, particularly preferably ≦7000. In a specific embodiment (embodiment B), the ratio is particularly preferably ≦5000 and in particular ≦4500. The nematic phase range is preferably at least 90° C. and extends at least from −20° to +70° C.


Measurements of the capacity holding ratio (HR) [S. Matsumoto et al., Liquid Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] have shown that mixtures according to the invention comprising compounds of the formula I exhibit a significantly smaller decrease in the HR with increasing temperature than analogous mixtures comprising cyanophenylcyclohexanes of the formula




embedded image



the formula




embedded image



instead of the compounds of the formula I according to the invention.


The UV stability of the mixtures according to the invention is also considerably better, i.e. they exhibit a significantly smaller decrease in the HR on exposure to UV.


Besides at least one compound of the formula I, the medium according to the invention additionally comprises one or more compounds selected from the group consisting of compounds of the general formulae II to X:




embedded image


embedded image



in which the individual radicals have the following meanings:















R0:
n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to



9 carbon atoms;


X0:
F, Cl, halogenated alkyl or halogenated alkoxy having from



1 to 6 carbon atoms, or halogenated alkenyl having from 2 to



6 carbon atoms;


Z0:
—CF2O—, —OCF2—, —CH2O—, —OCH2—, —CO—O—,



—O—CO—, —CH═CH—, —C2H4—, —C2F4—,



—CH2CF2—, —CF2CH2— or —C4H8—;


Y1, Y2,
each, independently of one another, H or F;


Y3, Y4,


Y5 and Y6:


r:
0 or 1, preferably 1.









The term “alkyl” covers straight-chain and branched alkyl groups having from 1 to 9 carbon atoms, preferably the straight-chain groups methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl and nonyl. Groups having from 1 to 5 carbon atoms are particularly preferred.


The term “alkenyl” covers straight-chain and branched alkenyl groups having from 2 to 9 carbon atoms, preferably the straight-chain groups having from 2 to 7 carbon atoms. Preferred alkenyl groups are C2-C7-1 E-alkenyl, C4-C73E-alkenyl, C5-C74-alkenyl, C6-C75-alkenyl and C7-6-alkenyl, in particular C2-C7-1 E-alkenyl, C4-C73E-alkenyl and C5-C74-alkenyl. Examples of preferred alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 carbon atoms are particularly preferred.


The term “fluoroalkyl” preferably covers straight-chain groups having a terminal fluorine, i.e. fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl and 7-fluoroheptyl. However, other positions of the fluorine are not excluded.


The term “oxaalkyl” preferably covers straight-chain radicals of the formula CnH2n+1—O—(CH2)m, in which n and m are each, independently of one another, from 1 to 6. Preferably, n=1 and m=1 to 6.


In the formulae II to X,




embedded image


The compound of the formula II is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl or alkenyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms or alkenyl having from 2 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2.


The compound of the formula III is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl or alkenyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms or alkenyl having from 2 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2.


The compound of the formula IV is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2, particularly preferably F.


The compound of the formula V is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2, particularly preferably F. Particular preference is given to the formula Vc.


The compound of the formula VII is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2.


The compound of the formula VIII is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2, particularly preferably F.


The compound of the formula X is preferably




embedded image



in which R0 and X0 can adopt the meanings indicated above. Preferably, however, R0 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and X0 is F, OCF3, CF3 or OCHF2, particularly preferably F.


Particularly preferred embodiments are indicated below.

    • The medium comprises one or more compounds of the formulae II, III, IV, V, VI, VII, VIII, 1× and/or X, preferably one or more compounds of the formulae IIa, IIb, IIc, IIIa, IVa, IVb, Vc, VIIa, VIIb, VIIIa, VIIIb and/or Xa.
    • The proportion of compounds of the formulae II to X in the mixture as a whole is from 20 to 70% by weight, preferably from 30 to 60% by weight and particularly preferably from 35 to 55% by weight.
    • The proportion of compounds of the formulae I to X together in the mixture as a whole is at least 30% by weight, preferably at least 40% by weight and particularly preferably at least 50% by weight.
    • The medium essentially consists of compounds of the formulae I to X.
    • The I: (II+III+IV+V+VI+VII+VIII+IX+X) weight ratio is preferably in the range from 1:10 to 10:1.


The optimum mixing ratio of the compounds of the formulae I and II+III+IV+V+VI+VII+VII+IX+X depends substantially on the desired properties, on the choice of the components of the formulae I, II, III, IV, V, VI, VII, VII, IX and/or X and on the choice of any other components present. Suitable mixing ratios within the ranges indicated above can easily be determined from case to case.


Besides at least one compound of the formula I and at least one compound selected from the group consisting of compounds of the general formulae II to X, the medium according to the invention additionally comprises one or more compounds selected from the group consisting of compounds of the general formulae XI to XVII:




embedded image



in which the individual radicals have the following meanings:















R1 and R2:
independently of one another, identically or differently,



n-alkyl, n-alkoxy or alkenyl, each having up to 9 carbon



atoms; and


Z1 and Z2:
independently of one another, identically or differently, a



single bond, —CF2O—, —OCF2—, —CH2O—, —OCH2—,



—CO—O—, —O—CO—, —CH═CH—, —C2H4—,



—C2F4—, —CH2CF2—, —CF2CH2— or —C4H8—,



preferably each a single bond.









The compound of the formula XI is preferably




embedded image



in which R1 and R2 can adopt the meanings indicated above. Preferably, however, R1 is n-alkyl or alkenyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms or alkenyl having from 2 to 5 carbon atoms, and R2 is alkenyl having up to 9 carbon atoms, particularly preferably alkenyl having from 2 to 5 carbon atoms.


Particularly preferred compounds of the formula XIa are




embedded image



in which R1 can adopt the meanings indicated above, but is preferably n-alkyl having from 1 to 5 carbon atoms.


The compounds of the formulae XIa1 and XIa2 are particularly preferred.


The compound of the formula XIII is preferably




embedded image



in which R1 and R2 can adopt the meanings indicated above. Preferably, however, R1 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and R2 is alkoxy having up to 9 carbon atoms, particularly preferably alkoxy having from 1 to 5 carbon atoms.


The compound of the formula XIII is preferably




embedded image



in which R1 and R2 can adopt the meanings indicated above. Preferably, however, R1 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms, and R2 is alkenyl having up to 9 carbon atoms, particularly preferably alkenyl having from 2 to 5 carbon atoms.


The compound of the formula XV is preferably




embedded image



in which R1 and R2 can adopt the meanings indicated above. Preferably, however, R1 is alkenyl having up to 9 carbon atoms, particularly preferably alkenyl having from 2 to 5 carbon atoms, and R2 is n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms.


Particularly preferred embodiments are indicated below.

    • The medium comprises one or more compounds of the formulae XI, XII, XIII, XIV, XV, XVI and/or XVII, preferably one or more compounds of the formulae XIa, XIb, XIIa, XIIIa and/or XVa.
    • The proportion of compounds of the formulae XI to XVII in the mixture as a whole is from 5 to 70% by weight, preferably from 10 to 60% by weight and particularly preferably either from 10 to 30% by weight (embodiment B) or from 35 to 55% by weight (embodiment A).
    • The proportion of compounds of the formulae I to XVII together in the mixture as a whole is at least 50% by weight, preferably at least 70% by weight and particularly preferably at least 90% by weight.
    • The medium essentially consists of compounds of the formulae I to XVII.


The total amount of compounds of the formulae I to XVII in the mixtures according to the invention is not crucial. The mixtures may therefore comprise one or more further components in order to optimise various properties. However, the observed effect on the rotational viscosity and the optical anisotropy is generally greater the higher the total concentration of compounds of the formulae I to XVII.


Furthermore, the medium according to the invention may additionally comprise one or more compounds selected from compounds of the general formula XVIII:




embedded image



in which R1 and R2 can adopt the meanings indicated above. Preferably, however, R1 and R2 are n-alkyl having up to 9 carbon atoms, particularly preferably n-alkyl having from 1 to 5 carbon atoms.


The proportion of compounds of the formula XVIII in the mixture as a whole can be up to 10% by weight.


In addition, the medium according to the invention may additionally comprise one or more compounds selected from the group consisting of compounds of the general formulae XIX to XXVI:




embedded image


embedded image



in which R0, X0, Y1, Y2, Y3, Y4 and Z0 each, independently of one another, have one of the meanings indicated above. Preferably, X0 is F, Cl, CF3, OCF3 or OCHF2. R0 is preferably alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 6 carbon atoms, and Z0 is preferably a single bond or —CH2—CH2—. Y1, Y2, Y3 and Y4 are each, independently of one another, H or F.


The individual compounds of the formulae II to XXVI and their sub-formulae which can be used in the media according to the invention are either known or can be prepared analogously to known compounds.


It has been found that even a relatively small proportion of compounds of the formula I mixed with conventional liquid-crystal materials, but in particular with one or more compounds of the formulae II, III, IV, V, VI, VII, VII, IX and/or X, results in a significant reduction in the rotational viscosity y, and in higher values for the optical anisotropy Δn, enabling shorter response times of the displays to be achieved, with broad nematic phases having low smectic-nematic transition temperatures being observed at the same time, causing an improvement in the storage stability. The compounds of the formulae I to X are colourless, stable and readily miscible with one another and with other liquid-crystal materials. The mixtures according to the invention are furthermore distinguished by very high clearing points.


The construction of the MLC display according to the invention from polarisers, electrode base plates and electrodes having a surface treatment corresponds to the conventional design for displays of this type. The term conventional design here is broadly drawn and also covers all derivatives and modifications of the MLC display, in particular also matrix display elements based on poly-Si TFT or MIM.


An essential difference between the displays according to the invention and the hitherto conventional displays based on the twisted nematic cell consists, however, in the choice of the liquid-crystal parameters of the liquid-crystal layer.


The liquid-crystal mixtures which can be used in accordance with the invention are prepared in a manner conventional per se. In general, the desired amount of the components used in lesser amount is dissolved in the components making up the principal constituent, preferably at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after mixing.


The dielectrics may also comprise further additives known to the person skilled in the art and described in the literature. For example, from 0 to 15% of pleochroic dyes and/or chiral dopants may be added.


In the present application and in the following examples, the structures of the liquid-crystal compounds are indicated by means of acronyms, with the transformation into chemical formulae taking place in accordance with Tables A and B below. All radicals CnH2n+1 and CmH2m+1 are straight-chain alkyl radicals having n and m carbon atoms respectively; n and m are preferably 0, 1, 2, 3, 4, 5, 6 or 7. The coding in Table B is self-evident. In Table A, only the acronym for the parent structure is indicated. In individual cases, the acronym for the parent structure is followed, separated by a dash, by a code for the substituents R1, R2, L1 and L2.
















Code for R1,






R2, L1, L2
R1
R2
L1
L2







nm
CnH2n+1
CmH2m+1
H
H


nOm
CnH2n+1
OCmH2m+1
H
H


nO•m
OCnH2n+1
CmH2m+1
H
H


n
CnH2n+1
CN
H
H


nN•F
CnH2n+1
CN
H
F


nF
CnH2n+1
F
H
H


nOF
OCnH2n+1
F
H
H


nCl
CnH2n+1
Cl
H
H


nF•F
CnH2n+1
F
H
F


nF•F•F
CnH2n+1
F
F
F


nCF3
CnH2n+1
CF3
H
H


nOCF3
CnH2n+1
OCF3
H
H


nOCF2
CnH2n+1
OCHF2
H
H


nS
CnH2n+1
NCS
H
H


rVsN
CrH2r+1—CH═CH—CsH2s
CN
H
H


rEsN
CrH2r+1—O—CsH2s
CN
H
H


nAm
CnH2n+1
COOCmH2m+1
H
H


nOCCF2•F•F
CnH2n+1
OCH2CHF2
F
F


V-n
CH2═CH
CnH2n+1
H
H









Preferred mixture components of the mixture concept according to the invention are shown in Tables A and B:









TABLE A









embedded image




PYP







embedded image




PYRP







embedded image




BCH







embedded image




CBC







embedded image




CCH







embedded image




CCP







embedded image




CPTP







embedded image




CEPTP







embedded image




ECCP







embedded image




CECP







embedded image




CCEEP







embedded image




CEECP







embedded image




EPCH







embedded image




PCH







embedded image




PTP







embedded image




BECH







embedded image




EBCH







embedded image




CPC







embedded image




B







embedded image




FET







embedded image




CGG







embedded image




CGU







embedded image




CFU
















TABLE B









embedded image




PCH-nOm







embedded image




BCH-nF.F







embedded image




CFU-n-F







embedded image




Inm







embedded image




CBC-nmF







embedded image




PDX-n







embedded image




CCZU-n-F







embedded image




K3n







embedded image




PP-n-mV1







embedded image




ECCP-nm







embedded image




ECCP-nF.F.F







embedded image




CCH-nm







embedded image




CCH-n1Em







embedded image




PGP-n-m







embedded image




PGIGI-n-F







embedded image




PGIGI-n-Cl







embedded image




GGP-n-F







embedded image




GGP-n-Cl







embedded image




CGU-n-F







embedded image




CDU-n-F







embedded image




CGG-n-F







embedded image




CWC-n-m







embedded image




CCH-nCF3







embedded image




CUP-nF.F







embedded image




CC-n-V







embedded image




CWCC-n-m







embedded image




PQU-n-F







embedded image




CCG-V-F







embedded image




CCU-n-OT







embedded image




CCQU-n-F







embedded image




CCQG-n-OT







embedded image




Dec-U-n-F







embedded image




CPTU-n-F







embedded image




GPTU-n-F







embedded image




PGU-n-F







embedded image




CC-n-V1







embedded image




CC-V-V1







embedded image




CCC-V-V







embedded image




CCP-nOCF3







embedded image




CCP-nOCF3.F







embedded image




CCP-nF.F.F







embedded image




CGZP-n-OT







embedded image




CCP-V-m







embedded image




CCP-V2-m







embedded image




Nap-U-n-F







embedded image




CPZU-n-F







embedded image




CC-n-DDT







embedded image




CC-n-OMT







embedded image




DU-n-N







embedded image




CWCU-n-F







embedded image




CWCG-n-OT







embedded image




CCOC-n-m







embedded image




CCWU-n-F







embedded image




CQUZU-n-F







embedded image




CCQUZG-n-F







embedded image




CCQUZP-n-OT







embedded image




CQUZG-n-OT







embedded image




CVC-n-V







embedded image




CVCP-nV-OT







embedded image




PUQU-n-F







embedded image




FET-nCl
















TABLE C





Table C shows possible dopants which are preferably added to the


mixtures according to the invention.









embedded image




C 15







embedded image




CB 15







embedded image




CM 21







embedded image




R/S-811







embedded image




CM 44







embedded image




CM 45







embedded image




CM 47







embedded image




R/S-1011







embedded image




R/S-3011







embedded image




CN







embedded image




R/S-4011







embedded image




R/S-2011
















TABLE D





Stabilisers which can be added, for example, to the mixtures according to


the invention are mentioned below.


















embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image














embedded image















embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image














embedded image















embedded image




embedded image











Besides one or more compounds of the formula I, particularly preferred mixtures comprise one, two, three, four, five or more compounds from Table B.


The following examples are intended to explain the invention without restricting it. Above and below, percentages are percent by weight. All temperatures are indicated in degrees Celsius. cl.p. denotes clearing point.


Δn denotes the optical anisotropy (589 nm, 20° C.). The optical data were measured at 20° C., unless expressly stated otherwise. Δ∈ denotes the dielectric anisotropy (Δ∈=∈−∈, where ∈ denotes the dielectric constant parallel to the longitudinal molecular axes and ∈ denotes the dielectric constant perpendicular thereto). The electro-optical data were measured in a TN cell at the 1st minimum (i.e. at a d·Δn value of 0.5 μm) at 20° C., unless expressly stated otherwise. The rotational viscosity γ1 (mPa·s) was determined at 20° C.


V10 denotes the threshold voltage, i.e. the characteristic voltage at a relative contrast of 10%, V50 denotes the characteristic voltage at a relative contrast of 50% and V90 denotes the characteristic voltage at a relative contrast of 90%. V0 denotes the capacitive threshold voltage. The twist is 90°, unless indicated otherwise.


The elastic constants K1 and K3 were determined at 20° C. K3/K1 is the ratio of the elastic constants K3 and K1.







EXAMPLES
Example 1



















CCP-20CF3
2.0%
Clearing point [° C.]:
80.0



CCP-30CF3
8.0%
Δn [589 nm, 20° C.]:
0.0934



CCZU-3-F
14.0%
Δε [1 kHz, 20° C.]:
6.0



CC-3-V1
10.0%
γ1 [mPa · s, 20° C.]:
70



PCH-301
7.0%
V10 [V]:
1.64



CCP-V-1
12.0%
V50 [V]:
1.99



CCG-V-F
10.0%
V90 [V]:
2.48



CC-4-V
18.0%
V90/V10:
1.509



PUQU-2-F
6.0%



PUQU-3-F
8.0%



PGP-2-3
5.0%










Example 2



















CCP-20CF3
4.0%
Clearing point [° C.]:
79.0



CCP-30CF3
8.0%
Δn [589 nm, 20° C.]:
0.0960



CCZU-3-F
14.0%



CC-3-V1
10.0%



PCH-301
9.0%



CCP-V-1
16.0%



CC-4-V
18.0%



PUQU-1-F
8.0%



PUQU-2-F
7.0%



PGP-3-2
6.0%










Example 3



















CCP-20CF3
2.0%
Clearing point [° C.]:
81.5



CCP-30CF3
8.0%
Δn [589 nm, 20° C.]:
0.0940



CCZU-3-F
14.0%
Δε [1 kHz, 20° C.]:
6.2



CC-3-V1
10.0%
γ1 [mPa · s, 20° C.]:
70



PCH-301
6.0%
V10 [V]:
1.67



CCP-V-1
13.0%
V50 [V]:
2.02



CCG-V-F
10.0%
V90 [V]:
2.53



CC-4-V
18.0%
V90/V10:
1.512



PUQU-1-F
8.0%



PUQU-2-F
6.0%



PGP-3-2
5.0%










Example 4



















CCP-30CF3
8.0%
Clearing point [° C.]:
82.0



CCZU-3-F
13.0%
Δn [589 nm, 20° C.]:
0.0925



CC-3-V1
10.0%
Δε [1 kHz, 20° C.]:
6.1



CCP-V-1
13.0%



CCG-V-F
10.0%



CC-4-V
18.0%



PUQU-1-F
8.0%



PUQU-2-F
7.0%



PGP-3-2
5.0%



CVC-3-V
8.0%










Example 5



















PGU-2-F
2.0%
Clearing point [° C.]:
80.5



CCP-20CF3
7.0%
Δn [589 nm, 20° C.]:
0.0942



CCP-30CF3
7.0%
V10 [V]:
1.65



CCZU-3-F
14.0%



CC-3-V1
10.0%



PCH-301
3.0%



CCP-V-1
10.0%



CCG-V-F
10.0%



CC-4-V
18.0%



PUQU-2-F
6.0%



PUQU-3-F
8.0%



PGP-2-4
5.0%










Example 6



















PGU-2-F
7.0%
Clearing point [° C.]:
79.0



CC-3-V1
10.0%
Δn [589 nm, 20° C.]:
0.1036



CCP-V-1
12.0%
Δε [1 kHz, 20° C.]:
5.0



CCP-V2-1
3.0%
γ1 [mPa · s, 20° C.]:
67



CCG-V-F
10.0%
V10 [V]:
1.78



CCP-20CF3
4.0%
V50 [V]:
2.13



CCP-30CF3
4.0%
V90 [V]:
2.65



CCP-40CF3
2.0%
V90/V10:
1.490



CCZU-3-F
5.0%



PCH-301
8.0%



CC-4-V
18.0%



PUQU-2-F
4.0%



PUQU-3-F
5.0%



PGP-2-4
8.0%










Example 7



















CC-4-V
18.0%
Clearing point [° C.]:
79.5



CC-3-V1
11.0%
Δn [589 nm, 20° C.]:
0.0939



PCH-302
9.0%
Δε [1 kHz, 20° C.]:
6.0



CCP-20CF3
7.5%
γ1 [mPa · s, 20° C.]:
71



CCP-30CF3
8.0%
V10 [V]:
1.80



CCZU-3-F
13.0%
V50 [V]:
2.15



PGP-2-3
5.5%
V90 [V]:
2.65



PGP-2-4
5.0%
V90/V10:
1.474



CCQU-2-F
6.0%



CCQU-3-F
10.0%



PUQU-2-F
3.0%



PUQU-3-F
4.0%










Example 8



















CCP-20CF3
4.0%
Clearing point [° C.]:
79.0



CCP-30CF3
4.0%
Δn [589 nm, 20° C.]:
0.0927



CCP-40CF3
4.0%
Δε [1 kHz, 20° C.]:
5.1



CCZU-3-F
9.0%
γ1 [mPa · s, 20° C.]:
65



CC-3-V1
10.0%
V10 [V]:
1.76



PCH-301
9.0%
V50 [V]:
2.13



CCP-V-1
14.0%
V90 [V]:
2.66



CCG-V-F
10.0%
V90/V10:
1.513



CC-4-V
18.0%



PUQU-2-F
6.0%



PUQU-3-F
7.0%



PGP-2-3
5.0%










Example 9



















CCP-30CF3
7.0%
Clearing point [° C.]:
79.5



CCZU-2-F
2.0%
Δn [589 nm, 20° C.]:
0.0947



CCZU-3-F
14.0%
Δε [1 kHz, 20° C.]:
6.0



PUQU-2-F
6.0%
γ1 [mPa · s, 20° C.]:
68



PUQU-3-F
8.0%
V10 [V]:
1.72



CCP-V-1
8.0%



CC-3-V1
12.0%



CC-4-V
18.0%



PCH-301
10.0%



PGP-2-3
6.0%



CVCP-1V-OT
9.0%










Example 10



















CCZU-2-F
3.0%
Clearing point [° C.]:
79.0



CCZU-3-F
14.0%
Δn [589 nm, 20° C.]:
0.0935



PCH-302
10.0%
Δε [1 kHz, 20° C.]:
6.1



CCP-V-1
9.0%
γ1 [mPa · s, 20° C.]:
70



CCG-V-F
5.0%
V10 [V]:
1.67



CC-3-V1
12.0%



CC-4-V
18.0%



PUQU-2-F
6.0%



PUQU-3-F
8.0%



PGP-2-3
5.0%



CVCP-1V-OT
10.0%










Example 11



















PGU-2-F
4.0%
Clearing point [° C.]:
80.5



CC-3-V1
10.0%
γ1 [mPa · s, 20° C.]:
67



CCP-V-1
14.0%
V10 [V]:
1.80



CCG-V-F
10.0%



CCP-20CF3
6.0%



CCP-30CF3
6.0%



CCP-40CF3
4.0%



PCH-301
6.0%



CC-4-V
18.0%



PUQU-2-F
6.0%



PUQU-3-F
8.0%



PGP-2-3
8.0%










Example 12



















PGU-2-F
6.0%
Clearing point [° C.]:
80.0



PGU-3-F
2.0%
Δn [589 nm, 20° C.]:
0.1048



CC-3-V1
11.0%
Δε [1 kHz, 20° C.]:
5.7



CCP-V-1
12.0%
γ1 [mPa · s, 20° C.]:
69



CCG-V-F
10.0%
V10 [V]:
1.68



CCP-30CF3
6.0%
V50 [V]:
2.02



CCZU-3-F
12.0%
V90 [V]:
2.48



PCH-301
7.0%
V90/V10:
1.478



CC-4-V
18.0%



PUQU-2-F
4.0%



PUQU-3-F
4.0%



PGP-2-3
8.0%










Example 13



















CCZU-2-F
3.0%
Clearing point [° C.]:
80.0



CCZU-3-F
14.0%
Δn [589 nm, 20° C.]:
0.0934



PUQU-2-F
6.0%
Δε [1 kHz, 20° C.]:
6.1



PUQU-3-F
8.0%
γ1 [mPa · s, 20° C.]:
69



CCG-V-F
9.0%
V10 [V]:
1.67



CCP-V-1
12.0%
V50 [V]:
2.01



CC-3-V1
13.0%
V90 [V]:
2.52



CC-4-V
18.0%
V90/V10:
1.511



PCH-301
5.0%



PGP-2-4
6.0%



CVCP-2V-OT
6.0%










Example 14



















PUQU-2-F
10.0%
Clearing point [° C.]:
79.0



PUQU-3-F
10.0%
Δn [589 nm, 20° C.]:
0.0943



CCP-V-1
16.0%
Δε [1 kHz, 20° C.]:
5.6



CCP-V2-1
4.0%
γ1 [mPa · s, 20° C.]:
67



CCG-V-F
10.0%
V10 [V]:
1.78



CC-3-V1
13.0%
V50 [V]:
2.15



CC-4-V
18.0%
V90 [V]:
2.71



PCH-301
6.0%
V90/V10:
1.522



PGP-2-4
2.0%



CVCP-1V-OT
11.0%










Example 15



















CCZU-3-F
6.0%
Clearing point [° C.]:
79.0



CCP-V-1
16.0%
Δn [589 nm, 20° C.]:
0.0940



CCG-V-F
10.0%
Δε [1 kHz, 20° C.]:
5.8



CC-4-V
18.0%
γ1 [mPa · s, 20° C.]:
65



CC-3-V1
13.0%
V10 [V]:
1.71



PCH-301
6.0%
V50 [V]:
2.06



PUQU-1-F
9.0%
V90 [V]:
2.59



PUQU-2-F
9.0%
V90/V10:
1.519



PGP-2-4
3.0%



CVCP-1V-OT
10.0%










Example 16



















CCZU-3-F
12.0%
Clearing point [° C.]:
79.0



PUQU-2-F
8.0%
Δn [589 nm, 20° C.]:
0.0938



PUQU-3-F
9.0%
Δε [1 kHz, 20° C.]:
5.8



CCP-V-1
12.0%
γ1 [mPa · s, 20° C.]:
68



CC-3-V1
12.0%
V10 [V]:
1.72



CC-4-V
18.0%
V50 [V]:
2.08



PCH-301
11.0%
V90 [V]:
2.59



PGP-2-3
4.0%
V90/V10:
1.506



CVCP-1V-OT
10.0%



CCC-V-V
4.0%










Example 17



















CCZU-3-F
7.0%
Clearing point [° C.]:
80.0



CCP-V-1
16.0%
Δn [589 nm, 20° C.]:
0.0936



CCG-V-F
10.0%
Δε [1 kHz, 20° C.]:
5.9



CC-4-V
18.0%
γ1 [mPa · s, 20° C.]:
67



CC-3-V1
13.0%
V10 [V]:
1.71



PCH-301
5.0%
V50 [V]:
2.07



PUQU-2-F
9.0%
V90 [V]:
2.60



PUQU-3-F
9.0%
V90 /V10:
1.518



PGP-2-4
3.0%



CVCP-1V-OT
10.0%










Example 18



















CCZU-2-F
4.0%
Clearing point [° C.]:
80.0



CCZU-3-F
14.0%
Δn [589 nm, 20° C.]:
0.0941



CCP-20CF3
4.0%
Δε [1 kHz, 20° C.]:
7.4



CCP-30CF3
3.0%
γ1 [mPa · s, 20° C.]:
66



CCP-V-1
14.0%
V10 [V]:
1.55



COG-V-F
5.0%
V50 [V]:
1.87



PUQU-1-F
10.0%
V90 [V]:
2.33



PUQU-2-F
8.0%
V90 /V10:
1.505



PGP-2-4
5.0%



CC-3-V1
13.0%



CC-3-V
20.0%










Example 19



















PGU-1-F
5.0%
Clearing point [° C.]:
79.0



PGU-2-F
4.0%
Δn [589 nm, 20° C.]:
0.1047



CC-3-V1
12.0%
Δε [1 kHz, 20° C.]:
5.3



CCP-V-1
14.0%
γ1 [mPa · s, 20° C.]:
65



CCG-V-F
5.0%
V10 [V]:
1.72



CCP-30CF3
6.0%
V50 [V]:
2.07



CCZU-3-F
12.0%
V90 [V]:
2.57



PCH-301
9.0%
V90 /V10:
1.496



CC-4-V
18.0%



PUQU-2-F
3.0%



PUQU-3-F
4.0%



PGP-2-4
8.0%










Example 20



















CCZU-2-F
4.0%
Clearing point [° C.]:
78.0



CCZU-3-F
14.0%
Δn [589 nm, 20° C.]:
0.0992



PUQU-1-F
8.0%
Δε [1 kHz, 20° C.]:
5.8



PUQU-2-F
6.0%
γ1 [mPa · s, 20° C.]:
66



CCP-V-1
13.0%
V10 [V]:
1.67



CCG-V-F
7.0%
V50 [V]:
2.00



CC-3-V1
15.0%
V90 [V]:
2.47



CC-4-V
18.0%
V90 /V10:
1.480



PCH-301
5.0%



PGP-2-3
4.0%



PGP-2-4
6.0%










Example 21



















CCP-20CF3
4.0%
Clearing point [° C.]:
76.0



CCP-30CF3
4.0%
Δε [1 kHz, 20° C.]:
5.4



CCZU-3-F
4.0%
γ1 [mPa · s, 20° C.]:
58



PUQU-1-F
8.0%



PUQU-2-F
8.0%



CC-3-V1
6.0%



CVCP-1V-OT
14.0%



CVCP-2V-OT
4.0%



PGP-2-4
8.0%



CC-V-V1
40.0%










Comparative Example 1



















CCP-2F•F•F
9.5%
Clearing point [° C.]:
80.0



CCP-3F•F•F
1.5%
Δn [589 nm, 20° C.]:
0.0773



CCZU-2-F
3.5%
Δε [1 kHz, 20° C.]:
6.0



CCZU-3-F
9.0%
γ1 [mPa · s, 20° C.]:
81



CCP-20CF3
6.0%
V10 [V]:
1.60



CCP-30CF3
4.0%
V50 [V]:
1.97



CC-5-V
20.0%
V90 [V]:
2.45



CC-3-V1
5.0%
V90 /V10:
1.526



PCH-301
6.0%



CGZP-2-OT
9.0%



CCP-V-1
4.0%



CCG-V-F
10.5%



CGU-2-F
5.0%



CCH-35
3.5%



CCP-20CF3•F
3.5%










Example 22



















PGP-2-3
6.0%
Clearing point [° C.]:
75.0



PGP-2-4
6.0%
Δn [589 nm, 20° C.]:
0.1763



PGP-3-3
6.0%
Δε [1 kHz, 20° C.]:
4.5



PCH-301
11.0%
γ1 [mPa · s, 20° C.]:
150



PCH-302
10.0%
V0 [V]:
1.66



PGIGI-3-F
8.0%
γ1/(Δn)2:
4826



GGP-2-F
10.0%
K1 [pN]:
11.3



GGP-3-F
11.0%
K3 [pN]:
14.4



GGP-5-F
10.0%
K3/K1:
1.27



CCP-V-1
8.0%



CGG-3-F
14.0%










Example 23



















PGP-2-3
6.0%
Clearing point [° C.]:
77.0



PGP-2-4
8.0%
Δn [589 nm, 20° C.]:
0.1695



PGP-3-3
6.0%
Δε [1 kHz, 20° C.]:
4.4



PCH-301
15.0%
γ1 [mPa · s, 20° C.]:
156



PCH-302
14.0%
V0 [V]:
1.73



GGP-2-F
9.0%
γ1/(Δn)2:
5430



GGP-3-F
9.0%
K1 [pN]:
11.7



GGP-5-F
9.0%
K3 [pN]:
14.2



CGG-3-F
18.0%
K3 /K1:
1.21



CBC-33F
3.0%



CBC-53F
3.0%










Example 24



















PGP-2-3
10.0%
Clearing point [° C.]:
79.0



PGP-2-4
10.0%
Δn [589 nm, 20° C.]:
0.1780



PGP-3-3
6.0%
Δε [1 kHz, 20° C.]:
4.6



PCH-301
13.0%
γ1 [mPa · s, 20° C.]:
153



PCH-302
12.0%
V0 [V]:
1.69



GGP-2-F
9.0%
γ1/(Δn)2:
4829



GGP-3-F
10.0%
K1 [pN]:
11.8



GGP-5-F
7.0%
K3 [pN]:
14.0



CGG-3-F
19.0%
K3/K1:
1.19



CBC-33F
4.0%










Example 25



















PGP-2-3
11.0%
Clearing point [° C.]:
80.5



PGP-2-4
11.0%
Δn [589 nm, 20° C.]:
0.1813



PGP-3-2
6.0%
Δε [1 kHz, 20° C.]:
4.6



PCH-301
12.0%
γ1 [mPa · s, 20° C.]:
157



PCH-302
11.0%
V0 [V]:
1.69



GGP-2-F
9.0%
γ1/(Δn)2:
4776



GGP-3-F
10.0%
K1 [pN]:
11.9



GGP-5-F
7.0%
K3 [pN]:
13.7



CGG-3-F
19.0%
K3/K1:
1.16



CBC-33F
4.0%










Example 26



















PGP-2-3
12.0%
Clearing point [° C.]:
81.5



PGP-2-4
12.0%
Δn [589 nm, 20° C.]:
0.1885



PGP-3-2
9.0%
Δε [1 kHz, 20° C.]:
4.7



PCH-301
11.0%
γ1 [mPa · s, 20° C.]:
157



PCH-302
9.0%
V0 [V]:
1.70



GGP-2-F
9.0%
γ1/(Δn)2:
4419



GGP-3-F
10.0%
K1 [pN]:
12.3



GGP-5-F
6.0%



CGG-3-F
20.0%



CBC-33F
2.0%










Example 27



















PGP-2-3
13.0%
Clearing point [° C.]:
80.0



PGP-2-4
14.0%
Δn [589 nm, 20° C.]:
0.1931



PGP-3-2
9.0%
Δε [1 kHz, 20° C.]:
4.8



PCH-301
12.0%
γ1 [mPa · s, 20° C.]:
152



PCH-302
6.0%
V0 [V]:
1.66



GGP-2-F
9.0%
γ1/(Δn)2:
4076



GGP-3-F
11.0%
K1 [pN]:
12.3



GGP-5-F
6.0%
K3 [pN]:
12.7



CGG-3-F
20.0%
K3/K1:
1.04










Example 28



















PGP-2-3
14.0%
Clearing point [° C.]:
80.5



PGP-2-4
15.0%
Δn [589 nm, 20° C.]:
0.1939



PGP-3-2
9.0%
Δε [1 kHz, 20° C.]:
4.8



PCH-301
17.0%
γ1 [mPa · s, 20° C.]:
157



GGP-2-F
9.0%
V0 [V]:
1.66



GGP-3-F
10.0%
γ1/(Δn)2:
4176



GCP-S-F
6.0%
K1 [pN]:
11.8



CGG-3-F
20.0%
K3 [pN]:
12.5





K3/K1:
1.06










Example 29



















PGP-2-3
15.0%
Clearing point [° C.]:
84.5



PGP-2-4
15.0%
Δn [589 nm, 20° C.]:
0.2001



PGP-3-2
9.0%
Δε [1 kHz, 20° C.]:
5.3



PCH-301
13.0%
γ1 [mPa · s, 20° C.]:
172



GGP-2-F
10.0%
V0 [V]:
1.64



GGP-3-F
10.0%
γ1/(Δn)2:
4296



GGP-5-F
7.0%
K1 [pN]:
12.4



CGG-3-F
21.0%
K3 [pN]:
12.2





K3/K1:
0.98










Example 30



















PGP-2-3
15.0%
Clearing point [° C.]:
83.0



PGP-2-4
15.0%
Δn [589 nm, 20° C.]:
0.2015



PGP-3-2
9.0%
Δε [1 kHz, 20° C.]:
5.0



PCH-301
12.0%
γ1 [mPa · s, 20° C.]:
159



GGP-2-F
9.0%
V0 [V]:
1.72



GGP-3-F
10.0%
γ1/(Δn)2:
3916



GGP-5-F
6.0%
K1 [pN]:
13.1



CGG-3-F
20.0%
K3 [pN]:
13.0



PP-1-2V1
4.0%
K3/K1:
0.99










Example 31



















PGP-2-3
16.0%
Clearing point [° C.]:
87.5



PGP-2-4
16.0%
Δn [589 nm, 20° C.]:
0.2113



PGP-3-2
11.0%
Δε [1 kHz, 20° C.]:
4.8



PCH-301
9.0%
γ1 [mPa · s, 20° C.]:
174



GGP-2-F
9.0%
V0 [V]:
1.83



GGP-3-F
10.0%
γ1/(Δn)2:
3897



GGP-5-F
6.0%
K1 [pN]:
14.5



CGG-3-F
18.0%
K3 [pN]:
13.6



PP-1-2V1
5.0%
K3/K1:
0.94










Comparative Example 2



















FET-2Cl
15.0%
Clearing point [° C.]:
80.3



FET-3Cl
6.0%
Δn [589 nm, 20° C.]:
0.2106



FET-5Cl
19.0%
Δε [1 kHz, 20° C.]:
5.5



PGIGI-3-Cl
10.0%
γ1 [mPa · s, 20° C.]:
299



PGIGI-5-Cl
13.0%
V0 [V]:
1.76



PCH-301
10.0%
γ1/(Δn)2:
6741



GGP-5-Cl
16.0%
K1 [pN]:
14.4



BCH-3F•F
11.0%
K3 [pN]:
19.6





K3/K1:
1.36










Example 32



















PGU-1-F
5.00%
Clearing point [° C.]:
79.0



PGU-2-F
4.00%
Δn [589 nm, 20° C.]:
0.1047



CC-3-V1
12.00%
Δε [1 kHz, 20° C.]:
5.3



CCP-V-1
14.00%
γ1 [mPa · s, 20° C.]:
64



CCG-V-F
5.00%
V10 [V]:
1.75



CCP-30CF3
6.00%
V50 [V]:
2.11



CCZU-3-F
12.00%
V90 [V]:
2.62



PCH-301
9.00%
V90/V10:
1.499



CC-4-V
18.00%



PUQU-2-F
7.00%



PGP-2-4
8.00%










Example 33



















CCP-20CF3
2.00%
Clearing point [° C.]:
79.0



CCP-30CF3
8.00%
Δn [589 nm, 20° C.]:
0.0930



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
5.9



CC-3-V1
10.00%
γ1 [mPa · s, 20° C.]:
67



PCH-301
8.00%
V10 [V]:
1.50



CCP-V-1
12.00%
V50 [V]:
1.65



CCG-V-F
10.00%
V90 [V]:
2.00



CC-4-V
18.00%
V90/V10:
1.511



PUQU-1-F
8.00%
K1 [pN]:
11.8



PUQU-2-F
6.00%
K3 [pN]:
13.5



PGP-2-3
5.00%
K3/K1:
1.15










Example 34



















PGU-1-F
3.00%
Clearing point [° C.]:
81.0



PGU-2-F
5.00%
Δn [589 nm, 20° C.]:
0.1044



CC-3-V1
11.00%
Δε [1 kHz, 20° C.]:
5.5



CCP-V-1
14.00%
γ1 [mPa · s, 20° C.]:
65



CCG-V-F
8.00%
V10 [V]:
1.70



CCP-30CF3
6.00%
V50 [V]:
2.06



CCZU-3-F
12.00%
V90 [V]:
2.55



PCH-301
7.00%
V90/V10:
1.500



CC-4-V
18.00%



PUQU-2-F
4.00%



PUQU-3-F
4.00%



PGP-2-4
8.00%










Example 35



















CCP-20CF3
4.00%
Clearing point [° C.]:
79.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1024



CCZU-3-F
4.00%
Δε [1 kHz, 20° C.]:
6.1



PUQU-1-F
9.00%
γ1 [mPa · s, 20° C.]:
75



PUQU-2-F
7.00%
V10 [V]:
1.76



CC-3-V1
12.00%
V50 [V]:
2.14



CVCP-1V-OT
14.00%
V90 [V]:
2.66



CVCP-2V-OT
6.00%
V90/V10:
1.511



PGP-2-3
4.00%



PGP-2-4
6.00%



CC-V2-V
30.00%










Example 36



















CC-4-V
18.00%
Clearing point [° C.]:
74.5



CCP-1F•F•F
2.50%
Δn [589 nm, 20° C.]:
0.0893



CCQU-2-F
14.00%
Δε [1 kHz, 20° C.]:
12.8



CCQU-3-F
13.00%
γ1 [mPa · s, 20° C.]:
103



CCQU-5-F
11.00%
V10 [V]:
1.10



CCQG-3-F
8.00%
V50 [V]:
1.35



CCP-30CF3
3.00%
V90 [V]:
1.69



PUQU-1-F
8.00%
V90/V10:
1.539



PUQU-2-F
5.00%



PUQU-3-F
9.00%



PGP-2-4
3.00%



CCGU-3-F
3.50%



CBC-33
2.00%










Example 37



















CC-4-V
14.00%
Clearing point [° C.]:
82.0



CC-3-V1
8.00%
Δn [589 nm, 20° C.]:
0.0918



CCQU-2-F
14.00%
Δε [1 kHz, 20° C.]:
12.0



CCQU-3-F
12.00%
γ1 [mPa · s, 20° C.]:
106



CCQU-5-F
10.00%
V10 [V]:
1.22



CCP-2F•F•F
4.00%
V50 [V]:
1.50



CCP-30CF3
8.00%
V90 [V]:
1.87



PUQU-1-F
8.00%
V90/V10:
1.535



PUQU-2-F
4.00%



PUQU-3-F
7.00%



PGP-2-4
3.00%



CCGU-3-F
6.00%



CBC-33
2.00%










Example 38



















CC-4-V
18.00%
Clearing point [° C.]:
74.5



CCP-1F•F•F
6.00%
Δn [589 nm, 20° C.]:
0.0890



CCQU-2-F
14.00%
Δε [1 kHz, 20° C.]:
12.6



CCQU-3-F
13.00%
γ1 [mPa · s, 20° C.]:
107



CCQU-5-F
12.00%
V10 [V]:
1.10



CCQG-3-F
8.00%
V50 [V]:
1.36



PUQU-1-F
7.00%
V90 [V]:
1.71



PUQU-2-F
4.00%
V90/V10:
1.550



PUQU-3-F
7.00%



PGP-2-3
4.00%



CCGU-3-F
7.00%










Example 39



















CC-4-V
14.00%
Clearing point [° C.]:
81.0



CC-3-V1
8.00%
Δn [589 nm, 20° C.]:
0.0911



CCQU-2-F
13.00%
Δε [1 kHz, 20° C.]:
11.5



CCQU-3-F
13.00%
γ1 [mPa · s, 20° C.]:
108



CCQU-5-F
10.00%
V10 [V]:
1.24



CCP-1F•F•F
5.00%
V50 [V]:
1.53



CCQG-3-F
2.00%
V90 [V]:
1.91



CCP-30CF3
8.00%
V90/V10:
1.536



PUQU-1-F
7.00%



PUQU-2-F
3.00%



PUQU-3-F
6.00%



PGP-2-3
4.00%



CCGU-3-F
7.00%










Example 40



















PGU-1-F
8.00%
Clearing point [° C.]:
80.0



CC-3-V1
12.00%
Δn [589 nm, 20° C.]:
0.1043



CCP-V-1
14.00%
Δε [1 kHz, 20° C.]:
5.4



CCG-V-F
5.00%
V10 [V]:
1.77



CCP-30CF3
6.00%
V50 [V]:
2.13



CCZU-3-F
13.00%
V90 [V]:
2.65



PCH-301
10.00%
V90/V10:
1.494



CC-4-V
17.00%
K1 [pN]:
12.3



PUQU-2-F
3.00%
K3 [pN]:
12.9



PUQU-3-F
4.00%
K3/K1:
1.05



PGP-2-4
8.00%










Example 41



















CC-4-V
14.00%
Clearing point [° C.]:
81.0



CC-3-V1
8.00%
Δn [589 nm, 20° C.]:
0.0921



CCQU-2-F
13.00%
Δε [1 kHz, 20° C.]:
11.4



CCQU-3-F
12.00%
γ1 [mPa · s, 20° C.]:
100



CCQU-5-F
11.00%
V10 [V]:
1.25



CCP-1F•F•F
4.00%
V50 [V]:
1.53



BCH-3F•F•F
3.00%
V90 [V]:
1.90



CCP-30CF3
8.00%
V90/V10:
1.522



PUQU-1-F
9.00%



PUQU-2-F
7.00%



PGP-2-3
4.00%



CCGU-3-F
6.00%



CBC-33
1.00%










Example 42



















CC-4-V
14.00%
Clearing point [° C.]:
76.0



CCQU-2-F
13.00%
Δn [589 nm, 20° C.]:
0.0878



CCQU-3-F
13.00%
Δε [1 kHz, 20° C.]:
12.5



CCQU-5-F
11.00%
γ1 [mPa · s, 20° C.]:
111



CCP-1F•F•F
8.00%
V10 [V]:
1.10



CCQG-3-F
8.00%
V50 [V]:
1.36



CCP-20CF3
6.00%
V90 [V]:
1.69



PUQU-2-F
7.00%
V90/V10:
1.537



PUQU-3-F
10.00%



PGP-2-3
3.00%



CCGU-3-F
7.00%










Example 43



















CC-4-V
18.00%
Clearing point [° C.]:
74.0



CCP-1F•F•F
7.00%
Δn [589 nm, 20° C.]:
0.0887



CCP-2F•F•F
2.00%
Δε [1 kHz, 20° C.]:
11.9



CCQU-2-F
14.00%
γ1 [mPa · s, 20° C.]:
103



CCQU-3-F
13.00%
V10 [V]:
1.11



CCQU-5-F
11.00%
V50 [V]:
1.37



CCQG-3-F
8.00%
V90 [V]:
1.72



PUQU-1-F
9.00%
V90/V10:
1.545



PUQU-2-F
7.00%



PGP-2-3
5.00%



CCGU-3-F
6.00%










Example 44



















CC-4-V
12.00%
Clearing point [° C.]:
81.5



CC-3-V1
7.00%
Δn [589 nm, 20° C.]:
0.0938



CCQU-2-F
13.00%
Δε [1 kHz, 20° C.]:
11.8



CCQU-3-F
12.00%
γ1 [mPa · s, 20° C.]:
111



CCQU-5-F
11.00%
V10 [V]:
1.22



CCP-1F•F•F
5.00%
V50 [V]:
1.50



CCP-2F•F•F
4.00%
V90 [V]:
1.87



CCP-30CF3
8.00%
V90/V10:
1.533



PUQU-1-F
9.00%



PUQU-3-F
7.00%



PGP-2-3
5.00%



CCGU-3-F
6.00%



CBC-33
1.00%










Example 45



















CCP-20CF3
2.00%
Clearing point [° C.]:
79.5



CCP-30CF3
8.00%
Δn [589 nm, 20° C.]:
0.0948



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
5.9



CC-3-V1
10.00%
γ1 [mPa · s, 20° C.]:
64



PCH-301
7.00%
V10 [V]:
1.64



CCP-V-1
12.00%
V50 [V]:
1.99



CCG-V-F
10.00%
V90 [V]:
2.48



CC-4-V
18.00%
V90/V10:
1.513



PUQU-1-F
8.00%
K1 [pN]:
11.7



PUQU-2-F
6.00%
K3 [pN]:
13.4



PGP-2-2
6.00%
K3/K1:
1.15










Example 46



















CCP-20CF3
2.00%
Clearing point [° C.]:
79.5



CCP-30CF3
8.00%
Δn [589 nm, 20° C.]:
0.0939



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
6.0



CC-3-V1
10.00%
γ1 [mPa · s, 20° C.]:
69



PCH-301
7.00%
V10 [V]:
1.66



CCP-V-1
12.00%
V50 [V]:
2.01



CCG-V-F
10.00%
V90 [V]:
2.49



CC-4-V
18.00%
V90/V10:
1.497



PUQU-1-F
8.00%
K1 [pN]:
11.8



PUQU-2-F
6.00%
K3 [pN]:
13.3



PGP-2-4
6.00%
K3/K1:
1.13










Example 47



















CCP-20CF3
3.00%
Clearing point [° C.]:
78.0



CCP-30CF3
7.00%
Δn [589 nm, 20° C.]:
0.0996



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
5.7



CC-3-V1
12.00%
γ1 [mPa · s, 20° C.]:
63



PCH-301
7.00%
V10 [V]:
1.68



CCP-V-1
10.00%
V50 [V]:
2.02



CCG-V-F
6.00%
V90 [V]:
2.49



CC-4-V
18.00%
V90/V10:
1.479



PUQU-1-F
8.00%
K1 [pN]:
12.1



PUQU-2-F
6.00%
K3 [pN]:
12.5



PGP-2-4
6.00%
K3/K1:
1.03



PGP-2-2
4.00%










Example 48



















CCP-30CF3
4.00%
Clearing point [° C.]:
76.5



CCZU-3-F
10.00%
Δn [589 nm, 20° C.]:
0.1090



CCP-V-1
11.00%
Δε [1 kHz, 20° C.]:
6.3



CCG-V-F
8.00%
γ1 [mPa · s, 20° C.]:
66



CC-4-V
18.00%
V10 [V]:
1.65



CC-3-V1
13.00%
V50 [V]:
1.96



PCH-301
4.00%
V90 [V]:
2.41



PUQU-1-F
8.00%
V90/V10:
1.458



PUQU-2-F
4.00%
K1 [pN]:
12.3



PUQU-3-F
6.00%
K3 [pN]:
12.1



PGP-2-3
7.00%
K3/K1:
0.99



PGP-2-4
7.00%










Example 49



















CCZU-3-F
12.00%
Clearing point [° C.]:
80.0



CCP-V-1
8.00%
Δn [589 nm, 20° C.]:
0.1011



CCG-V-F
10.00%
Δε [1 kHz, 20° C.]:
6.2



CC-3-V1
13.00%
γ1 [mPa · s, 20° C.]:
67



CC-4-V
18.00%
V10 [V]:
1.64



PCH-301
5.00%
V50 [V]:
1.97



PUQU-1-F
8.00%
V90 [V]:
2.45



PUQU-2-F
4.00%
V90/V10:
1.491



PUQU-3-F
6.00%
K1 [pN]:
11.9



PGP-2-3
4.00%
K3 [pN]:
12.6



PGP-2-4
6.00%
K3/K1:
1.06



CVCC-V-2
3.00%



CVCC-V-3
3.00%










Example 50



















CCZU-3-F
12.00%
Clearing point [° C.]:
77.0



CCP-V-1
10.00%
Δn [589 nm, 20° C.]:
0.1092



CCG-V-F
9.00%
Δε [1 kHz, 20° C.]:
6.3



CC-4-V
10.00%
γ1 [mPa · s, 20° C.]:
66



CC-3-V1
13.00%
V10 [V]:
1.65



PCH-301
4.00%
V50 [V]:
1.97



PUQU-1-F
8.00%
V90 [V]:
2.42



PUQU-2-F
4.00%
V90/V10:
1.458



PUQU-3-F
6.00%
K1 [pN]:
12.8



PGP-2-3
7.00%
K3 [pN]:
12.5



PGP-2-4
7.00%
K3/K1:
0.98



CC-3-2V
10.00%










Example 51



















PGP-2-3
14.00%
Clearing point [° C.]:
78.5



PGP-2-4
15.00%
Δn [589 nm, 20° C.]:
0.1911



PGP-3-2
9.00%
Δε [1 kHz, 20° C.]:
4.5



PCH-301
19.00%
γ1 [mPa · s, 20° C.]:
149



GGP-2-F
10.00%



GGP-3-F
10.00%



GGP-5-F
4.00%



CGG-3-F
19.00%










Example 52



















PGP-2-3
15.00%
Clearing point [° C.]:
76.0



PGP-2-4
15.00%
Δn [589 nm, 20° C.]:
0.1888



PGP-3-2
9.00%
Δε [1 kHz, 20° C.]:
5.2



PCH-301
19.00%
γ1 [mPa · s, 20° C.]:
149



CGG-3-F
18.00%



GGG-3-F
8.00%



GGG-5-F
8.00%



GGP-3-F
8.00%










Example 53



















CCP-1F•F•F
8.00%
Clearing point [° C.]:
76.5



CCP-3F•F•F
5.00%
Δn [589 nm, 20° C.]:
0.1045



CCP-20CF3
6.00%
Δε [1 kHz, 20° C.]:
8.1



CCP-30CF3
7.00%
γ1 [mPa · s, 20° C.]:
69



PGU-2-F
6.00%
K1 [pN]:
12.4



PUQU-2-F
9.00%
K3 [pN]:
12.5



PUQU-3-F
9.00%
K3/K1:
1.00



CCP-V-1
9.00%



CCP-V2-1
7.00%



CC-3-V1
13.00%



CC-4-V
15.00%



PGP-2-3
6.00%










Example 54



















CCP-1F•F•F
8.00%
Clearing point [° C.]:
74.5



CCP-3F•F•F
10.00%
Δn [589 nm, 20° C.]:
0.1046



CCP-20CF3
6.00%
Δε [1 kHz, 20° C.]:
7.9



CCP-30CF3
7.00%
γ1 [mPa · s, 20° C.]:
72



PUQU-2-F
10.00%
K1 [pN]:
14.9



PUQU-3-F
10.00%
K3 [pN]:
13.7



CCP-V-1
10.00%
K3/K1:
0.92



CCP-V2-1
3.00%



CC-3-V1
12.00%



CC-5-V
13.00%



PGP-2-3
5.50%



PP-1-2V1
5.50%










Example 55



















PGU-1-F
9.00%
Clearing point [° C.]:
80.0



CC-3-V1
12.00%
Δn [589 nm, 20° C.]:
0.1029



CCP-V-1
14.00%
Δε [1 kHz, 20° C.]:
5.0



CCG-V-F
5.00%
K1 [pN]:
12.4



CCP-30CF3
6.00%
K3 [pN]:
13.1



CCZU-3-F
12.00%
K3/K1:
1.05



PCH-301
9.00%



CC-4-V
18.00%



PUQU-2-F
7.00%



PGP-2-4
8.00%










Example 56



















PGIGI-3-F
10.00%
Clearing point [° C.]:
80.0



PP-1-2V1
10.00%
Δn [589 nm, 20° C.]:
0.2024



PCH-301
19.00%
Δε [1 kHz, 20° C.]:
6.1



PGP-2-3
14.00%
γ1 [mPa · s, 20° C.]:
178



PGP-2-4
14.00%
K1 [pN]:
18.6



PGU-2-F
9.00%
K3 [pN]:
25.1



PGU-3-F
9.00%
K3/K1:
1.35



PGU-5-F
8.00%



CBC-33F
4.00%



CBC-53F
3.00%










Example 57



















CC-4-V
18.00%
Clearing point [° C.]:
82.5



CC-3-V1
7.00%
Δn [589 nm, 20° C.]:
0.0944



CCP-20CF3
8.00%
Δε [1 kHz, 20° C.]:
11.3



BCH-3F•F•F
5.00%
γ1 [mPa · s, 20° C.]:
102



CCZU-3-F
14.00%
V10 [V]:
1.22



PUQU-2-F
7.00%
V50 [V]:
1.51



PUQU-3-F
10.00%
V90 [V]:
1.86



CCQU-2-F
6.00%
V90/V10:
1.531



CCQU-3-F
13.00%



PGP-2-3
3.00%



CCGU-3-F
7.00%



CBC-33
2.00%










Example 58



















CC-4-V
12.00%
Clearing point [° C.]:
76.0



CCQU-2-F
13.00%
Δn [589 nm, 20° C.]:
0.0889



CCQU-3-F
14.00%
Δε [1 kHz, 20° C.]:
11.6



CCQU-5-F
11.00%
γ1 [mPa · s, 20° C.]:
119



CCP-1F•F•F
6.00%
V10 [V]:
1.14



CCP-2F•F•F
5.00%
V50 [V]:
1.40



CCQG-2-F
7.00%
V90 [V]:
1.76



CCP-20CF3
5.00%
V90/V10:
1.540



PUQG-2-F
9.00%



PUQG-3-F
8.00%



PGP-2-3
3.00%



CCGU-3-F
7.00%










Example 59



















CCP-2F•F•F
8.00%
Clearing point [° C.]:
73.0



CCP-3F•F•F
5.00%
Δn [589 nm, 20° C.]:
0.1099



PGU-l-F
5.00%
Δε [1 kHz, 20° C.]:
4.5



PUQU-1-F
6.00%
γ1 [mPa · s, 20° C.]:
61



PUQU-3-F
4.00%
V10 [V]:
1.86



CC-3-V1
13.00%
V50 [V]:
2.22



CC-4-V
18.00%
V90 [V]:
2.74



CCP-V-1
14.00%
V90/V10:
1.474



CCP-V2-l
3.00%
K1 [pN]:
11.8



PCH-301
10.00%
K3 [pN]:
11.8



PGP-2-3
6.00%
K3/K1:
1.00



PGP-2-4
8.00%










Example 60



















CCP-20CF3
4.00%
Clearing point [° C.]:
78.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.0987



CCZU-3-F
12.00%
Δε [1 kHz, 20° C.]:
5.6



CCP-V-1
13.00%
γ1 [mPa · s, 20° C.]:
64



CCP-V2-1
4.00%
V10 [V]:
1.74



CC-4-V
18.00%
V50 [V]:
2.09



CC-3-V1
13.00%
V90 [V]:
2.57



PCH-301
8.00%
V90/V10:
1.477



PUQU-1-F
6.00%
K1 [pN]:
12.5



PUQU-2-F
4.00%
K3 [pN]:
12.9



PUQU-3-F
6.00%
K3/K1:
1.03



PGP-2-2
4.00%



PGP-2-4
4.00%










Example 61



















CCP-20CF3
4.00%
Clearing point [° C.]:
82.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1045



CCQU-2-F
5.00%
Δε [1 kHz, 20° C.]:
5.6



CCQU-3-F
12.00%
γ1 [mPa · s, 20° C.]:
76



CCQU-5-F
5.00%
V10 [V]:
1.79



CC-3-V1
16.00%
V50 [V]:
2.14



CC-4-V
12.00%
V90 [V]:
2.64



CVCP-1V-OT
16.00%
V90/V10:
1.479



PGP-2-2V
7.00%
K1 [pN]:
12.9



PGP-2-4
7.00%
K3 [pN]:
13.5



GU-1V2-F
12.00%
K3/K1:
1.05










Example 62



















CCP-20CF3
4.00%
Clearing point [° C.]:
78.5



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.0990



CCZU-3-F
12.00%
Δε [1 kHz, 20° C.]:
5.6



CCP-V-1
13.00%
γ1 [mPa · s, 20° C.]:
65



CCP-V2-1
4.00%
V10 [V]:
1.74



CC-4-V
18.00%
V50 [V]:
2.09



CC-3-V1
13.00%
V90 [V]:
2.60



PCH-301
8.00%
V90/V10:
1.491



PUQU-1-F
6.00%
K1 [pN]:
12.5



PUQU-2-F
4.00%
K3 [pN]:
13.1



PUQU-3-F
6.00%
K3/K1:
1.05



PGP-2-3
4.00%



PGP-2-4
4.00%










Example 63



















CCP-20CF3
4.00%
Clearing point [° C.]:
81.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.0982



CCZU-3-F
12.00%
Δε [1 kHz, 20° C.]:
6.3



CCP-V-1
16.00%
γ1 [mPa · s, 20° C.]:
67



CCP-V2-1
4.00%
V10 [V]:
1.70



CC-4-V
18.00%
V50 [V]:
2.04



CC-3-V1
13.00%
V90 [V]:
2.52



PCH-301
5.00%
V90/V10:
1.487



PUQU-2-F
8.00%
K1 [pN]:
12.6



PUQU-3-F
8.00%
K3 [pN]:
13.7



PGP-2-F
4.00%
K3/K1:
1.09



PGP-4-F
4.00%










Example 64



















CCQG-2-F
5.00%
Clearing point [° C.]:
79.5



CCQG-3-F
6.00%
Δn [589 nm, 20° C.]:
0.1034



CCQU-2-F
10.00%
Δε [1 kHz, 20° C.]:
6.0



CCQU-3-F
12.00%
γ1 [mPa · s, 20° C.]:
78



CC-3-V1
16.00%
V10 [V]:
1.69



CC-4-V
9.00%
V50 [V]:
2.03



CVCP-1V-OT
16.00%
V90 [V]:
2.52



PGP-2-3
7.00%
V90/V10:
1.488



PGP-2-4
7.00%
K1 [pN]:
12.4



GU-1V2-F
12.00%
K3 [pN]:
12.9





K3/K1:
1.04










Example 65



















CVCP-1V-OT
12.00%
Clearing point [° C.]:
81.5



CCQU-2-F
12.00%
Δn [589 nm, 20° C.]:
0.1004



CCQU-3-F
10.00%
Δε [1 kHz, 20° C.]:
5.6



CCP-2F.F.F
11.00%
γ1 [mPa · s, 20° C.]:
82



CCP-3F.F.F
12.00%
V10 [V]:
1.91



CC-3-V1
14.00%
V50 [V]:
2.29



CC-5-V
10.00%
V90 [V]:
2.83



PGP-2-4
6.00%
V90/V10:
1.483



PP-1-2V1
13.00%
K1 [pN]:
14.2





K3 [pN]:
15.0





K3/K1:
1.06










Example 66



















CCP-20CF3
3.50%
Clearing point [° C.]:
79.5



CCP-30CF3
4.50%
Δn [589 nm, 20° C.]:
0.0991



CCZU-3-F
12.00%
Δε [1 kHz, 20° C.]:
5.6



CC-3-V1
13.00%
γ1 [mPa · s, 20° C.]:
65



PCH-301
7.00%
V10 [V]:
1.73



CCP-V-1
13.00%
V50 [V]:
2.08



CCP-V2-1
5.00%
V90 [V]:
2.58



CC-4-V
18.00%
V90/V10:
1.491



PUQU-2-F
8.00%
K1 [pN]:
12.7



PUQU-3-F
8.00%
K3 [pN]:
13.1



PGP-2-4
8.00%
K3K1:
1.03










Example 67



















CCZU-3-F
12.00%
Clearing point [° C.]:
79.5



CC-3-V1
13.00%
Δn [589 nm, 20° C.]:
0.1029



CC-4-V
18.00%
Δε [1 kHz, 20° C.]:
7.8



PCH-301
8.00%
γ1 [mPa · s, 20° C.]:
77



CCP-V-1
14.00%
V10 [V]:
1.53



PUQU-2-F
6.00%
V50 [V]:
1.84



PUQU-3-F
6.00%
V90 [V]:
2.28



CDUQU-2-F
6.00%
V90/V10:
1.490



CDUQU-4-F
6.00%
K1 [pN]:
12.6



PGP-2-3
6.00%
K3 [pN]:
12.7



PGP-2-4
5.00%
K3/K1:
1.00










Example 68



















BCH-3F.F.F
9.00%
Clearing point [° C.]:
71.5



BCH-5F.F.F
6.00%
Δn [589 nm, 20° C.]:
0.1134



PUQU-1-F
7.00%
Δε [1 kHz, 20° C.]:
8.4



PUQU-2-F
8.00%
γ1 [mPa · s, 20° C.]:
74



PUQU-3-F
5.00%
V10 [V]:
1.40



CC-3-V1
12.00%
V50 [V]:
1.69



CC-5-V
10.00%
V90 [V]:
2.09



CCP-V-1
14.00%
V90/V10:
1.493



PCH-301
7.00%
K1 [pN]:
11.7



PGP-2-4
10.00%
K3 [pN]:
11.4



CCQU-3-F
7.00%
K3/K1:
0.97



CCQU-5-F
5.00%










Example 69



















CCP-20CF3
2.00%
Clearing point [° C.]:
80.0



CCP-30CF3
8.00%
Δn [589 nm, 20° C.]:
0.0950



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
6.0



CC-3-V1
10.00%
γ1 [mPa · s, 20° C.]:
67



PCH-301
7.00%
V10 [V]:
1.67



CCP-V-1
12.00%
V50 [V]:
2.03



CCG-V-F
10.00%
V90 [V]:
2.56



CC-4-V
18.00%
V90/V10:
1.533



PUQU-1-F
8.00%
K1 [pN]:
11.8



PUQU-2-F
6.00%
K3 [pN]:
13.5



PGP-2-3
6.00%
K3/K1:
1.14










Example 70



















CCP-20CF3
2.00%
Clearing point [° C.]:
79.5



CCP-30CF3
8.00%
Δn [589 nm, 20° C.]:
0.0946



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
5.9



CC-3-V1
10.00%
V10 [V]:
1.64



PCH-301
7.00%
V50 [V]:
2.00



CCP-V-1
12.00%
V90 [V]:
2.53



CCG-V-F
10.00%
V90/V10:
1.543



CC-4-V
18.00%
K1 [pN]:
11.7



PUQU-1-F
8.00%
K3 [pN]:
13.4



PUQU-2-F
6.00%
K3/K1:
1.15



PGP-2-4
6.00%










Example 71



















CCP-20CF3
2.00%
Clearing point [° C.]:
81.0



CCP-30CF3
8.00%
Δn [589 nm, 20° C.]:
0.0951



CCZU-3-F
13.00%
Δε [1 kHz, 20° C.]:
6.0



CC-3-V1
10.00%
γ1 [mPa · s, 20° C.]:
67



PCH-301
7.00%
V10 [V]:
1.67



CCP-V-1
12.00%
V50 [V]:
2.03



CCG-V-F
10.00%
V90 [V]:
2.56



CC-4-V
18.00%
V90/V10:
1.533



PUQU-1-F
8.00%
K1 [pN]:
11.8



PUQU-2-F
6.00%
K3 [pN]:
13.9



PGP-2-2V
6.00%
K3/K1:
1.18










Example 72



















CCP-20CF3
3.50%
Clearing point [° C.]:
82.0



CCP-30CF3
4.50%
Δn [589 nm, 20° C.]:
0.1000



CCZU-3-F
12.00%
Δε [1 kHz, 20° C.]:
5.7



CCP-V-1
13.00%
γ1 [mPa · s, 20° C.]:
66



CCP-V2-1
5.00%
V10 [V]:
1.76



CC-4-V
18.00%
V50 [V]:
2.11



CC-3-V1
13.00%
V90 [V]:
2.62



PCH-301
7.00%
V90/V10:
1.489



PUQU-2-F
8.00%
K1 [pN]:
12.9



PUQU-3-F
8.00%
K3 [pN]:
13.8



PGP-2-2V
8.00%
K3/K1:
1.07










Example 73



















CCP-20CF3
0.00%
Clearing point [° C.]:
80.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.0996



CCZU-3-F
12.00%
Δε [1 kHz, 20° C.]:
6.5



CCP-V-1
13.00%
K1 [pN]:
11.9



CCP-V2-1
5.00%
K3 [pN]:
13.7



CC-4-V
15.00%
K3/K1:
1.15



CC-3-V1
13.00%



PCH-301
6.00%



PUQU-2-F
8.00%



PUQU-3-F
8.00%



PGP-2-F
5.00%



PGP-4-F
3.00%



CCG-V-F
8.00%










Example 74



















CCP-20CF3
2.00%
Clearing point [° C.]:
79.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.0992



CCZU-3-F
10.00%
Δε [1 kHz, 20° C.]:
6.4



CCP-V-1
13.00%
K1 [pN]:
11.8



CCP-V2-1
0.00%
K3 [pN]:
14.0



CC-4-V
15.00%
K3/K1:
1.19



CC-3-V1
13.00%



PCH-301
9.00%



PUQU-2-F
8.00%



PUQU-3-F
8.00%



PGP-2-F
5.00%



PGP-4-F
3.00%



CVCP-1V-OT
10.00%










Example 75



















CCP-2F•F•F
5.00%
Clearing point [° C.]:
75.5



CCP-3F•F•F
11.00%
Δn [589 nm, 20° C.]:
0.1086



PUQU-2-F
6.00%
Δε [1 kHz, 20° C.]:
4.9



PUQU-3-F
8.00%
γ1 [mPa · s, 20° C.]:
67



CC-3-V1
12.00%
V10 [V]:
1.83



CC-4-V
14.00%
V50 [V]:
2.19



CCP-V-1
11.00%
V90 [V]:
2.71



CCP-V2-1
8.00%
V90/V10:
1.485



PCH-301
11.00%
K1 [pN]:
12.0



PGP-2-3
7.00%
K3 [pN]:
12.4



PGP-2-4
7.00%
K3/K1:
1.03










Example 76



















CCP-20CF3
4.00%
Clearing point [° C.]:
75.5



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1076



PGU-2-F
2.00%
Δε [1 kHz, 20° C.]:
4.5



PGU-3-F
4.00%
γ1 [mPa · s, 20° C.]:
61



PUQU-2-F
5.00%
V10 [V]:
1.86



PUQU-3-F
6.00%
V50 [V]:
2.23



CC-3-V1
12.00%
V90 [V]:
2.77



CC-4-V
16.00%
V90/V10:
1.493



CCP-V-1
15.00%
K1 [pN]:
11.6



CCG-V-F
12.00%
K3 [pN]:
12.5



PCH-301
10.00%
K3/K1:
1.08



PGP-2-3
5.00%



PGP-2-4
5.00%










Example 77



















CCP-30CF3
4.00%
Clearing point [° C.]:
79.0



CCZU-2-F
3.00%
Δn [589 nm, 20° C.]:
0.1007



CCZU-3-F
14.00%
Δε [1 kHz, 20° C.]:
5.5



CC-3-V1
13.00%
γ1 [mPa · s, 20° C.]:
66



CC-4-V
18.00%
V10 [V]:
1.75



PCH-301
8.00%
V50 [V]:
2.09



CCP-V-1
16.00%
V90 [V]:
2.59



PUQU-2-F
6.00%
V90/V10:
1.477



PUQU-3-F
8.00%
K1 [pN]:
12.4



PGP-2-3
5.00%
K3 [pN]:
12.7



PGP-2-4
5.00%
K3/K1:
1.02










Example 78



















CVCP-1V-OT
8.00%
Clearing point [° C.]:
79.0



CCZU-2-F
3.00%
Δn [589 nm, 20° C.]:
0.1011



CCZU-3-F
14.00%
Δε [1 kHz, 20° C.]:
5.7



CC-3-V1
13.00%
γ1 [mPa · s, 20° C.]:
69



CC-4-V
18.00%
V10 [V]:
1.69



PCH-301
8.50%
V50 [V]:
2.03



CCP-V-1
11.50%
V90 [V]:
2.50



PUQU-2-F
6.00%
V90/V10:
1.481



PUQU-3-F
8.00%
K1 [pN]:
12.0



PGP-2-3
5.00%
K3 [pN]:
13.0



PGP-2-4
5.00%
K3/K1:
1.08










Example 79



















CCP-20CF3
4.00%
Clearing point [° C.]:
75.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1013



PUQU-2-F
7.00%
Δε [1 kHz, 20° C.]:
4.5



PUQU-3-F
9.00%
γ1 [mPa · s, 20° C.]:
65



CCP-3F•F•F
5.00%
V10 [V]:
1.93



CCP-V-1
11.00%
V50 [V]:
2.30



CCP-V2-1
9.00%
V90 [V]:
2.85



CC-5-V
15.00%
V90/V10:
1.478



CC-3-V1
13.00%
K1 [pN]:
12.3



PCH-301
15.00%
K3 [pN]:
13.6



PGP-2-3
4.00%
K3/K1:
1.10



PGP-2-4
4.00%










Example 80



















CCP-20CF3
4.00%
Clearing point [° C.]:
75.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1071



PGU-2-F
2.00%
Δε [1 kHz, 20° C.]:
4.1



PGU-3-F
4.00%
γ1 [mPa · s, 20° C.]:
59



PUQU-2-F
4.00%
V10 [V]:
1.96



PUQU-3-F
6.00%
V50 [V]:
2.34



CC-3-V1
13.00%
V90 [V]:
2.90



CC-4-V
16.00%
V90/V10:
1.477



CCP-V-1
16.00%
K1 [pN]:
11.7



CCG-V-F
9.00%
K3 [pN]:
12.6



PCH-301
12.00%
K3/K1:
1.08



PGP-2-3
5.00%



PGP-2-4
5.00%










Example 81



















CCP-1F•F•F
8.00%
Clearing point [° C.]:
76.0



CCP-3F•F•F
10.00%
Δn [589 nm, 20° C.]:
0.1041



CCP-20CF3
10.00%
Δε [1 kHz, 20° C.]:
7.9



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
78



PUQU-2-F
10.00%
V10 [V]:
1.50



PUQU-3-F
10.00%
V50 [V]:
1.83



PCH-301
5.00%
V90 [V]:
2.30



CCP-V-I
10.00%
V90/V10:
1.530



CCP-V2-1
8.00%
K1 [pN]:
12.1



CC-3-V1
12.00%
K3 [pN]:
13.5



CC-5-V
5.00%
K3/K1:
1.12



PGP-2-3
4.00%



PP-1-2V1
4.00%










Example 82



















CCP-20CF3
4.00%
Clearing point [° C.]:
80.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1038



PGU-3-F
5.00%
Δε [1 kHz, 20° C.]:
6.0



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
69



PUQU-3-F
10.00%
V10 [V]:
1.67



CC-3-V1
13.00%
V50 [V]:
2.01



CC-4-V
18.00%
V90 [V]:
2.51



CCP-V-1
12.00%
V90/V10:
1.503



CCP-V2-1
5.00%
K1 [pN]:
12.1



CCG-V-F
8.00%
K3 [pN]:
13.5



PCH-301
6.00%
K3/K1:
1.11



PGP-2-3
5.00%



CCGU-3-F
4.00%










Example 83



















CCP-20CF3
4.00%
Clearing point [° C.]:
78.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1143



PGU-3-F
3.00%
Δε [1 kHz, 20° C.]:
4.9



PUQU-2-F
7.00%
γ1 [mPa · s, 20° C.]:
68



PUQU-3-F
10.00%
V10 [V]:
1.91



CC-3-V1
16.00%
V50 [V]:
2.27



CC-4-V
10.00%
V90 [V]:
2.80



PCH-301
12.00%
V90/V10:
1.466



CCP-V-1
12.00%
K1 [pN]:
12.9



CCP-V2-1
10.00%
K3 [pN]:
13.5



PGP-2-3
6.00%
K3/K1:
1.04



PGP-2-4
6.00%










Example 84



















CCP-20CF3
4.00%
Clearing point [° C.]:
77.5



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1147



PUQU-2-F
6.00%
Δε [1 kHz, 20° C.]:
5.0



PUQU-3-F
10.00%
γ1 [mPa · s, 20° C.]:
70



CC-3-V1
14.00%
V10 [V]:
1.94



CC-4-V
10.00%
V50 [V]:
2.31



PCH-301
10.00%
V90 [V]:
2.84



CCP-V-1
10.00%
V90/V10:
1.464



CCP-V2-1
10.00%
K1 [pN]:
13.6



CCGU-3-F
6.00%
K3 [pN]:
14.4



PP-1-2V1
10.00%
K3/K1:
1.06



PGP-2-4
6.00%










Example 85



















CCP-20CF3
4.00%
Clearing point [° C.]:
79.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1049



PGU-3-F
5.00%
Δε [1 kHz, 20° C.]:
6.0



PUQU-2-F
8.00%
γ1 [mPa · s, 20° C.]:
68



PUQU-3-F
10.00%
V10 [V]:
1.69



CC-3-V1
13.00%
V50 [V]:
2.03



CC-4-V
15.00%
V90 [V]:
2.53



CCP-V-1
12.00%
V90/V10:
1.497



CCP-V2-1
10.00%
K1 [pN]:
12.3



CCG-V-F
8.00%
K3 [pN]:
13.6



PCH-301
6.00%
K3/K1:
1.10



PGP-2-3
5.00%










Example 86



















GGP-3-CL
9.00%
Clearing point [° C.]:
87.5



GGP-5-CL
23.00%
Δn [589 nm, 20° C.]:
0.2040



FET-2CL
7.00%
Δε [1 kHz, 20° C.]:
6.9



FET-3CL
4.00%
γ1 [mPa · s, 20° C.]:
179



FET-5CL
7.00%



PP-1-2V1
13.00%



CCP-V-1
12.00%



CC-3-V1
8.00%



BCH-2F•F
6.00%



PGP-2-3
2.00%



PGP-2-4
3.00%



PGU-3-F
6.00%










Example 87



















CCZU-3-F
12.00%
Clearing point [° C.]:
81.0



PGU-2-F
3.00%
Δn [589 nm, 20° C.]:
0.1043



PGU-3-F
4.00%
Δε [1 kHz, 20° C.]:
6.6



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
72



PUQU-3-F
8.00%
V10 [V]:
1.60



CC-3-V1
13.00%
V50 [V]:
1.94



CC-4-V
15.00%
V90 [V]:
2.41



CCP-V-1
12.00%
V90/V10:
1.506



CCP-V2-1
8.00%
K1 [pN]:
12.2



CCG-V-F
8.00%
K3 [pN]:
13.5



PCH-301
6.00%
K3/K1:
1.10



PGP-2-3
5.00%










Example 88



















GGP-3-CL
9.00%
Clearing point [° C.]:
87.5



GGP-5-CL
20.00%
Δn [589 nm, 20° C.]:
0.2017



FET-2CL
9.00%
Δε [1 kHz, 20° C.]:
6.5



FET-3CL
4.00%
γ1 [mPa · s, 20° C.]:
172



FET-5CL
7.00%



PP-1-2V1
13.00%



CCP-V-1
14.00%



CC-3-V1
10.00%



PGP-2-3
3.00%



PGP-2-4
3.00%



PGU-3-F
8.00%










Example 89



















CCQU-2-F
6.00%
Clearing point [° C.]:
80.0



CCQU-3-F
7.00%
Δn [589 nm, 20° C.]:
0.0975



CCP-20CF3
4.00%
Δε [1 kHz, 20° C.]:
6.7



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
76



CC-3-V1
14.00%
V10 [V]:
1.65



CC-5-V
10.00%
V50 [V]:
1.99



PCH-301
7.00%
V90 [V]:
2.47



CCP-V-1
10.00%
V90/V10:
1.498



CCP-V2-1
7.00%
K1 [pN]:
12.3



CCG-V-F
8.00%
K3 [pN]:
14.0



PUQU-2-F
8.00%
K3/K1:
1.13



PUQU-3-F
10.00%



PGP-2-4
5.00%










Example 90



















GGP-3-CL
9.00%
Clearing point [° C.]:
90.0



GGP-5-CL
20.00%
Δn [589 nm, 20° C.]:
0.1989



FET-2CL
7.00%
Δε [1 kHz, 20° C.]:
7.4



FET-3CL
3.00%



FET-5CL
6.00%



PP-1-2V1
14.00%



PGP-2-3
3.00%



PGP-2-4
3.00%



PGU-3-F
7.00%



CCG-V-F
9.00%



CCGU-3-F
4.00%



CC-3-V1
7.00%



CCP-V-1
8.00%










Example 91



















CCP-1F.F.F
6.00%
Clearing point [° C.]:
72.0



CCP-3F.F.F
10.00%
Δn [589 nm, 20° C.]:
0.1119



CCP-20CF3
4.00%
Δε [1 kHz, 20° C.]:
7.9



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
76



CCP-40CF3
4.00%
K1 [pN]:
12.4



CCP-50CF3
4.00%
K3 [pN]:
12.8



PUQU-2-F
10.00%
K3/K1:
1.03



PUQU-3-F
10.00%



CCP-V-1
13.00%



CC-3-V1
14.00%



PCH-301
8.00%



PGP-2-3
6.50%



PP-1-2V1
6.50%










Example 92



















CCGU-3-F
3.00%
Clearing point [° C.]:
75.5



CC-3-V1
18.00%
Δn [589 nm, 20° C.]:
0.1133



CC-4-V
8.00%
Δε [1 kHz, 20° C.]:
5.0



PCH-301
15.00%
γ1 [mPa · s, 20° C.]:
73



CCP-V-1
12.00%
V10 [V]:
1.85



CCP-V2-1
12.00%
V50 [V]:
2.22



PUQU-2-F
10.00%
V90 [V]:
2.78



PUQU-3-F
10.00%
V90/V10:
1.504



PGP-2-3
6.00%
K1 [pN]:
13.5



PGP-2-4
6.00%
K3 [pN]:
15.5





K3/K1:
1.15










Example 93



















PGU-2-F
5.00%
Clearing point [° C.]:
73.5



PGU-3-F
4.00%
Δn [589 nm, 20° C.]:
0.1167



CCQU-3-F
7.00%
Δε [1 kHz, 20° C.]:
8.7



PUQU-2-F
9.00%
γ1 [mPa · s, 20° C.]:
76



PUQU-3-F
9.00%
V10 [V]:
1.34



CC-3-V1
10.00%
V50 [V]:
1.63



CC-5-V
10.00%
V90 [V]:
2.02



CCP-V-1
12.00%
V90/V10:
1.507



PCH-301
9.00%
K1 [pN]:
10.9



PGP-2-3
3.00%
K3 [pN]:
12.5



PGP-2-4
5.00%
K3/K1:
1.15



CCGU-3-F
5.00%



CCG-V-F
12.00%










Example 94



















PGU-2-F
5.00%
Clearing point [° C.]:
74.0



PGU-3-F
4.00%
Δn [589 nm, 20° C.]:
0.1154



CCQU-3-F
7.00%
Δε [1 kHz, 20° C.]:
8.9



PUQU-2-F
8.00%
γ1 [mPa · s, 20° C.]:
76



PUQU-3-F
9.00%
V10 [V]:
1.34



CC-3-V1
11.00%
V50 [V]:
1.63



CC-5-V
10.00%
V90 [V]:
2.02



CCP-V-1
11.00%
V90/V10:
1.507



PCH-301
10.00%
K1 [pN]:
11.5



PGP-2-3
3.00%
K3 [pN]:
11.9



PGP-2-4
5.00%
K3/K1:
1.03



CCGU-3-F
5.00%



CCG-V-F
7.00%



CCZU-3-F
5.00%










Example 95



















CCP-20CF3
4.00%
Clearing point [° C.]:
75.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1085



PGU-2-F
2.00%
Δε [1 kHz, 20° C.]:
4.4



PGU-3-F
4.00%
γ1 [mPa · s, 20° C.]:
59



PUQU-2-F
5.00%
V10 [V]:
1.88



PUQU-3-F
6.00%
V50 [V]:
2.26



CC-3-V1
13.00%
V90 [V]:
2.81



CC-4-V
16.00%
V90/V10:
1.495



CCP-V-1
16.00%
K1 [pN]:
11.7



CCG-V-F
8.00%
K3 [pN]:
12.8



PCH-301
12.00%
K3/K1:
1.10



PGP-2-3
5.00%



PGP-2-2V
5.00%










Example 96



















CCP-20CF3
4.00%
Clearing point [° C.]:
80.5



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1057



PGU-3-F
5.00%
Δε [1 kHz, 20° C.]:
6.1



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
68



PUQU-3-F
10.00%
V10 [V]:
1.69



CC-3-V1
13.00%
V50 [V]:
2.04



CC-4-V
18.00%
V90 [V]:
2.55



CCP-V-1
12.00%
V90/V10:
1.509



CCP-V2-1
5.00%
K1 [pN]:
12.1



CCG-V-F
8.00%
K3 [pN]:
13.6



PCH-301
6.00%
K3/K1:
1.12



PGP-2-2V
5.00%



CCGU-3-F
4.00%










Example 97



















CCP-20CF3
4.00%
Clearing point [° C.]:
79.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1049



PGU-3-F
3.00%
Δε [1 kHz, 20° C.]:
5.5



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
66



PUQU-3-F
10.00%
V10 [V]:
1.75



CC-3-V1
13.00%
V50 [V]:
2.11



CC-4-V
18.00%
V90 [V]:
2.63



CCP-V-1
12.00%
V90/V10:
1.503



CCP-V2-1
5.00%
K1 [pN]:
12.1



CCG-V-F
8.00%
K3 [pN]:
13.3



PCH-301
7.00%
K3/K1:
1.09



PGP-2-3
5.00%



PGP-2-4
2.00%



CCGU-3-F
3.00%










Example 98



















CCZU-3-F
12.00%
Clearing point [° C.]:
79.0



PGU-3-F
4.00%
Δn [589 nm, 20° C.]:
0.0999



PUQU-2-F
6.00%
Δε [1 kHz, 20° C.]:
5.9



PUQU-3-F
8.00%
γ1 [mPa · s, 20° C.]:
69



CC-3-V1
13.00%
V10 [V]:
1.66



CC-4-V
16.00%
V50 [V]:
2.00



CCP-V-1
12.00%
V90 [V]:
2.48



CCP-V2-1
8.00%
V90/V10:
1.494



CCG-V-F
8.00%
K1 [pN]:
12.0



PCH-301
8.00%
K3 [pN]:
13.6



PGP-2-3
5.00%
K3/K1:
1.13










Example 99



















CCP-20CF3
4.00%
Clearing point [° C.]:
79.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.0980



PUQU-2-F
7.00%
Δε [1 kHz, 20° C.]:
5.3



PUQU-3-F
10.00%
γ1 [mPa · s, 20° C.]:
66



CC-3-V1
13.00%
V10 [V]:
1.79



CC-4-V
18.00%
V50 [V]:
2.15



CCP-V-1
12.00%
V90 [V]:
2.68



CCP-V2-1
5.00%
V90/V10:
1.497



CCG-V-F
10.00%
K1 [pN]:
11.8



PCH-301
8.00%
K3 [pN]:
13.8



PGP-2-3
5.00%
K3/K1:
1.17



CCGU-3-F
4.00%










Example 100



















CCP-20CF3
4.50%
Clearing point [° C.]:
79.5



CCP-30CF3
4.50%
Δn [589 nm, 20° C.]:
0.1033



CCZU-3-F
5.00%
Δε [1 kHz, 20° C.]:
5.2



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
66



PUQU-3-F
10.00%
V10 [V]:
1.76



CC-3-V1
13.00%
V50 [V]:
2.12



CC-4-V
15.00%
V90 [V]:
2.62



CCP-V-1
12.00%
V90/V10:
1.489



CCP-V2-1
5.00%
K1 [pN]:
12.3



CCG-V-F
8.00%
K3 [pN]:
13.4



PCH-301
8.00%
K3/K1:
1.08



PGP-2-3
5.00%



PGP-2-4
4.00%










Example 101



















CC-3-V1
10.00%
Clearing point [° C.]:
77.5



CC-4-V
14.00%
Δn [589 nm, 20° C.]:
0.0934



PGP-2-3
4.00%
Δε [1 kHz, 20° C.]:
8.7



PGP-2-4
4.00%
γ1 [mPa · s, 20° C.]:
83



CCG-V-F
10.00%
V10 [V]:
1.38



PUQU-2-F
8.00%
V50 [V]:
1.68



PUQU-3-F
7.00%
V90 [V]:
2.09



CCQU-2-F
7.00%
V9/V10:
1.516



CCQU-3-F
12.00%



CCQU-5-F
10.00%



CCP-3F.F.F
3.00%



CCP-20CF3
5.00%



CCP-30CF3
6.00%










Example 102



















CCP-2F.F.F
8.00%
Clearing point [° C.]:
81.0



CCP-3F.F.F
6.00%
Δn [589 nm, 20° C.]:
0.0808



CCQU-2-F
11.00%
Δε [1 kHz, 20° C.]:
16.5



CCQU-3-F
12.00%
γ1 [mPa · s, 20° C.]:
164



CCQU-5-F
10.00%
V10 [V]:
0.95



ACQU-2-F
8.00%
V50 [V]:
1.20



ACQU-3-F
10.00%
V90 [V]:
1.50



ACQU-4-F
10.00%
V90/V10:
1.587



AUUQGU-3-F
9.00%



CC-4-V
12.00%



PGP-2-4
4.00%










Example 103



















PCH-301
6.00%
Clearing point [° C.]:
76.0



CC-4-V
14.00%
Δn [589 nm, 20° C.]:
0.0927



CCP-V-1
10.00%
Δε [1 kHz, 20° C.]:
8.7



CCG-V-F
13.00%
γ1 [mPa · s, 20° C.]:
90



PUQU-2-F
8.00%
V10 [V]:
1.32



PUQU-3-F
7.00%
V50 [V]:
1.62



CCQU-3-F
8.00%
V90 [V]:
2.02



CCQU-5-F
7.00%
V90/V10:
1.527



ACQU-2-F
6.00%



ACQU-3-F
6.00%



CCP-30CF3
6.00%



CCP-40CF3
4.00%



PGP-2-4
3.00%



PGP-2-3
2.00%










Example 104



















CC-4-V
15.00%
Clearing point [° C.]:
86.0



CC-3-V1
2.00%
Δn [589 nm, 20° C.]:
0.0900



CCQU-2-F
13.00%
Δε [1 kHz, 20° C.]:
11.2



CCQU-3-F
13.00%
γ1 [mPa · s, 20° C.]:
109



CCQU-5-F
12.00%
V10 [V]:
1.28



CCP-20CF3
8.00%
V50 [V]:
1.58



CCP-30CF3
8.00%
V90 [V]:
1.98



CCP-50CF3
5.00%
V90/V10:
1.549



PUQU-2-F
7.00%



PUQU-3-F
9.00%



PGP-2-3
3.00%



CCGU-3-F
5.00%










Example 105



















CC-3-V1
11.00%
Clearing point [° C.]:
80.0



CC-4-V
14.00%
Δn [589 nm, 20° C.]:
0.0938



PGP-2-3
4.00%
Δε [1 kHz, 20° C.]:
8.7



PGP-2-4
4.00%
γi [mPa · s, 20° C.]:
86



CCG-V-F
9.00%
V10 [V]:
1.41



PUQU-2-F
8.00%
V50 [V]:
1.72



PUQU-3-F
7.00%
V90 [V]:
2.14



CCQU-2-F
7.00%
V90/V10:
1.514



CCQU-3-F
13.00%



CCQU-5-F
12.00%



CCP-30CF3
5.00%



CCP-40CF3
6.00%










Example 106



















ECCP-3F.F
7.00%
Clearing point [° C.]:
78.5



CCP-20CF3
4.50%
Δn [589 nm, 20° C.]:
0.1008



CCP-30CF3
4.50%
Δε [1 kHz, 20° C.]:
4.5



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
70



PUQU-3-F
10.00%
V10 [V]:
2.00



CC-4-V
10.00%
V50 [V]:
2.40



CC-3-V1
14.00%
V90 [V]:
3.01



CCP-V-1
15.00%
V90/V10:
1.503



CCP-V2-1
8.00%
K1 [pN]:
12.6



PCH-301
15.00%
K3 [pN]:
14.7



PGP-2-3
6.00%
K3/K1:
1.16










Example 107



















CCZU-3-F
13.00%
Clearing point [° C.]:
81.5



PGU-2-F
2.00%
Δn [589 nm, 20° C.]:
0.1039



PGU-3-F
4.00%
Δε [1 kHz, 20° C.]:
6.7



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
73



PUQU-3-F
10.00%
V10 [V]:
1.62



CC-3-V1
13.00%
V50 [V]:
1.97



CC-4-V
15.00%
V90 [V]:
2.45



CCP-V-1
12.00%
V90/V10:
1.512



CCP-V2-1
8.00%
K1 [pN]:
12.6



CCG-V-F
7.00%
K3 [pN]:
13.7



PCH-301
5.00%
K3/K1:
1.09



PGP-2-3
5.00%










Example 108



















CC-4-V
18.00%
Clearing point [° C.]:
79.0



CCP-V-1
10.00%
Δn [589 nm, 20° C.]:
0.0931



CCG-V-F
14.00%
Δε [1 kHz, 20° C.]:
8.9



PUQU-2-F
8.00%
γ1 [mPa · s, 20° C.]:
88



PUQU-3-F
7.00%
V10 [V]:
1.33



CCQU-2-F
3.00%
V50 [V]:
1.63



CCQU-3-F
5.00%
V90 [V]:
2.03



CCQU-5-F
6.00%
V90/V10:
1.532



ACQU-2-F
7.00%



ACQU-3-F
6.00%



CCP-30CF3
6.00%



CCP-40CF3
4.00%



PGP-2-4
3.00%



PGP-2-3
3.00%










Example 109



















CCP-20CF3
4.00%
Clearing point [° C.]:
77.0



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1131



PGU-2-F
2.00%
Δε [1 kHz, 20° C.]:
4.7



PGU-3-F
4.00%
K1 [pN]:
12.3



PUQU-2-F
6.00%
K3 [pN]:
13.3



PUQU-3-F
8.00%
K3/K1:
1.08



CC-3-V1
14.00%



CC-4-V
10.00%



PCH-301
15.00%



CCP-V-1
14.00%



CCP-V2-1
9.00%



PGP-2-3
5.00%



PGP-2-4
5.00%










Example 110



















PGU-2-F
3.00%
Clearing point [° C.]:
79.5



CC-5-V
15.00%
Δn [589 nm, 20° C.]:
0.1206



CC-3-V1
11.00%
Δε [1 kHz, 20° C.]:
6.6



PCH-301
11.00%
γ1 [mPa · s, 20° C.]:
80



CCP-V-1
11.00%
V10 [V]:
1.60



CCP-V2-1
9.00%
V50 [V]:
1.95



GGP-3-CL
5.00%
V90 [V]:
2.43



PUQU-2-F
9.00%
V90/V10:
1.519



PUQU-3-F
9.00%
K1 [pN]:
12.6



PGP-2-3
3.00%
K3 [pN]:
13.7



PGP-2-4
6.00%
K3/K1:
1.09



CCGU-3-F
6.00%



CCQU-2-F
2.00%










Example 111



















CCZU-3-F
14.00%
Clearing point [° C.]:
80.0



PGU-2-F
2.00%
Δn [589 nm, 20° C.]:
0.1050



PGU-3-F
5.00%
Δε [1 kHz, 20° C.]:
7.6



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
74



PUQU-3-F
10.00%
V10 [V]:
1.51



CC-3-V1
13.00%
V50 [V]:
1.82



CC-4-V
15.00%
V90 [V]:
2.26



CCP-V-1
10.00%
V90/V10:
1.502



CCP-V2-1
8.00%
K1 [pN]:
12.1



CCG-V-F
8.00%
K3 [pN]:
13.2



PCH-301
4.00%
K3/K1:
1.09



PGP-2-3
5.00%










Example 112



















PGU-3-F
2.00%
Clearing point [° C.]:
80.5



CCP-2F.F.F
6.00%
Δn [589 nm, 20° C.]:
0.0974



CCP-3F.F.F
12.00%
Δε [1 kHz, 20° C.]:
7.0



CCP-20CF3
4.00%
γ1 [mPa · s, 20° C.]:
73



CCP-30CF3
4.00%
V10 [V]:
1.61



CC-3-V1
16.00%
V50 [V]:
1.95



CC-4-V
14.00%
V90 [V]:
2.43



PCH-301
2.00%
V90/V10:
1.511



CCP-V-1
8.00%
K1 [pN]:
12.5



CCP-V2-1
10.00%
K3 [pN]:
13.8



PUQU-2-F
7.00%
K3/K1:
1.10



PUQU-3-F
10.00%



PGP-2-4
5.00%










Example 113



















CCP-20CF3
4.00%
Clearing point [° C.]:
79.5



CCP-30CF3
4.00%
Δn [589 nm, 20° C.]:
0.1130



PGU-3-F
3.00%
Δε [1 kHz, 20° C.]:
5.3



PUQU-2-F
6.00%
γ1 [mPa · s, 20° C.]:
72



PUQU-3-F
10.00%
V10 [V]:
1.82



CC-3-V1
15.00%
V50 [V]:
2.18



CC-4-V
9.00%
V90 [V]:
2.69



PCH-301
15.00%
V90/V10:
1.482



CCP-V-1
11.00%
K1 [pN]:
12.5



CCP-V2-1
9.00%
K3 [pN]:
13.7



CCGU-3-F
4.00%
K3/K1:
1.09



PGP-2-3
5.00%



PGP-2-4
5.00%










Example 114



















CCQU-2-F
4.00%
Clearing point [° C.]:
78.5



CCQU-3-F
9.00%
Δn [589 nm, 20° C.]:
0.0970



CCP-20CF3
4.00%
Δε [1 kHz, 20° C.]:
6.6



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
70



CC-3-V1
12.00%
V10 [V]:
1.59



CC-4-V
12.00%
V50 [V]:
1.94



PCH-301
7.00%
V90 [V]:
2.42



CCP-V-1
11.00%
V90/V10:
1.527



CCP-V2-1
6.00%
K1 [pN]:
11.9



CCG-V-F
8.00%
K3 [pN]:
13.5



PUQU-2-F
8.00%
K3/K1:
1.13



PUQU-3-F
10.00%



PGP-2-3
5.00%










Example 115



















CCQU-2-F
6.00%
Clearing point [° C.]:
80.0



CCQU-3-F
10.00%
Δn [589 nm, 20° C.]:
0.0981



CCP-20CF3
4.00%
Δε [1 kHz, 20° C.]:
7.1



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
75



CC-3-V1
12.00%
V10 [V]:
1.58



CC-4-V
9.00%
V50 [V]:
1.91



PCH-301
7.00%
V90 [V]:
2.36



CCP-V-1
11.00%
V90/V10:
1.495



CCP-V2-1
6.00%
K1 [pN]:
11.9



CCG-V-F
8.00%
K3 [pN]:
13.7



PUQU-2-F
8.00%
K3/K1:
1.16



PUQU-3-F
10.00%



PGP-2-3
5.00%










Example 116



















CCP-1F.F.F
8.00%
Clearing point [° C.]:
73.5



CCP-3F.F.F
10.00%
Δn [589 nm, 20° C.]:
0.1038



CCP-20CF3
9.00%
Δε [1 kHz, 20° C.]:
7.9



CCP-30CF3
5.00%
γ1 [mPa · s, 20° C.]:
76



PUQU-2-F
10.00%
V10 [V]:
1.49



PUQU-3-F
10.00%
V50 [V]:
1.80



PCH-301
5.00%
V90 [V]:
2.23



CCP-V-1
10.00%
V90/V10:
1.502



CCP-V2-1
6.00%
K1 [pN]:
12.2



CC-3-V1
12.00%
K3 [pN]:
13.0



CC-5-V
6.00%
K3/K1:
1.07



PGP-2-3
4.50%



PP-1-2V1
4.50%










Example 117



















CCP-1F.F.F
9.00%
Clearing point [° C.]:
74.5



CCP-3F.F.F
9.00%
Δn [589 nm, 20° C.]:
0.1040



CCP-20CF3
9.00%
Δε [1 kHz, 20° C.]:
7.9



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
73



PUQU-2-F
10.00%
V10 [V]:
1.50



PUQU-3-F
10.00%
V50 [V]:
2.33



CCP-V-1
10.00%
V90 [V]:
2.26



CCP-V2-1
5.00%
V90/V10:
1.506



CC-3-V1
13.00%
K1 [pN]:
12.8



CC-5-V
11.00%
K3 [pN]:
13.1



PGP-2-3
5.00%
K3/K1:
1.02



PP-1-2V1
5.00%










Example 118



















CCP-1F.F.F
8.00%
Clearing point [° C.]:
74.0



CCP-3F.F.F
10.00%
Δn [589 nm, 20° C.]:
0.1055



CCP-20CF3
9.00%
Δε [1 kHz, 20° C.]:
7.9



CCP-30CF3
8.00%
γ1 [mPa · s, 20° C.]:
72



PUQU-2-F
10.00%
V10 [V]:
1.52



PUQU-3-F
9.00%
V50 [V]:
1.84



CCP-V-1
5.00%
V90 [V]:
2.27



CCP-V2-1
5.00%
V90/V10:
1.490



CC-3-V1
13.00%
K1 [pN]:
13.2



CC-5-V
11.00%
K3 [pN]:
12.9



PGP-2-3
6.00%
K3/K1:
0.98



PP-1-2V1
6.00%










Example 119



















CCP-1F.F.F
8.00%
Clearing point [° C.]:
73.5



CCP-3F.F.F
10.00%
Δn [589 nm, 20° C.]:
0.1056



CCP-20CF3
10.00%
Δε [1 kHz, 20° C.]:
7.8



CCP-30CF3
10.00%
γ1 [mPa · s, 20° C.]:
72



PUQU-2-F
10.00%
V10 [V]:
1.50



PUQU-3-F
8.00%
V50 [V]:
1.83



CCP-V-1
4.00%
V90 [V]:
2.25



CCP-V2-1
3.00%
V90/V10:
1.497



CC-3-V1
12.00%
K1 [pN]:
13.4



CC-5-V
12.00%
K3 [pN]:
12.7



PGP-2-3
6.50%
K3/K1:
0.95



PP-1-2V1
6.50%









Claims
  • 1. A liquid-crystalline medium comprising a mixture of polar compounds of positive or negative dielectric anisotropy, including one or more compounds of formula I
  • 2. A medium according to claim 1, wherein, in the compound of the formula I, R1 and/or R2 are, independently of one another, identically or differently, H, a straight-chain alkyl radical having from 1 to 9 carbon atoms or a straight-chain alkenyl radical having from 2 to 9 carbon atoms.
  • 3. A medium according to claim 1, comprising one or more compounds of sub-formulae Ia to Id:
  • 4. A medium according to claim 1, comprising one or more compounds of sub-formulae I1 to I25:
  • 5. A medium according to claim 1, having a proportion of compounds of formula I in the mixture as a whole of 1 to 60% by weight.
  • 6. A medium according to claim 1, additionally comprising one or more compounds of formulae II to X:
  • 7. A medium according to claim 6, having a proportion of compounds of formulae II to X in the mixture as a whole of 20 to 70% by weight.
  • 8. A medium according to claim 1, having a proportion of compounds of formulae XI to XVII in the mixture as a whole of 5 to 70% by weight.
  • 9. An Electro-optical display device containing a liquid-crystalline medium according to claim 1.
  • 10. A medium according to claim 3, wherein alkyl1 and alkyl2 are each independently H or a straight-chain alkyl radical with 1-5 C-atoms.
  • 11. A medium according to claim 3, wherein alkenyl1 and alkenyl2 are each independently alkenyl radicals with 2-9 C-atoms.
Priority Claims (1)
Number Date Country Kind
103 31 490 Jul 2003 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2004/006777 6/23/2004 WO 00 7/12/2006
Publishing Document Publishing Date Country Kind
WO2005/007775 1/27/2005 WO A
US Referenced Citations (7)
Number Name Date Kind
4594465 Kam Ming Chan et al. Jun 1986 A
5358663 Gray et al. Oct 1994 A
5384071 Gray et al. Jan 1995 A
5800737 Kam Ming Chan et al. Sep 1998 A
6083423 Rieger et al. Jul 2000 A
6180026 Rieger et al. Jan 2001 B1
20060061699 Kirsch et al. Mar 2006 A1
Foreign Referenced Citations (9)
Number Date Country
0132377 Jan 1985 EP
2198743 Jun 1988 GB
2200912 Aug 1988 GB
2367058 Mar 2002 GB
04279695 Oct 1992 JP
WO 8707890 Dec 1987 WO
WO 8903821 May 1989 WO
WO 9115555 Oct 1991 WO
WO 9533802 Dec 1995 WO
Related Publications (1)
Number Date Country
20070001149 A1 Jan 2007 US