The present invention relates to a liquid crystal panel, and more particularly to the structure of a liquid crystal panel.
A liquid crystal panel is generally composed of two mutually facing glass substrates. One of the glass substrates (hereinafter referred to as “first glass substrate”) is called a “TFT substrate,” “array substrate,” “TFT array substrate,” or the like, and thin-film transistors (TFTs), pixel electrodes, and the like that are disposed in a matrix are formed on a mother glass substrate. The other glass substrate (hereinafter referred to as “second glass substrate”) is called a “color filter substrate,” “opposite substrate,” or the like, and RGB colored layers, transparent electrodes, and the like are formed on a mother glass substrate. The first glass substrate and the second glass substrate are bonded with each other by a sealing material so as to hold a liquid crystal therebetween. With regard to the substrate size, the first glass substrate is generally formed to be larger than the second glass substrate. This is because, from the entire region on the first glass substrate, the region that does not face the second glass substrate is utilized as a region for mounting an IC chip or the like for driving the liquid crystal. Such a region has been conventionally provided in the marginal portion of the liquid crystal panel and is therefore called a “frame.” Note that there are also cases in which a circuit for driving the liquid crystal is formed monolithically in a region to become a frame (hereinafter referred to as “frame area”) or in which a flexible printed circuit (FPC) for mounting components such as an IC chip is connected to the frame area.
Incidentally, with regard to liquid crystal panels, a large panel is manufactured by bonding large mother glass substrates with each other, after which panel pieces (individual liquid crystal panels) are manufactured by dividing (cutting) this large panel. While panel pieces are manufactured in this manner, it has been attempted in recent years to increase the number of panel pieces to be taken from a large panel, so the frame area is gradually becoming smaller.
Note that the following prior art is known in relation to the invention of the present application. Japanese Utility Model Registration Publication No. 3095624 discloses a configuration in which a signal scan control IC is provided on one end of a liquid crystal panel, while a data transfer control IC is provided on the other end, i.e., a configuration in which frame areas are provided on both one end and the other end of the liquid crystal panel. Japanese Patent Application Laid-Open Publication No. H6-273789 discloses a technique of reducing the size of a liquid crystal display device by making a frame portion smaller and thinner. Japanese Patent Application Laid-Open Publication No. H8-122745 discloses a configuration in which driver ICs are mounted by means of chip-on-glass mounting along two sides (commonly along the two long sides) of a liquid crystal display panel. Japanese Patent Application Laid-Open Publication No. 2007-264366 discloses a technique of narrowing the frame and expanding the effective display region with respect to a liquid crystal display device.
Patent Document 1: Japanese Utility Model Registration Publication No. 3095624
Patent Document 2: Japanese Patent Application Laid-Open Publication No. H6-273789
Patent Document 3: Japanese Patent Application Laid-Open Publication No. H8-122745
Patent Document 4: Japanese Patent Application Laid-Open Publication No. 2007-264366
As described above, the frame area of a liquid crystal panel is gradually becoming smaller. The effect of such narrowing of a frame will be described with reference to
Incidentally, with regard to the FPC as well, as in the liquid crystal panel, FPC pieces (individual FPCs) are manufactured by dividing a large FPC sheet. Therefore, when the size of FPC pieces is increased by the frame narrowing of the liquid crystal panel as described above, the number of FPC pieces to be taken from a large FPC sheet is reduced. As a result, the cost is increased.
In light of this, the present invention has as its object to ensure a sufficient region for mounting components such as an IC chip on a glass substrate with which a liquid crystal panel is configured without reducing the number of panel pieces to be taken from a large panel.
A first aspect of the present invention is a liquid crystal panel formed from a first substrate having a first wiring surface on which electrical wiring is formed and a second substrate having a second wiring surface on which electrical wiring is formed, with the aforementioned first substrate and the aforementioned second substrate being bonded with each other such that a portion of the region on the aforementioned first wiring surface and a portion of the region on the aforementioned second wiring surface face each other, wherein
the aforementioned second wiring surface is formed in substantially the same size as the aforementioned first wiring surface, and
the aforementioned first wiring surface and the aforementioned second wiring surface face each other with a liquid crystal therebetween in a state in which these wiring surfaces are shifted from each other by a predetermined distance in the direction of the longer side or in the direction of the shorter side.
A second aspect of the present invention is the first aspect of the present invention, wherein
one or more electrodes are provided in both a first frame region which is, in the region on the aforementioned first wiring surface, a region that does not face the aforementioned second wiring surface and a second frame region which is, in the region on the aforementioned second wiring surface, a region that does not face the aforementioned first wiring surface.
A third aspect of the present invention is the second aspect of the present invention, wherein
the aforementioned first wiring surface and the aforementioned second wiring surface are formed such that the wiring resistance in the aforementioned second wiring surface is greater than the wiring resistance in the aforementioned first wiring surface, and
a circuit for driving the aforementioned liquid crystal is formed in the aforementioned first frame region.
A fourth aspect of the present invention is the second aspect of the present invention, wherein
at least one of the electrodes provided in the aforementioned second frame region is connected to a third substrate having electrical wiring.
A fifth aspect of the present invention is the fourth aspect of the present invention, wherein
a light-emitting diode is provided in the aforementioned second frame region, and the aforementioned light-emitting diode and the aforementioned third substrate are electrically connected via the electrical wiring formed on the aforementioned second wiring surface.
A sixth aspect of the present invention is the fourth aspect of the present invention, wherein
a sensor chip is provided in the aforementioned second frame region, and the aforementioned sensor chip, and the aforementioned third substrate are electrically connected via the electrical wiring formed on the aforementioned second wiring surface.
A seventh aspect of the present invention is the second aspect of the present invention, wherein
at least one of the electrodes provided in the aforementioned first frame region is connected to a flexible printed board.
An eighth aspect of the present invention is the second aspect of the present invention, wherein
at least one of the electrodes provided in the aforementioned second frame region is connected to an integrated circuit chip.
A ninth aspect of the present invention is the second aspect of the present invention, wherein
at least one of the electrodes provided in the aforementioned second frame region is connected to a flexible printed board.
A tenth aspect of the present invention is the second aspect of the present invention, wherein
at least one of the electrodes provided in the aforementioned first frame region is connected directly or via a flexible printed board to a fourth substrate which is a main board for communication functions, and
at least one of the electrodes provided in the aforementioned second frame region is connected directly or via a flexible printed board to a fifth substrate which is a sub-board on which a component for communication functions is mounted.
According to the first aspect of the present invention, the first wiring surface and the second wiring surface are formed in substantially the same size, and the first wiring surface and the second wiring surface face each other in a state in which these wiring surfaces are shifted from each other in the direction of the longer side or in the direction of the shorter side. Therefore, regions that can be utilized as a frame (frame regions) are provided on both the first substrate and the second substrate. Incidentally, the portion corresponding to the frame region provided on the second substrate corresponds to the portion that was discarded in the past. From the foregoing, without making the number of panel pieces to be taken from a large panel smaller than in the past, the frame region can be nearly doubled compared to the conventional configuration, so more components can be mounted on the glass substrates constituting the liquid crystal panel than in the past. Consequently, components that were mounted on an FPC (flexible printed board) or the like in the conventional configuration can be mounted on the glass substrates. Accordingly, the size of the FPC or the like can be made smaller than in the conventional configuration, so the cost is reduced.
According to the second aspect of the present invention, one or more electrodes are provided in both a first frame region and a second frame region. Therefore, more components can be mounted on the glass substrates constituting the liquid crystal panel via such electrodes than in the conventional configuration.
According to the third aspect of the present invention, more components can be mounted on the glass substrates constituting the liquid crystal panel than in the conventional configuration without affecting the driving of the liquid crystal.
According to the fourth aspect of the present invention, the second frame region is connected to a third substrate having electrical wiring. Therefore, it is possible to devise a configuration in which control signals are supplied to components mounted in the second frame region via the electrical wiring formed on the third substrate instead of devising a configuration in which control signals are supplied via the electrical wiring within the liquid crystal panel. Consequently, control signals are supplied to the components within the second frame region via electrical wiring that has a smaller resistance than the electrical wiring within the liquid crystal panel, so power consumption is suppressed.
According to the fifth aspect of the present invention, the frame regions on the glass substrates are efficiently used in a liquid crystal panel provided with a light-emitting diode. Furthermore, it is possible to devise a configuration in which control signals are supplied to the light-emitting diode via the electrical wiring formed on the third substrate, so power consumption is suppressed as in the fourth aspect of the present invention.
According to the sixth aspect of the present invention, the frame regions on the glass substrates are efficiently used in a liquid crystal panel provided with a sensor chip. Moreover, because a configuration is possible in which control signals are supplied to the sensor chip via the electrical wiring formed on the third substrate, power consumption is suppressed as in the fourth aspect of the present invention.
According to the seventh aspect of the present invention, an effect similar to that of the second aspect of the present invention can be obtained in a liquid crystal panel configured such that a flexible printed board is connected to the first frame region.
According to the eighth aspect of the present invention, an effect similar to that of the second aspect of the present invention can be obtained in a liquid crystal panel configured such that an integrated circuit chip is mounted in the second frame region.
According to the ninth aspect of the present invention, an effect similar to that of the second aspect of the present invention can be obtained in a liquid crystal panel configured such that a flexible printed board is connected to the second frame region.
According to the tenth aspect of the present invention, it is possible to devise a configuration in which a main board for communication functions provided in the vicinity of the first frame region and a sub-board for communication functions provided in the vicinity of the second frame region are electrically connected via the electrical wiring within the liquid crystal panel. Therefore, a substrate for communication functions becomes unnecessary in the portion corresponding to the display region of the liquid crystal panel, thus making it possible to lower the profile and reduce the cost of an electronic device having communication functions.
First, the basic configuration that is common to all of the embodiments of the present invention will be described while making a comparison to a conventional configuration.
Thus, with this basic configuration, the region that can be utilized as a frame is nearly doubled in each of the panel pieces compared to the conventional configuration. Therefore, more components (such as an IC chip) can be mounted on the glass substrates constituting a liquid crystal panel than in the conventional configuration. Furthermore, because the portions that have been discarded in the conventional configuration are utilized as the frame areas, the number of the panel pieces to be taken from a large panel is not reduced.
Embodiments of the present invention that presuppose the aforementioned basic configuration will be described below.
The first glass substrate 10 is called a “TFT substrate,” “array substrate,” “TFT array substrate,” or the like, and TFTs, pixel electrodes, and the like that are disposed in a matrix are formed on a mother glass substrate. The second glass substrate 20 is called a “color filter substrate,” “opposite substrate,” or the like, and RGB colored layers, transparent electrodes, and the like are formed on a mother glass substrate. Note that the wiring resistance for the wiring 24 formed on the second glass substrate 20 is typically greater than the wiring resistance for the wiring 14 formed on the first glass substrate 10.
In the present embodiment, pads (electrodes) 60 are provided in both the first frame area 12 and the second frame area 22, as shown in
With the present embodiment, the frame area size becomes nearly two times larger than in the conventional art. Furthermore, the pads 60 are provided in both the first frame area 12 and the second frame area 22. Therefore, more components can be mounted on the glass substrates constituting the liquid crystal panel than in the conventional art. Here, the reason that the frame area size becomes nearly two times larger than in the conventional art is that the portion that has conventionally been discarded is utilized as the second frame area 22. Accordingly, more components can be mounted on the glass substrates than in the conventional art without reducing the number of the panel pieces to be taken from a large panel. Consequently, components that have conventionally been mounted on an FPC or the like can be mounted on the glass substrates, so the size of the FPC or the like can be made smaller than in the conventional art. As a result, the cost is reduced.
An FPC 40 is connected to the first frame area 12. In such a configuration, for example, a circuit for driving the liquid crystal (liquid crystal drive circuit) is formed monolithically in the first frame area 12, and a controller for controlling the action of the liquid crystal drive circuit is mounted on the FPC 40. Note that the connection between the first frame area 12 and the FPC 40 is accomplished, for example, by interposing an anisotropic conductive film (ACF) between both of the electrodes.
Meanwhile, as shown in
With the present embodiment, as in the aforementioned first embodiment, the frame area size becomes nearly two times larger than in the conventional art, which makes it possible to mount many components on the glass substrates constituting the liquid crystal panel. Moreover, the second frame area 22 is connected to the third substrate 30 having the wiring 34. Therefore, it is possible to devise a configuration in which control signals are supplied to the components mounted in the second frame area 22 via the wiring 34 formed on the third substrate 30, instead of taking a configuration in which control signals are supplied, for example, from the FPC 40 via the wiring 14 and 24 within the panel. Consequently, control signals are supplied to the components within the second frame area 22 via the wiring 34 that has a smaller resistance than the wiring 14 and 24 within the panel, so power consumption is suppressed.
Here, with regard to the control signals that control the lighting conditions of the LEDs 64, it is preferable to adopt a configuration such as the one shown in
Here, with regard to the exchange of input and output signals between the sensor chip 68 and a control portion or the like, it is preferable to adopt a configuration such as that shown in
Here, with regard to a mobile phone having a liquid crystal panel, there are cases in which a component such as a speaker or indicator is disposed in a position away from the main board (for the mobile phone) (for example, the main board is disposed in the vicinity of one end of the liquid crystal panel in the direction of the longer side, while such a component is disposed on the other end). In such cases, in the conventional art, a substrate (hereinafter referred to as “sub-board”) having a length substantially equal to or greater than the distance of the liquid crystal panel in the direction of the longer side was prepared, and a speaker 74, for instance, was mounted in the vicinity of one end of this sub-board 32, while the vicinity of the other end of this sub-board 32 was connected to a main board 31 via board-to-board connectors 72, as shown in
Each of the aforementioned embodiments exemplifies a configuration in which various types of component (such as an IC chip 62) are mounted in the first frame area 12 and the second frame area 22, but the present invention is not limited to such exemplified configurations. As long as the configuration is such that frame areas are provided on different substrates at one end and the other end of the liquid crystal panel, various types of component may be mounted in each of the frame areas in a combination different from those of the configurations exemplified in the aforementioned respective embodiments, or components other than the components exemplified in the aforementioned respective embodiments may be mounted in each of the frame areas.
In addition, in each of the aforementioned embodiments, zebra connectors or B-to-B connectors (board-to-board connectors) are exemplified as the connecting members for connecting a substrate for a mobile phone and a glass substrate with which the liquid crystal panel is configured. However, the present invention is not limited to this, and these substrates may also be connected by other connecting members.
Number | Date | Country | Kind |
---|---|---|---|
2009-086402 | Mar 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/050395 | 1/15/2010 | WO | 00 | 11/1/2011 |