Liquid-crystalline medium and electro-optical liquid-crystal display

Information

  • Patent Grant
  • 10106741
  • Patent Number
    10,106,741
  • Date Filed
    Wednesday, October 23, 2013
    11 years ago
  • Date Issued
    Tuesday, October 23, 2018
    6 years ago
Abstract
The invention relates to an electro-optical liquid-crystal display having a re-alignment layer for re-alignment of the liquid crystals whose field has a component, crucial for the re-alignment, parallel to the liquid-crystal layer, containing a liquid-crystalline medium, characterized in that it comprises one or more compounds of the formula I1 to I3, (I1) (I2) (I3) and at least one compound of the formula II, in which the parameters R11, R11*, Z0, Sp, k, l, p, Y21 to Y22, R21 and R22 have the meanings indicated in claim 1.
Description

The invention relates to an electro-optical liquid-crystal display having a re-alignment layer for re-alignment of the liquid crystals whose field has a component, crucial for the re-alignment, parallel to the liquid-crystal layer, containing a liquid-crystalline medium, characterised in that it comprises one or more compounds of the formulae I1 to I3,




embedded image


and at least one compound of the formula II,




embedded image


in which the parameters R11, R11*, Z0, Sp, k, l, p, Y21 to Y22, R21 and R22 have the meanings indicated in claim 1.


In conventional liquid-crystal displays (TN, STN, OMI, AMD-TN), the electric fields for re-alignment are generated essentially perpendicular to the liquid-crystal layer.


International Patent Application WO 91/10936 discloses a liquid-crystal display in which the electric signals are generated in such a way that the electric fields have a significant component parallel to the liquid-crystal layer (IPS, in-plane switching). The principles of operating such a display are described, for example, by R. A. Soref in Journal of Applied Physics, Vol. 45, No. 12, pp. 5466-5468 (1974).


EP 0 588 568, for example, discloses various possibilities for the design of the electrodes and for addressing such a display. DE 198 24 137 likewise describes various embodiments of such IPS displays.


Liquid-crystalline materials for IPS displays of this type are described, for example, in DE 195 28 104, EP 2 100 944 A1, WO 2009/112153 A1, WO 2009/100810 A1, WO 2004/048501 A1 and WO 2009/103945 A1.


Typical applications of in-plane switching (IPS) and fringe field switching (FFS) technologies are monitors, notebooks, televisions, mobile telephones, tablet PCs, and many further applications known to the person skilled in the art which are not explicitly enumerated here.


Both the IPS and also the FFS technology have a broad viewing angle compared with other LCD technologies, such as, for example, the vertical alignment (VA) technology. However, the IPS and FFS technologies known to date have the disadvantage of a limited black state and limited light transmission.


For this reason, the provision of further liquid-crystalline media and the use thereof in a display having high transmission, a good black state and a high contrast ratio is a central challenge for modern IPS and FFS applications. In addition, modern applications also require good low-temperature stability and fast addressing times.


At present, there are different technical concepts for achieving high transmission, a dark black state and/or a high contrast ratio, which are described in detail.


A good black state can be achieved through low light scattering of the liquid-crystalline medium. Suitable media must therefore have relatively high elastic constants and preferably, a suitable Δn taking into account the switching time requirements.


Since these requirements of the liquid-crystalline medium have hitherto been accompanied by an increase in the rotational viscosity and/or greatly reduced low-temperature stability, further liquid-crystalline media are necessary which have a suitable Δn and relatively high elastic constants at the same time as low rotational viscosities and good low-temperature stabilities.


The transmission of an IPS display can be positively influenced by an increased electrode separation in combination with a smaller electrode width. However, an increased electrode separation requires a higher dielectric anisotropy of the medium in order to keep the operating voltage at the same level. However, a high dielectric anisotropy has to date also implied a high rotational viscosity and/or greatly restricted low-temperature stability. In addition, a higher dielectric anisotropy may result in low elastic constants, which reduce the black state and the reaction time. Furthermore, a significant increase in the elastic constants results in an improvement in the black state and in a reduction in the low-temperature stability.


Liquid-crystalline media having high dielectric anisotropy in combination with simultaneously high elastic constants, low rotational viscosity and good low-temperature stabilities are therefore necessary.


A high contrast ratio can be achieved through a good black state and/or high transmission. Both above-mentioned approaches, including the corresponding of the following requirements of the liquid-crystalline medium, are therefore desirable for optimised contrast of the IPS display:

    • suitable values for Δn and/or
    • high elastic constants and/or
    • comparatively high values for dielectric anisotropy,
    • low values for the rotational viscosity with a view to achieving fast response times, and
    • good low-temperature stability


In the case of FFS displays, the following analogous requirements arise:

    • suitable values for Δn and/or
    • high elastic constants and/or
    • low values for the rotational viscosity with a view to achieving fast response times, and
    • good low-temperature stability


Comparatively high values for dielectric anisotropy are often unnecessary in the case of FFS displays, since an increase in the electrode separation only results in increased transmission to a limited extent here. In general, however, the similar requirements mentioned of a liquid-crystalline medium also apply to FFS displays.


These requirements are surprisingly met, preferably simultaneously, through the use of a liquid-crystalline medium which comprise at least one compound selected from the compounds of the formulae I1 to I3 and at least one compound of the formula II.


The invention therefore relates to a liquid-crystalline medium having positive dielectric anisotropy, where the medium characterised in that it comprises one or more compounds of the formulae I1 to I3,




embedded image


in which

    • R11 denotes an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, monosubstituted by CN or CF3, or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may be replaced by —O—, —S—,




embedded image



—C≡C—, —OC—O—, or —COO— in such a way that O atoms are not linked directly to one another,

    • R11* denotes an unsubstituted alkyl or alkenyl radical having up to 15 C atoms, where, in addition, one or more CH2 groups in these radicals may be replaced by —O—, —S—,




embedded image



—C≡C—, —OC—O—, or —COO— in such a way that O atoms are not linked directly to one another,

    • Z0 denotes —COO—, —OCO—, —CH2O—, —OCH2—, —CF2—O—, —O—CF2—, —CH2—CH2—, —CF2—CF2—, —CFH—CFH—, —CH═CH—, —CF═CF—, —CF═CH—, —C≡C— or —CH═CF—, preferably —CH═CH—, —CH2—CH2— or —CF═CF—,
    • Sp denotes O, an alkylene alkyleneoxy, oxaalkylene or alkenylene radical having up to 6 C atoms which is unsubstituted or mono- or polysubstituted by halogen,
    • p denotes 0 or 1, preferably 1,
    • l and k denote 0 to 5,


and at least one compound of the formula II,




embedded image


in which

    • R21 and R22 each, independently of one another, denote an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, or monosubstituted by CN or CF3 or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may be replaced by —O—, —S—,




embedded image



—C≡C—, —OC—O—, or —O—CO— in such a way that O atoms are not linked directly to one another, and R22 also denotes X21,

    • Y21 and Y22 each, independently of one another, denote H or F, preferably both denote F or both denote H, and
    • X21 denotes F, Cl, CN, a halogenated alkyl, or alkoxy radical having 1 to 6 C atoms or a halogenated alkenyl radical having 2 to 6 C atoms, preferably F, Cl, CN, CF3, CHF2, OCF3, OCFHCF3, OCFHCHF2, OCF2CH3, OCF2CHF2, OCF2CF2CHF2, OCFHCF2CF3, OCFHCF2CHF2, OCF2CF2CF3, OCF2CF2CClF2, OCClFCF2CF3 or CH═CF2, particularly preferably F, CN, OCHF2 or OCF3.


In a preferred embodiment, the compounds of the formulae I1 to I3 are selected from the compounds of the formulae I1a to I1g, I2a, I2b and/or I3a to I3c,




embedded image




embedded image


in which

    • R11 has one of the meaning indicated under formula I,
    • R11* has one of the meaning indicated under formula I,
    • m denotes 1 to 5, and
    • k, l, and n denote 0 to 5.


The compounds of the formulae I1 to I3 are especially preferably selected from the compounds of the formulae I1a and I1b where (n) is equal to 0, 1 or 2, and from the compound of the formula I1d and furthermore from the compounds of the formulae I3a to I3c.


The compounds of the formulae I2a, I2b are especially preferably, selected from the compounds of the following sub-formulae,




embedded image


The compounds of the formula II are particularly preferably selected from the compounds of the formulae IIa to IIi,




embedded image


in which R21 and R22 each, independently of one another, have one of the meaning indicated under formula II and k and l each, independently of one another, denote 0 to 5.


The compounds of the formula II are particularly preferably selected from the compounds of the formulae IId, IIg, IIk and/or IIj where l is equal to 0 and k is equal to 1 or 2.


In a further preferred embodiment, the medium according to the invention comprises at least one compound of the formula III,




embedded image


in which

    • R31 denotes an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, monosubstituted by CN or CF3 or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may be replaced by —O—, —S—,




embedded image



—C≡C—, —OC—O—, or —O—CO— in such a way that O atoms are not linked directly to one another,

    • X31 denotes F, Cl, CN, a halogenated alkyl, or alkoxy radical having 1 to 10 C atoms or a halogenated alkenyl radical having 2 to 10 C atoms,
    • Y31 and Y32 simultaneously denote F,
    • Y33 and Y34 each, independently of one another, denote H or F.


In a further preferred embodiment, the compounds of the formula III are selected from the compounds of the formulae IIIa to IIIc,




embedded image


in which R31 and X31 each have one of the meaning indicated under formula II. Particular preference is given here to compounds of the formula IIIb where X31 is equal to F.


In a further preferred embodiment, the medium according to the invention comprises at least one compound of the formula IV,




embedded image


in which

    • R41 denotes an alkyl, or alkoxy radical having 1 to 10 C atoms or an alkenyl radical having 2 to 10 C atoms,
    • R42 has one of the meanings of R41 or denotes X41,
    • A41 denotes




embedded image




    • X41 denotes F, Cl, CN, a halogenated alkyl, or alkoxy radical having 1 to 6 C atoms or a halogenated alkenyl radical having 2 to 6 C atoms, preferably F, Cl, CN, CF3, CHF2, OCF3, OCFHCF3, OCFHCHF2, OCF2CH3, OCF2CHF2, OCF2CF2CHF2, OCFHCF2CF3, OCFHCF2CHF2, OCF2CF2CF3, OCF2CF2CClF2, OCClFCF2CF3 or CH═CF2, very particularly preferably F, Cl, CN, OCHF2 or OCF3, especially preferably F or Cl.





In a further preferred embodiment, the medium according to the invention comprises at least one compound of the formula V,




embedded image


in which

    • R51 and R52 each, independently of one another, denote an alkyl or alkoxy radical having 1 to 10 C atoms, an alkenyl radical having 2 to 10 C atoms and
    • L denotes H or F, preferably F.


In a further embodiment, the medium according to the invention comprises at least one of the compounds of the formula VI,




embedded image


in which

    • R61 denotes an unsubstituted alkyl radical having 1 to 15 C atoms, where, in addition, one or more CH2 groups in this radical may each be replaced, independently of one another, by —C≡C—, —CH═CH—, —CF═CF—, —CF═CH—, —CH═CF—, —(CO)O—, —O(CO)—, —(CO)— or —O— in such a way that O atoms are not linked directly to one another, preferably a straight-chain alkyl radical having 2 to 7 C atoms,
    • A61, A62 each, independently of one another, denote




embedded image



and

    • X61 denotes F, Cl, CN, or alkyl, alkenyl, alkenyloxy, alkylalkoxy or alkoxy having 1 to 3 C atoms which is mono- or polysubstituted by F, preferably denotes F, CF3 or OCF3.


The compounds of the formula VI are particularly preferably selected from the sub-formulae VI-1 to VI-5,




embedded image


in which R61 and X61 each have one of the meaning indicated under formula II.


The compounds of the formula VI are especially preferably selected here from the sub-formulae VI-1 to VI-5 where X61 is equal to F or CF3 or OCF3.


In a further preferred embodiment, the medium according to the invention comprises at least one compounds of the formula VII,




embedded image


in which

    • R71 denotes an unsubstituted alkyl radical having 1 to 15 C atoms, where, in addition, one or more CH2 groups in this radical may each be replaced, independently of one another, by —C≡C—, —CH═CH—, —CF═CF—, —CF═CH—, —CH═CF—, —(CO)O—, —O(CO)—, —(CO)— or —O— in such a way that O atoms are not linked directly to one another, preferably a straight-chain alkyl radical having 2 to 7 C atoms,
    • A71, A72 each, independently of one another, denote




embedded image




    • L71 and L72 each, independently of one another, denote H or F, preferably both denote F, and

    • X71 denotes F, Cl, CN, or alkyl, alkenyl, alkenyloxy, alkylalkoxy or alkoxy having 1 to 3 C atoms, which is mono- or polysubstituted by F, preferably denotes F, CF3 or OCF3.





The compounds of the formula VII are particularly preferably selected from the sub-formulae VII-1 to VII-5,




embedded image


in which R71 and X71 each have one of the meaning indicated under formula VII.


Particular preference is given to the compounds of the sub-formulae VII-1 to VII-5 where X71 is equal to F.


In a further embodiment, the medium according to the invention comprises at least one compound of the formula VIII,




embedded image


in which

    • R81 denotes an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, monosubstituted by CN or CF3 or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may be replaced by —O—, —S—, —C≡C—, —CH═CH—, —OC—O— or —O—CO— in such a way that O atoms are not linked directly to one another,
    • L81 to L83, independently of one another, identically or differently, denote H or F, and
    • X81 denotes F, Cl, halogenated alkyl or alkoxy radical having 1 to 7 C atoms or halogenated alkenyl radical having 2 to 7 C atoms.


Particularly preferred compounds of the formula VIII are the compound of the following sub-formulae VIII-1 and VIII-2,




embedded image


in which n=1 to 7.


If R11-81 or R11* in the above formulae denotes an alkyl radical and/or an alkoxy radical, this may be straight-chain or branched. It is preferably straight-chain, has 1, 2, 3, 4, 5, 6 or 7 C atoms and accordingly preferably denotes methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy or heptoxy, furthermore methyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, methoxy, octoxy, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradedoxy.


If R11-81 or R11* denotes an alkenyl radical, the expression “alkenyl” encompasses straight-chain and branched alkenyl groups having 2-7 carbon atoms, in particular the straight-chain groups. Preferred alkenyl groups are C2-C7-1E-alkenyl, C4-C7-3E-alkenyl, C5-C7-4-alkenyl, C6-C7-5-alkenyl and C7-6-alkenyl, in particular C2-C7-1E-alkenyl, C4-C7-3E-alkenyl and C5-C7-4-alkenyl. Examples of particularly preferred alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 carbon atoms are generally preferred.


If R11-81 denotes an alkyl or alkenyl radical which is at least monosubstituted by halogen, this radical is preferably straight-chain and halogen is preferably F or Cl. In the case of polysubstitution, halogen is preferably F. The resultant radicals also include perfluorinated radicals. In the case of monosubstitution, the fluorine or chlorine substituent can be in any desired position, but is preferably in the ω-position.


In the pure state, the compounds of the formula I to VIII are colourless and form liquid-crystalline mesophases in a temperature range which is favourably located for electro-optical use. They are stable chemically, thermally and to light.


The individual compounds of the above-mentioned formulae and their sub-formulae which can be used in the media according to the invention are either known, or they are prepared by methods known per se, as described in the literature (for example in the standard works, such as Houben-Weyl, Methoden der Organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise under reaction conditions which are known and suitable for the said reactions. Use can also be made here of variants known per se which are not mentioned here in greater detail.


The optimum mixing ratio of the compounds of the above-mentioned formulae depends substantially on the desired properties, on the choice of the components of the above-mentioned formulae and on the choice of other components optionally present.


Suitable mixing ratios within the range indicated above can easily be determined from case to case.


The total amount of compounds of the above-mentioned formulae in the mixtures according to the invention is not crucial. The mixtures may therefore comprise one or more further components in order to optimise various properties. However, the observed effect on the desired improvement of the properties of the mixture is generally greater, the higher the total concentration of compounds of the above-mentioned formulae.


Further preferred embodiments are indicated below:

    • The medium comprises one or more compounds of the formula I1 and/or I2 and/or I3 with a proportion of compounds of the formulae I1 and/or I2 and/or I3 in the mixture as a whole between 1-80% by weight, preferably 2-75% by weight, particularly preferably 3-70% by weight and one or more compounds of the formula II, or
    • The medium comprises at least two compounds selected from the formulae I1 to I3, where one of the compounds is preferably selected from the compounds of the formula I2a-1 with a proportion of compounds of the formulae I2a-1 in the mixture as a whole between 1-60% by weight, preferably 2-50% by weight, particularly preferably 5-40% by weight and at least one compound of the formula II, or
    • The medium comprises, besides two compounds of the formula I2 preferably selected from the formulae I2a-1 and I2b-1 with a proportion of compounds of the formulae I2a-1 in the mixture as a whole between 1-60% by weight, preferably 2-50% by weight, particularly preferably 5-40% by weight and with a proportion of compounds of the formulae I2b-1 in the mixture as a whole between 1-80% by weight, preferably 2-75% by weight, particularly preferably 5-70% by weight, and at least one compound of the formula II, or
    • The medium comprises, besides three compounds of the formula I2, preferably selected from the compounds of the formulae I2a-1, I2b-1 and I2b-3 with a proportion of compounds of the formulae I2a-1 in the mixture as a whole between 1-60% by weight, preferably 2-50% by weight, particularly preferably 5-40% by weight, and with a proportion of compounds of the formulae I2b-1 in the mixture as a whole between 1-80% by weight, preferably 2-75% by weight, particularly preferably 5-70% by weight, furthermore with a proportion of compounds of the formulae I2b-3 in the mixture as a whole between 1-70% by weight, preferably 2-60% by weight, particularly preferably 5-50% by weight, and at least one compound of the formula II.


The above-mentioned mixture concepts preferably comprise

    • optionally one, two, three or more compounds of the formula III, preferably selected from the compounds of the formula IIIb, where the proportion of compounds of the formulae III in the mixture as a whole is up to 55% by weight, preferably up to 40% by weight, particularly preferably up to 30% by weight, and/or
    • optionally one, two, three or more compounds of the formula IV, preferably selected from the compounds of the formula IV in which X41 denotes fluorine, where the proportion of compounds of the formulae IV in the mixture as a whole is up to 40% by weight, preferably up to 30% by weight, and/or
    • optionally one, two, three or more compounds of the formula V, where the proportion of compounds of the formulae V in the mixture as a whole is up to 40% by weight, preferably up to 30% by weight, particularly preferably up to 25% by weight, and/or
    • optionally one, two, three or more compounds of the formula VI, with a proportion of compounds of the formulae VI in the mixture as a whole up to 80% by weight, preferably up to 75% by weight, particularly preferably up to 70% by weight, and/or
    • optionally one, two, three or more compounds of the formula VII with a proportion of compounds of the formulae VII in the mixture as a whole up to 50% by weight, preferably up to 40% by weight, particularly preferably up to 30% by weight, and/or
    • optionally one, two, three or more compounds of the formula VIII with a proportion of compounds of the formulae VIII in the mixture as a whole up to 50% by weight, preferably up to 40% by weight, particularly preferably up to 30% by weight, and where


The proportion of one, two, three or more compounds of the formula II, preferably selected from the compounds of the formula IId and/or IIg and/or IIj and/or IIk, in the mixture as a whole is preferably 1-80% by weight, particularly preferably 2-70% by weight, very particularly preferably 3-60% by weight.


In a further preferred embodiment, the medium comprises at least two, compounds of the formula I2, at least one compound of the formula II and at least one compound of the formula VI.


In a further preferred embodiment, the medium preferably comprises three compounds of the formula I2, at least one compound of the formula II and at least one compound of the formula VI.


It has been found that even a relatively low proportion of compounds of the formulae I1 to I3 mixed with conventional liquid-crystal materials results in a significant increase in the elastic constants, where at the same time low values for the rotational viscosity with a view to achieving fast response times, and relatively high values for dielectric anisotropy are observed. At the same time, the mixtures exhibit very good low-temperature stability.


The invention also relates to electro-optical displays, such as, for example, STN or MLC displays, having two plane-parallel outer plates, which, with a frame, form a cell, integrated non-linear elements for switching individual pixels on the outer plates, and a nematic liquid-crystal mixture having positive dielectric anisotropy and high specific resistance which is located in the cell), which comprise media of this type and to the use of these media for electro-optical purposes.


The liquid-crystal mixtures according to the invention facilitate an important broadening of the available parameter latitude. The achievable combinations of high elastic constants, low rotational viscosity and relatively high dielectric anisotropy far exceed previous materials from the prior art.


The mixtures according to the invention are particularly suitable for mobile applications and low-Δn TFT applications, such as, for example, mobile telephones and PDAs.


The liquid-crystal mixtures according to the invention simultaneously enable dielectric anisotropy values Δε≥+3, preferably ≥+7 and a high value for the specific resistance to be achieved while retaining the nematic phase down to −20° C. and preferably down to −30° C., particularly preferably down to −40° C., and the clearing point ≥80° C., preferably ≥90° C., particularly preferably ≥100° C., enabling excellent MLC displays to be achieved. In particular, the mixtures are characterised by low operating voltages.


The threshold voltage of the liquid-crystal mixtures according to the invention is preferably ≤2.0 V, particularly preferably ≤1.8 V.


The birefringence Δn of the liquid-crystal mixtures according to the invention is preferably ≤0.14, particularly preferably ≤0.13, especially preferably ≤0.12.


The rotational viscosity γ1 of the liquid-crystal mixtures according to the invention at 20° C. is preferably ≤150 mPa·s, preferably ≤120 mPa·s, particularly preferably ≤100 mPa·s.


The nematic phase range of the liquid-crystal mixtures according to the invention preferably has a width of at least 90°, in particular at least 100°. This range preferably extends at least from −40° to +110° C.


In view of the advantageous, high elastic constants of the medium according to the invention, the corresponding characteristic number is determined by the values of Kave.


Kave is calculated by

Kave=(K11+K22+K33)/3


where K22 can be approximated by

K22≈K11/2.


The values of Kave of the liquid-crystal mixtures according to the invention are preferably ≥10 pN, particularly preferably ≥12 pN, in particular ≥13 pN.


It goes without saying that a suitable choice of the components of the mixtures according to the invention also enables higher clearing points (for example above 100° C.) to be achieved at higher threshold voltages or lower clearing points to be achieved at lower threshold voltages while retaining the other advantageous properties. Likewise, mixtures having greater Δε and thus low thresholds can be obtained at correspondingly less-increased viscosities. The MLC displays according to the invention preferably operate at the first Gooch and Tarry transmission minimum [C. H. Gooch and H. A. Tarry, Electron. Lett. 10, 2-4, 1974; C. H. Gooch and H. A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], where, besides particularly favourable electro-optical properties, such as, for example, high steepness of the characteristic line and low angle dependence of the contrast (German Patent 30 22 818) with the same threshold voltage as in an analogous display at the second minimum, a lower dielectric anisotropy is adequate here. This enables significantly higher specific resistances to be achieved using the mixtures according to the invention at the first minimum than in the case of mixtures comprising cyano compounds. The person skilled in the art will be able to set the birefringence necessary for a pre-specified layer thickness of the MLC display using simple routine methods through a suitable choice of the individual components and their proportions by weight.


Also in accordance with the invention is an electro-optical display having a re-alignment layer for re-alignment of the liquid crystals whose field has a component, crucial for the re-alignment, parallel to the liquid-crystal layer, which contains, as dielectric, a liquid-crystalline medium according to the invention.


The construction of the MLC display according to the invention from polarisers, electrode base plates and electrodes having surface treatment corresponds to the conventional design for displays of this type. The term conventional design is broadly drawn here and also encompasses all derivatives and modifications of the MLC display, in particular also matrix display elements based on poly-Si TFT or MIM.


However, an essential difference of the displays according to the invention from those conventional to date based on the twisted nematic cell consists in the choice of the liquid-crystal parameters of the liquid-crystal layer.


The liquid-crystal mixtures which can be used in accordance with the invention are prepared in a manner conventional per se, for example by mixing one or more compounds of the formula I1 to I3 with one or more compounds of the formulae II to V or with further liquid-crystalline compounds and/or additives. In general, the desired amount of the components used in smaller amount is dissolved in the components making up the principal constituent, advantageously at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after thorough mixing.


In the present application and in the following examples, the structures of the liquid-crystal compounds are indicated by means of acronyms, where the transformation into chemical formulae takes place in accordance with Table A. All radicals CnH2n+1 and CmH2m+1 are straight-chain alkyl radicals having n and m C atoms respectively; n, m and k are integers and preferably denote 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. The coding in Table B is self-evident. In Table A, only the acronym for the basic structure is indicated. In individual cases, the acronym for the basic structure is followed, separated by a dash, by a code for the substituents R1*, R2*, L1* and L2*:
















Code for R1*,






R2*, L1*, L2*, L3*
R1*
R2*
L1*
L2*







nm
CnH2n+1
CmH2m+1
H
H


nOm
CnH2n+1
OCmH2m+1
H
H


nO.m
OCnH2n+1
CmH2m+1
H
H


n
CnH2n+1
CN
H
H


nN.F
CnH2n+1
CN
F
H


nN.F.F
CnH2n+1
CN
F
F


nF
CnH2n+1
F
H
H


nCl
CnH2n+1
Cl
H
H


nOF
OCnH2n+1
F
H
H


nF.F
CnH2n+1
F
F
H


nF.F.F
CnH2n+1
F
F
F


nOCF3
CnH2n+1
OCF3
H
H


nOCF3.F
CnH2n+1
OCF3
F
H


n-Vm
CnH2n+1
—CH═CH—CmH2m+1
H
H


nV-Vm
CnH2n+1—CH═CH—
—CH═CH—CmH2m+1
H
H









Preferred mixture components can be found in Tables A and B.









TABLE A









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image


















TABLE B





Particular preference is given to liquid-crystalline mixtures which, besides the compounds of the


formulae I1 to I3 and the compounds of the formula II, comprise at least one, two, three,


four or more compounds from Table B.









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







(n = 1-15; (O)CnH2n+1 denotes CnH2n+1 or OCnH2n+1)






The dielectrics may also comprise further additives known to the person skilled in the art and described in the literature, such as, for example, UV stabilisers, such as Tinuvin® from Ciba, antioxidants, free-radical scavengers, nanoparticles, etc. For example, 0-15% of pleochroic dyes, chiral dopants and polymerisable dopants may be added. Suitable stabilisers and dopants are shown below in Tables C, D and E.









TABLE C





Table C shows possible dopants which are generally added to the mixtures according to


the invention. The mixtures preferably comprise 0-10% by weight, in particular


0.01-5% by weight and particularly preferably 0.01-3% by weight of dopants.









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image


















TABLE D





Stabilisers which can be added, for example, to the mixtures according to


the invention in amounts of 0-10% by weight are shown below.









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image


















TABLE E









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











The following examples are intended to explain the invention without limiting it.


Above and below, percentages denote percent by weight. All temperatures are indicated in degrees Celsius. m.p. denotes melting point, cl.p.=clearing point. Furthermore, C=crystalline state, N=nematic phase, S=smectic phase and I=isotropic phase. The numbers between these symbols represent the transition temperatures. Furthermore,

    • Δn denotes the optical anisotropy at 589 nm and 20° C.),
    • γ1 denotes the rotational viscosity (mPa·s) at 20° C.,
    • V10 denotes the voltage (V) for 10% transmission (viewing angle perpendicular to the plate surface), (threshold voltage),
    • V90 denotes the voltage (V) for 90% transmission (viewing angle perpendicular to the plate surface),
    • Δε denotes the dielectric anisotropy at 20° C. and 1 kHz (Δε=ε−ε, where ε denotes the dielectric constant parallel to the longitudinal axes of the molecule and ε denotes the dielectric constant perpendicular thereto).


The electro-optical data are measured in a TN cell at the 1st minimum (i.e. at a d·Δn value of 0.5 μm) at 20° C., unless expressly indicated otherwise. The optical data are measured at 20° C., unless expressly indicated otherwise. All physical properties are determined in accordance with “Merck Liquid Crystals, Physical Properties of Liquid Crystals” Status November 1997, Merck KGaA, Germany, and apply for a temperature of 20° C., unless explicitly indicated otherwise.







COMPARATIVE EXAMPLE 1

A nematic mixture CM1 having the following physical properties and the following composition is prepared.












Mixture M1:







Composition


Compound









No.
Abbreviation
c/%





1
PCH-5F
4.0


2
CCP-
21.3



20CF2.F.F



3
CCP-
20.0



30CF2.F.F



4
CCP-
21.3



50CF2.F.F



5
CUP-2F.F
6.7


6
CUP-3F.F
6.7


7
CBC-33F
6.7


8
CBC-53F
6.7


9
CBC-55F
6.7


Σ

100.0










Physical properties














T(N, I) =
124.5°
C.










Δn (20° C., 589.3 nm) =
0.105



Δε (20° C., 1 kHz) =
8.3











K11(20° C.) =
13.5
pN



K33(20° C.) =
18.2
pN



γ1 (20° C.) =
444
mPa · s



V0 (20° C.) =
1.35
V









Example 1

20% by weight of compound (1) are added to mixture CM1, and the physical properties of the mixture (M1) are determined.




embedded image












Physical properties



















T(N, I) =
106.6°
C.










Δn (20° C., 589.3 nm) =
0.050



Δε (20° C., 1 kHz) =
7.00











K11(20° C.) =
14.8
pN



K33 (20° C.) =
17.3
pN



γ1 (20° C.) =
124
mPa · s



V0 (20° C.) =
1.53
V









An IPS display containing mixture M1 has adequate contrast.


Example 2

20% by weight of compound (2) are added to mixture CM1, and the physical properties of the mixture (M2) are determined.




embedded image












Physical properties



















T(N, I) =
106.4°
C.










Δn (20° C., 589.3 nm) =
0.052



Δε (20° C., 1 kHz) =
7.14











K11(20° C.) =
14.3
pN



K33 (20° C.) =
17.5
pN



γ1 (20° C.) =
112
mPa · s



V0 (20° C.) =
1.49
V









An IPS display containing mixture M2 has adequate contrast.


Example 3

20% by weight of compound (3) are added to mixture CM1, and the physical properties of the mixture (M3) are determined.




embedded image












Physical properties



















T(N, I) =
103.4°
C.










Δn (20° C., 589.3 nm) =
0.054



Δε (20° C., 1 kHz) =
7.17











K11(20° C.) =
13.6
pN



K33 (20° C.) =
18.0
pN



γ1 (20° C.) =
82
mPa · s



V0 (20° C.) =
1.45
V









An IPS display containing mixture M3 has adequate contrast.


Example 4

20% by weight of compound (4) are added to mixture CM1, and the physical properties of the mixture (M4) are determined.




embedded image












Physical properties



















T(N, I) =
108.4°
C.










Δn (20° C., 589.3 nm) =
0.062



Δε (20° C., 1 kHz) =
7.73











K11(20° C.) =
14.2
pN



K33 (20° C.) =
17.7
pN



γ1 (20° C.) =
91
mPa · s



V0 (20° C.) =
1.43
V









An IPS display containing mixture M4 has adequate contrast.


Example 5

20% by weight of compound (5) are added to mixture CM1, and the physical properties of the mixture (M5) are determined.




embedded image












Physical properties



















T(N, I) =
105.4°
C.










Δn (20° C., 589.3 nm) =
0.057



Δε (20° C., 1 kHz) =
6.79











K11(20° C.) =
13.1
pN



K33 (20° C.) =
17.8
pN



γ1 (20° C.) =
76
mPa · s



V0 (20° C.) =
1.467
V









An IPS display containing mixture M5 has adequate contrast.


Example 6

20% by weight of compound (6) are added to mixture CM1, and the physical properties of the mixture (M6) are determined.




embedded image












Physical properties



















T(N, I) =
98.9°
C.










Δn (20° C., 589.3 nm) =
0.053



Δε (20° C., 1 kHz) =
7.89











K11(20° C.) =
12.9
pN



K33 (20° C.) =
17.2
pN



γ1 (20° C.) =
111
mPa · s



V0 (20° C.) =
1.35
V









An IPS display containing mixture M6 has adequate contrast.


Example 7

20% by weight of compound (7) are added to mixture CM1, and the physical properties of the mixture (M7) are determined.




embedded image












Physical properties



















T(N, I) =
94.8°
C.










Δn (20° C., 589.3 nm) =
0.059



Δε (20° C., 1 kHz) =
7.55











K11(20° C.) =
11.9
pN



K33 (20° C.) =
17.1
pN



γ1 (20° C.) =
89
mPa · s



V0 (20° C.) =
1.33
V









An IPS display containing mixture M7 has adequate contrast.


Example 8

20% by weight of compound (8) are added to mixture CM1, and the physical properties of the mixture (M8) are determined.




embedded image












Physical properties



















T(N, I) =
90.4°
C.










Δn (20° C., 589.3 nm) =
0.051



Δε (20° C., 1 kHz) =
7.04











K11(20° C.) =
12.18
pN



K33 (20° C.) =
15.22
pN



γ1 (20° C.) =
99
mPa · s



V0 (20° C.) =
1.39
V









An IPS display containing mixture M8 has adequate contrast.


Example 9

20% by weight of compound (9) are added to mixture CM1, and the physical properties of the mixture (M9) are determined.




embedded image












Physical properties



















T(N, I) =
87.5°
C.










Δn (20° C., 589.3 nm) =
0.059



Δε (20° C., 1 kHz) =
7.31











K11(20° C.) =
12.3
pN



K33 (20° C.) =
15.1
pN



γ1 (20° C.) =
63
mPa · s



V0 (20° C.) =
1.37
V









An IPS display containing mixture M9 has adequate contrast.


Example 10

20% by weight of compound (10) are added to mixture CM1, and the physical properties of the mixture (M10) are determined.




embedded image












Physical properties



















T(N, I) =
92.2°
C.










Δn (20° C., 589.3 nm) =
0.055



Δε (20° C., 1 kHz) =
6.29











K11(20° C.) =
11.4
pN



K33 (20° C.) =
13.7
pN



γ1 (20° C.) =
101
mPa · s



V0 (20° C.) =
1.42
V









An IPS display containing mixture M10 has adequate contrast.


Example 11

20% by weight of compound (11) are added to mixture CM1, and the physical properties of the mixture (M11) are determined.




embedded image












Physical properties



















T(N, I) =
92.9°
C.










Δn (20° C., 589.3 nm) =
0.050



Δε (20° C., 1 kHz) =
7.22











K11(20° C.) =
11.0
pN



K33 (20° C.) =
14.3
pN



γ1 (20° C.) =
76
mPa · s



V0 (20° C.) =
1.30
V









An IPS display containing mixture M11 has adequate contrast.


Example 12

20% by weight of compound (12) are added to mixture CM1, and the physical properties of the mixture (M12) are determined.




embedded image












Physical properties



















T(N, I) =
114.4°
C.










Δn (20° C., 589.3 nm) =
0.059



Δε (20° C., 1 kHz) =
6.26











K11(20° C.) =
15.3
pN



K33 (20° C.) =
19.0
pN



γ1 (20° C.) =
43
mPa · s



V0 (20° C.) =
1.65
V









An IPS display containing mixture M12 has adequate contrast.


Example 13

20% by weight of compound (13) are added to mixture CM1, and the physical properties of the mixture (M131 are determined.




embedded image












Physical properties



















T(N, I) =
109.5°
C.










Δn (20° C., 589.3 nm) =
0.057



Δε (20° C., 1 kHz) =
6.12











K11(20° C.) =
14.0
pN



K33 (20° C.) =
18.6
pN



γ1 (20° C.) =
28
mPa · s



V0 (20° C.) =
1.60
V









An IPS display containing mixture M13 has adequate contrast.


Example 14

20% by weight of compound (14) are added to mixture CM1, and the physical properties of the mixture (M14) are determined.




embedded image












Physical properties



















T(N, I) =
113.1°
C.










Δn (20° C., 589.3 nm) =
0.066



Δε (20° C., 1 kHz) =
6.15











K11(20° C.) =
14.3
pN



K33 (20° C.) =
18.3
pN



γ1 (20° C.) =
37
mPa · s



V0 (20° C.) =
1.61
V









An IPS display containing mixture M14 has adequate contrast.


Example 15

20% by weight of compound (15) are added to mixture CM1, and the physical properties of the mixture (M15) are determined.




embedded image












Physical properties



















T(N, I) =
102.2°
C.










Δn (20° C., 589.3 nm) =
0.052



Δε (20° C., 1 kHz) =
6.10











K11(20° C.) =
12.5
pN



K33 (20° C.) =
16.2
pN



γ1 (20° C.) =
18
mPa · s



V0 (20° C.) =
1.51
V









An IPS display containing mixture M15 has adequate contrast.


Example 16

20% by weight of compound (16) are added to mixture CM1, and the physical properties of the mixture (M16) are determined.




embedded image












Physical properties



















T(N, I) =
90.8°
C.










Δn (20° C., 589.3 nm) =
0.040



Δε (20° C., 1 kHz) =
5.83











K11(20° C.) =
11.9
pN



K33 (20° C.) =
12.5
pN



γ1 (20° C.) =
29
mPa · s



V0 (20° C.) =
1.51
V









An IPS display containing mixture M16 has adequate contrast.


Example 17

20% by weight of compound (17) are added to mixture CM1, and the physical properties of the mixture (M17) are determined.




embedded image












Physical properties



















T(N, I) =
94.4°
C.










Δn (20° C., 589.3 nm) =
0.042



Δε (20° C., 1 kHz) =
5.70











K11(20° C.) =
11.6
pN



K33 (20° C.) =
13.3
pN



γ1 (20° C.) =
27
mPa · s



V0 (20° C.) =
1.51
V









An IPS display containing mixture M17 has adequate contrast.


Example 18

20% by weight of compound (18) are added to mixture CM1, and the physical properties of the mixture (M18) are determined.




embedded image












Physical properties



















T(N, I) =
120.8°
C.










Δn (20° C., 589.3 nm) =
0.056



Δε (20° C., 1 kHz) =
6.60











K11(20° C.) =
14.5
pN



K33 (20° C.) =
19.1
pN



γ1 (20° C.) =
74
mPa · s



V0 (20° C.) =
1.54
V









An IPS display containing mixture M18 has adequate contrast.


Example 19

20% by weight of compound (19) are added to mixture CM1, and the physical properties of the mixture (M19) are determined.




embedded image












Physical properties



















T(N, I) =
113.6°
C.










Δn (20° C., 589.3 nm) =
0.072



Δε (20° C., 1 kHz) =
6.20











K11(20° C.) =
13.7
pN



K33 (20° C.) =
20.4
pN



γ1 (20° C.) =
44
mPa · s



V0 (20° C.) =
1.55
V









An IPS display containing mixture M19 has adequate contrast.


Example 20

10% by weight of compound (20) are added to mixture CM1, and the physical properties of the mixture (M20) are determined.




embedded image












Physical properties



















T(N, I) =
118.7°
C.










Δn (20° C., 589.3 nm) =
0.080



Δε (20° C., 1 kHz) =
6.35











K11(20° C.) =
14.5
pN



K33 (20° C.) =
18.0
pN



γ1 (20° C.) =
48
mPa · s



V0 (20° C.) =
1.60
V









An IPS display containing mixture M20 has adequate contrast.


Example 21

A nematic mixture M21 having the following physical properties and the following composition is prepared.



















CC-3-V
32.00%
T(N, I) [° C.]:
93.5



CC-3-V1
12.00%





CCP-V2-1
5.00%
Δn [589 nm, 20° C.]
0.103



CCQU-3-F
11.00%
Δε [kHz, 20° C.]:
+12.1



CCP-30CF3
4.00%
γ1 [mPa · s, 20° C.]:
95



CCGU-3-F
5.00%
K1 [20° C.]:
14.0



APUQU-2-F
8.00%
K3 [20° C.]:
17.3



APUQU-3-F
8.00%
V0 [V]:
1.15



PGUQU-3-F
5.00%





PGUQU-4-F
5.00%





PGUQU-5-F
5.00%









An IPS display containing mixture M21 has adequate contrast.


Example 22

A nematic mixture M22 having the following physical properties and the following composition is prepared.



















CC-3-V
28.00%
T(N, I) [° C.]:
94.5



CC-3-V1
9.00%
Δn [589 nm, 20° C.]
0.103



CC-3-2V1
9.00%
Δε [kHz, 20° C.]:
+12.3



CCP-V2-1
3.00%
γ1 [mPa · s, 20° C.]:
100



CCQU-3-F
11.00%
K1 [20° C.]:
15.1



CCP-30CF3
4.00%
K3 [20° C.]:
17.2



CCGU-3-F
5.00%
V0 [V]:
1.16



APUQU-2-F
8.00%





APUQU-3-F
8.00%





PGUQU-3-F
5.00%





PGUQU-4-F
5.00%





PGUQU-5-F
5.00%









An IPS display containing mixture M22 has adequate contrast.


Example 23

A nematic mixture M23 having the following physical properties and the following composition is prepared.



















CC-3-V
31.00%
T(N, I) [° C.]:
90.5



CC-3-V1
9.00%
Δn [589 nm, 20° C.]
0.101



CC-3-2V1
9.00%
Δε [kHz, 20° C.]:
+11.9



CCQU-3-F
9.00%
γ1 [mPa · s, 20° C.]:
92



CCP-30CF3
6.00%
K1 [20° C.]:
14.7



CCGU-3-F
5.00%
K3 [20° C.]:
16.9



APUQU-2-F
8.00%
V0 [V]:
1.17



APUQU-3-F
8.00%





PGUQU-3-F
5.00%





PGUQU-4-F
5.00%





PGUQU-5-F
5.00%









An IPS display containing mixture M23 has adequate contrast.


Example 24

A nematic mixture M24 having the following physical properties and the following composition is prepared.



















CC-3-V
30.00%
T(N, I) [° C.]:
93.5



CC-3-V1
12.00%
Δn [589 nm, 20° C.]
0.085



CCP-V2-1
4.00%
Δε [kHz, 20° C.]:
+10.1



CCGU-3-F
7.00%
γ1 [mPa · s, 20° C.]:
96



ACQU-3F
5.00%
K1 [20° C.]:
14.2



CCQU-3-F
12.00%
K3 [20° C.]:
17.1



CCQU-5-F
12.00%
V0 [V]:
1.25



APUQU-2-F
9.00%





APUQU-3-F
9.00%









An IPS display containing mixture M24 has adequate contrast.


Example 25

A nematic mixture M25 having the following physical properties and the following composition is prepared.



















CC-3-V
32.00%
T(N, I) [° C.]:
96.0



CC-3-V1
12.00%
Δn [589 nm, 20° C.]
0.084



CCP-V2-1
5.00%
Δε [kHz, 20° C.]:
+9.9



CCGU-3-F
7.00%
γ1 [mPa · s, 20° C.]:
94



CCQU-3-F
12.00%
K1 [20° C.]:
14.5



CCQU-5-F
10.00%
K3 [20° C.]:
18.2



APUQU-2-F
6.00%
V0 [V]:
1.27



APUQU-3-F
8.00%





CDUQU-3-F
8.00%









An IPS display containing mixture M25 has adequate contrast.


Example 26

A nematic mixture M26 having the following physical properties and the following composition is prepared.



















CC-3-V
32.00%
T(N, I) [° C.]:
93.5



CC-3-V1
12.00%
Δn [589 nm, 20° C.]
0.103



CCP-V2-1
5.00%
Δε [kHz, 20° C.]:
+12.1



CCQU-3-F
11.00%
γ1 [mPa · s, 20° C.]:
95



CCP-3-0CF3
4.00%
K1 [20° C.]:
14.0



CCGU-3-F
5.00%
K3 [20° C.]:
17.3



APUQU-2-F
8.00%
V0 [V]:
1.13



APUQU-3-F
8.00%





PGUQU-3-F
5.00%





PGUQU-4-F
5.00%





PGUQU-5-F
8.00%









An IPS display containing mixture M26 has adequate contrast.


Example 27

A nematic mixture M27 having the following physical properties and the following composition is prepared.



















CC-3-V
29.00%
T(N, I) [° C.]:
90.5



CC-3-V1
12.00%
Δn [589 nm, 20° C.]
0.104



CCP-V2-1
7.00%
Δε [kHz, 20° C.]:
+11.8



CCQU-3-F
10.00%
γ1 [mPa · s, 20° C.]:
94



PP-1-2V1
6.00%
K1 [20° C.]:
15.0



CCGU-3-F
5.00%
K3 [20° C.]:
16.8



APUQU-2-F
6.00%
V0 [V]:
1.19



APUQU-3-F
8.00%





PGUQU-3-F
5.00%





PGUQU-4-F
4.00%





CDUQU-3-F
8.00%









An IPS display containing mixture M2/has adequate contrast.


Example 28

A nematic mixture M28 having the following physical properties and the following composition is prepared.



















CC-3-V
32.00%
T(N, I) [° C.]:
87.0



CC-3-V1
12.00%
Δn [589 nm, 20° C.]
0.102



CCP-V2-1
4.00%
Δε [kHz, 20° C.]:
+12.0



CCQU-3-F
10.00%
γ1 [mPa · s, 20° C.]:
87



PP-1-2V1
5.00%
K1 [20° C.]:
14.0



CCGU-3-F
5.00%
K3 [20° C.]:
16.3



APUQU-2-F
6.00%
V0 [V]:
1.14



APUQU-3-F
8.00%





PGUQU-3-F
5.00%





PGUQU-4-F
5.00%





CDUQU-3-F
8.00%









An IPS display containing mixture M28 has adequate contrast.

Claims
  • 1. A liquid-crystalline medium having positive dielectric anisotropy, comprising a compound of formula I2a-1
  • 2. The medium according to claim 1, wherein the compounds of the formula I1 to I3 are selected from the compounds of the formula I1a to I1g, and/or I3a to I3c,
  • 3. The medium according to claim 1, further comprising at least one compound of formula IV,
  • 4. The medium according to claim 1, further comprising at least one additional compound of formula VI,
  • 5. The medium according to claim 1, further comprising at least one compound of formula V,
  • 6. A process for the preparation of a medium according to claim 1, comprising mixing compound of formula I2-a1, I2-a3 and I2-b1, and optionally one or more compounds of the formula I1 or I3 and a compound of formula IIg, with one or more of the compounds of the formula IV,
  • 7. An electro-optical display comprising a dielectric that is a liquid-crystalline medium according to claim 1.
  • 8. An electro-optical display having a re-alignment layer realigning of the liquid crystals, whose field has a re-alignment component parallel to the liquid-crystal layer, said display containing, as dielectric, a liquid-crystalline medium according to claim 1.
  • 9. The medium according to claim 1, comprising CC-3-VCC-3-V1CC-3-2V1CCP-V2-1CCQU-3-FCCP-30CF3CCGU-3-FAPUQU-2-FAPUQU-3-FPGUQU-3-FPGUQU-4-F andPGUQU-5-F.
  • 10. The medium according to claim 1, comprising CC-3-VCC-3-V1CC-3-2V1CCQU-3-FCCP-30CF3CCGU-3-FAPUQU-2-FAPUQU-3-FPGUQU-3-FPGUQU-4-F andPGUQU-5-F.
Priority Claims (1)
Number Date Country Kind
10 2012 020 940 Oct 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/003195 10/23/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/063817 5/1/2014 WO A
US Referenced Citations (23)
Number Name Date Kind
6544602 Hirschmann et al. Apr 2003 B1
7078079 Heckmeier et al. Jul 2006 B2
7291367 Kirsch et al. Nov 2007 B2
7405026 Kawakami Jul 2008 B2
7449222 Heckmeier Nov 2008 B2
7838090 Wittek Nov 2010 B2
7842358 Czanta et al. Nov 2010 B2
8231806 Czanta et al. Jul 2012 B2
8404150 Wittek et al. Mar 2013 B2
8834744 Wittek et al. Sep 2014 B2
20040108489 Okabe et al. Jun 2004 A1
20040173774 Heckmeier et al. Sep 2004 A1
20060043334 Tomi Mar 2006 A1
20060061699 Kirsch et al. Mar 2006 A1
20060172089 Kawakami Aug 2006 A1
20090230355 Czanta et al. Sep 2009 A1
20100314582 Wittek et al. Dec 2010 A1
20110024682 Czanta et al. Feb 2011 A1
20130248762 Hirschmann et al. Sep 2013 A1
20130256596 Hirschmann et al. Oct 2013 A1
20130327984 Wittek et al. Dec 2013 A1
20140061534 Goebel Mar 2014 A1
20150048276 Goebel Feb 2015 A1
Foreign Referenced Citations (15)
Number Date Country
4442842 Jun 1996 DE
10020061 Dec 2000 DE
102009005747 Aug 2009 DE
102011118210 May 2012 DE
102011118786 Jun 2012 DE
1607463 Dec 2005 EP
2100944 Sep 2009 EP
2001-11454 Jan 2001 JP
2007-91796 Apr 2007 JP
2007-146023 Jun 2007 JP
0246329 Jun 2002 WO
2004048501 Jun 2004 WO
2009100810 Aug 2009 WO
2009103495 Aug 2009 WO
2009112153 Sep 2009 WO
Non-Patent Literature Citations (5)
Entry
International Search Report dated Jan. 30, 2014 issued in corresponding PCT/EP2013/003195 application (pp. 1-3).
English Translation Abstract of DE 4442842 A1 published Jun. 5, 1996.
English Translation Abstract of JP 2001-011454 A published Jan. 16, 2001.
English Translation Abstract of JP 2007-091796 A published Apr. 12, 2007.
English Translation Abstract of JP 2007-146023 A published Jun. 14, 2007.
Related Publications (1)
Number Date Country
20150284636 A1 Oct 2015 US