LIQUID DEVELOPER

Information

  • Patent Application
  • 20150160547
  • Publication Number
    20150160547
  • Date Filed
    December 05, 2014
    10 years ago
  • Date Published
    June 11, 2015
    9 years ago
  • CPC
    • G03C9/131
  • International Classifications
    • G03G9/13
    • G03G9/12
Abstract
A liquid developer includes an insulating liquid and toner particles which are dispersed in the insulating liquid and contain a resin and a coloring agent. The resin contains a first resin which is a resin containing a component derived from a crystalline polyester resin. The coloring agent contains carbon black and nigrosine. The toner particles have a peak at not lower than 30° C. and not higher than 50° C. in a DSC curve in temperature decrease.
Description

This application is based on Japanese Patent Application No. 2013-253067 filed with the Japan Patent Office on Dec. 6, 2013, the entire content of which is hereby incorporated by reference.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a liquid developer.


2. Description of the Related Art


Since a liquid developer contains an insulating liquid and toner particles dispersed in the insulating liquid, it is characterized by the toner particles smaller and more uniform in particle size than a dry developer. Therefore, the liquid developer is advantageous for higher image quality. Since an amount of adhesion of toner particles to a recording medium can also be decreased, lower cost per page (CPP) can advantageously be achieved.


Toner particles contained in a liquid developer contain a resin and a coloring agent. For example, Japanese Laid-Open Patent Publications Nos. 2009-133973, 2010-026511, and 2006-113514 disclose a liquid developer containing carbon black as a coloring agent and containing nigrosine as an electric field control agent.


SUMMARY OF THE INVENTION

As described above, with the liquid developer, an amount of adhesion of toner particles to a recording medium can be decreased. Decrease in amount of adhesion of toner particles to a recording medium, however, may lead to lower image density. Increase in content of a coloring agent leads to higher image density, however, image density may be varied depending on a degree of gloss, even with the same content of the coloring agent.


When carbon black is employed as a coloring agent, increase in content of carbon black may lead to a lower degree of gloss owing to a filler effect of carbon black. Therefore, increase in amount of addition of carbon black may not lead to desired image density.


The present invention was made in view of such aspects, and an object of the present invention is to provide a liquid developer containing carbon black, which can form an image having high image density.


A liquid developer according to the present invention includes an insulating liquid and toner particles which are dispersed in the insulating liquid and contain a resin and a coloring agent. The resin contains a first resin which is a resin containing a component derived from a crystalline polyester resin. The coloring agent contains carbon black and nigrosine. The toner particles have a peak at not lower than 30° C. and not higher than 50° C. in a differential scanning calorimetry (DSC) curve in temperature decrease.


The “first resin” may be a crystalline polyester resin, a polyester resin resulting from increase in chain length of a component derived from a crystalline polyester resin by a compound containing an isocyanate group (hereinafter denoted as a “urethane-modified polyester resin”), or a mixture of the crystalline polyester resin and the urethane-modified polyester resin.


The “component derived from the polyester resin” means a polyester resin itself when the first resin is the polyester resin and means a portion of the first resin from which a portion derived from an isocyanate group has been removed when the first resin is the urethane-modified polyester resin.


When a DSC curve in temperature decrease of toner particles has two or more peaks, a peak located on a lowest temperature side of the two or more peaks is preferably located at not lower than 30° C. and not higher than 50° C.


Relation in Equations (I) and (II) below is preferably satisfied:





0.83W−0.08≦Wn/Wc≦1.3W+0.31  Equation (I); and





0.15≦W≦0.45  Equation (II),


where W represents a mass ratio of the coloring agent with respect to the toner particles, Wc (g) represents a mass of carbon black contained in the toner particles, and Wn (g) represents a mass of nigrosine contained in the toner particles.


Here, W is defined as “(a total mass (g) of a coloring agent)÷(a mass (g) of toner particles)”. In the following, a content of a coloring agent contained in toner particles is denoted as a “content of the coloring agent,” a mass of carbon black contained in the toner particles is denoted as a “content of carbon black,” and a mass of nigrosine contained in the toner particles is denoted as a “content of nigrosine.”


The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a graph showing a result of measurement of temperature dependency of a storage elastic modulus G and FIG. 1B is a graph showing a result of finding temperature dependency of |Δ log(G′)/ΔT| from FIG. 1A.



FIG. 2 is a graph showing relation between W and Wn/Wc.



FIG. 3 is a schematic conceptual diagram of an image formation apparatus of an electrophotography type.



FIG. 4 is a graph showing results in Examples.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
Liquid Developer

A liquid developer according to the present embodiment is useful as a liquid developer for electrophotography used in an image formation apparatus of an electrophotography type (which will be described later) such as a copying machine, a printer, a digital printer, or a simple printer, a paint, a liquid developer for electrostatic recording, an oil-based ink for ink jet printer, or an ink for electronic paper. The liquid developer according to the present embodiment includes an insulating liquid and toner particles dispersed in the insulating liquid and contains preferably 10 to 50 mass % of toner particles and 50 to 90 mass % of the insulating liquid. The liquid developer according to the present embodiment may contain any component other than the toner particles and the insulating liquid. Preferably, any component other than the toner particles and the insulating liquid is, for example, a thickener or a dispersant.


<Toner Particles>


Toner particles in the present embodiment contain a resin and a coloring agent dispersed in the resin. A content of each of the resin and the coloring agent in the toner particles is preferably determined such that desired image density is obtained when an amount of adhesion of toner particles to such a recording medium as paper is within a prescribed range. The toner particles according to the present embodiment may contain any component other than the resin and the coloring agent. Any component other than the resin and the coloring agent is, preferably, for example, a dispersant for a pigment, a wax, or a charge control agent.


A resin contained in toner particles in the present embodiment contains a first resin containing a component derived from a crystalline polyester resin. “Crystallinity” means that a ratio between a softening start temperature of a resin (hereinafter abbreviated as “Tm”) and a maximum peak temperature (hereinafter abbreviated as “Ta”) of heat of fusion of the resin (Tm/Ta) is not lower than 0.8 and not higher than 1.55 and that a result of change in amount of heat obtained in DSC does not show stepwise change in amount of heat absorption but has a clear heat absorption peak. A ratio between Tm and Ta (Tm/Ta) being higher than 1.55 can mean that such a resin is not excellent in crystallinity and also that such a resin has non-crystallinity.


A flow tester (capillary rheometer) (such as CFT-500D manufactured by Shimadzu Corporation) can be used to measure Tm. Specifically, while 1 g of a sample is heated at a temperature increase rate of 6° C./min., a plunger applies load of 1.96 MPa to the sample to thereby extrude the sample from a nozzle having a diameter of 1 mm and a length of 1 mm. Relation between “an amount of lowering of the plunger (a value of flow)” and a “temperature” is plotted in a graph. A temperature at the time when an amount of lowering of the plunger is ½ of a maximum value of the amount of lowering is read from the graph, and this value (a temperature at which half of the measurement sample was extruded from the nozzle) is adopted as Tm.


A differential scanning calorimeter (for example, a trade name “DSC210” manufactured by Seiko Instruments, Inc.) can be used to measure Ta. Specifically, a sample is molten at 130° C., thereafter a temperature is lowered from 130° C. to 70° C. at a rate of 1.0° C./min., and thereafter a temperature is lowered from 70° C. to 10° C. at a rate of 0.5° C./min. Thereafter, with the DSC method, a temperature of the sample is raised at a temperature increase rate of 20° C./min., change in heat absorption and generation of the sample is measured, and relation between an “amount of heat absorption and generation” and a “temperature” is plotted in a graph. Here, a temperature of a heat absorption peak observed in a range from 20 to 100° C. is defined as Ta′. When there are a plurality of heat absorption peaks, a temperature of a peak largest in amount of heat absorption is defined as Ta′. After the sample was stored for 6 hours at (Ta′−10)° C., it is in turn stored for 6 hours at (Ta′−15)° C.


After pre-treatment of the sample ends, with the DSC method, the sample subjected to the pre-treatment above is cooled to 0° C. at a temperature lowering rate of 10° C./min., and then a temperature is raised at a temperature increase rate of 20° C./min. Based on change in heat absorption and generation thus measured, relation between an “amount of heat absorption and generation” and a “temperature” is plotted in a graph. A temperature at which an amount of heat absorption attains to a maximum value is defined as a maximum peak temperature (Ta) of heat of fusion.


Whether or not a resin has excellent crystallinity can be known also by examining temperature dependency of a storage elastic modulus G′. Temperature dependency of storage elastic modulus G′ can be measured under conditions shown below, with a viscoelasticity measurement apparatus (ARES) manufactured by TA Instruments, Japan.


Jig used for measurement: 8-mm parallel plate


Frequency: 1 Hz


Distortion factor: 5%


Measurement start temperature: 40° C.


Rate of temperature increase: 5° C./min.



FIG. 1A is a graph showing a result of measurement of temperature dependency of storage elastic modulus G′ and FIG. 1B is a graph showing a result of finding temperature dependency of |Δ log(G′)/ΔT| from FIG. 1A. In FIGS. 1A and 1B, L11 represents a result of a crystalline polyester resin and L12 represents a result of a non-crystalline polyester resin.


In connection with the crystalline polyester resin, a peak derived from softening of the crystalline resin was clearly observed in FIG. 1B and a softening start temperature of the toner particles could be found as 56° C. A storage elastic modulus at 80° C. was approximately 2×106 (dyn/cm2). On the other hand, in connection with the non-crystalline polyester resin, in FIG. 1B, a peak derived from softening of the non-crystalline resin could not be observed. A storage elastic modulus at 80° C. was as high as approximately 1×108 (dyn/cm2), and it is considered that melting of toner particles has not yet started at 80° C. It is noted that 1 Pa=10 dyn/cm2.


Thus, the crystalline polyester resin clearly has a peak derived from softening thereof and a peak temperature is relatively low. A storage elastic modulus of the crystalline polyester resin at 80° C. is within a desired range. Therefore, when toner particles contain the first resin, a liquid developer which is capable of preventing occurrence of high-temperature offset (likeliness of adhesion of molten toner to a fixation roller during fixation) and is excellent in low-temperature fixability and free from lowering in fixability can be provided. Such an effect can effectively be obtained when the resin contains the first resin by 80 mass % or more.


Toner particles in the present embodiment contain carbon black and nigrosine as coloring agents. Nigrosine has been used together with carbon black, as a dispersant for carbon black. As a result of dedicated studies conducted by the present inventors, however, it has been found that nigrosine lowers a peak temperature in a DSC curve in temperature decrease of the toner particles in the liquid developer containing the first resin. It has generally been known that a softening start temperature and a recrystallization temperature of a high polymer material such as the first resin are different from each other. Toner particles containing the first resin and carbon black but not containing nigrosine, however, had a peak temperature in the DSC curve in temperature decrease substantially as high as the softening start temperature. Therefore, when a temperature of a recording medium was lowered to room temperature after these toner particles were fixed to the recording medium, substantially no time was given for recrystallization of the first resin and hence an image excellent in degree of gloss could not be obtained. On the other hand, toner particles containing the first resin, carbon black, and nigrosine (the toner particles in the present embodiment) have a peak temperature in the DSC curve in temperature decrease lower than the softening start temperature. Therefore, when a temperature of a recording medium is lowered to room temperature after these toner particles are fixed to the recording medium, time for recrystallization is sufficiently given to the first resin and hence an image excellent in degree of gloss can be obtained.


A peak temperature in the DSC curve in temperature decrease of the toner particles is preferably not lower than 30° C. and not higher than 50° C. Thus, a peak temperature in the DSC curve in temperature decrease of the toner particles is sufficiently lower than the softening start temperature of the toner particles. Therefore, the effect above can be obtained. A peak temperature in the DSC curve in temperature decrease of the toner particles can be found in accordance with a method shown below.


Initially, toner particles are separated from a liquid developer. Specifically, the liquid developer is centrifuged to remove a supernatant. After a remaining solid content is washed with an organic solvent (such as hexane), the solid content is dried at room temperature with the use of a vacuum dryer. A series of such procedures may be performed two or more times. Then, DSC measurement is conducted under conditions shown below, with the use of the toner particles separated from the liquid developer. A result of DSC measurement is shown with a curve (a DSC curve) in which the ordinate represents a heat flow and the abscissa represents a temperature or time. Exothermic reaction appears as a positive peak in the DSC curve and endothermic reaction appears as a negative peak in the DSC curve.


Differential scanning calorimeter: Trade name “DSC6200” manufactured by Hitachi High-Technologies Corporation


Mass of sample (toner particles): 10 mg


Reference sample: α alumina


Mass of reference sample: 10 mg


Rate of temperature decrease: 10° C./min.


Range of measurement temperature: −10 to 200° C.


A higher content of nigrosine leads to a lower peak temperature in the DSC curve in temperature decrease of the toner particles. Therefore, an image excellent in degree of gloss is obtained. When a peak temperature in the DSC curve in temperature decrease of the toner particles is excessively low, the toner particles are in a molten state even at room temperature. A content of a coloring agent has a preferred range, and a content of nigrosine is preferably optimized in accordance with a content of carbon black. Based on such an aspect, a content of carbon black and a content of nigrosine were optimized. Then, it has been found that relation in Equations (I) and (II) below is preferably satisfied:





0.83W−0.08≦Wn/Wc≦1.3W+0.31  Equation (I); and





0.15≦W≦0.45  Equation (II),


where W represents a mass ratio of a coloring agent with respect to the toner particles, Wc (g) represents a content of carbon black, and Wn (g) represents a content of nigrosine.



FIG. 2 is a graph showing relation among a mass ratio W of a coloring agent with respect to toner particles, a content Wc of carbon black, and a content Wn of nigrosine. The abscissa in FIG. 2 represents W and the ordinate in FIG. 2 represents Wn/Wc. In FIG. 2, L21 represents W=0.15, L22 represents W=0.45, L23 represents Wn/Wc=0.83W−0.08, and L24 represents Wn/Wc=1.3W+0.31, which is also applicable to FIG. 4 which will be described later.


When relation of 0.15≦W is satisfied, an image having high image density can be obtained. When relation of W≦0.45 is satisfied, the toner particles contain an optimal amount of first resin and hence high fixation strength can be maintained. From the foregoing, relation of 0.15≦W≦0.45 is preferably satisfied. When W is smaller than 0.15 (W<0.15), however, a content of a coloring agent is low and image density may lower. This is noticeable when an amount of adhesion of toner to a recording medium is not greater than approximately 2.0 g/m2. When W is greater than 0.45 (0.45<W), a content of a coloring agent is high, which leads to lowering in content of the first resin in the toner particles and resultant lowering in fixation strength.


When relation of 0.83W−0.08≦Wn/Wc≦1.3W+0.31 is satisfied, a content Wn of nigrosine is lowered when a mass ratio W of a coloring agent with respect to the toner particles is low, and a content Wn of nigrosine becomes higher when a mass ratio W of a coloring agent with respect to the toner particles is high (see FIG. 2). Specifically, when a mass ratio W of a coloring agent with respect to the toner particles is low, a content of carbon black is low. Therefore, even when a content of nigrosine is low, a peak temperature in the DSC curve in temperature decrease of the toner particles can sufficiently be low. Therefore, since an image excellent in degree of gloss can be obtained, an image having excellent image density can be obtained. When a mass ratio W of a coloring agent with respect to the toner particles is high, a content of carbon black is high. Therefore, unless a content of nigrosine is increased, a peak temperature in the DSC curve in temperature decrease of the toner particles cannot sufficiently be lowered. Even when a content of nigrosine is high, an excessively low peak temperature in the DSC curve in temperature decrease of the toner particles can be prevented, and hence occurrence of document offset (a phenomenon that when a printed matter obtained by fixing toner particles to a recording medium is stored in a high-temperature condition or a pressurized condition, toner particles tend to be softened and color transfer is likely) can be prevented. Thus, when relation of 0.83W−0.08≦Wn/Wc is satisfied, a peak temperature in the DSC curve in temperature decrease of the toner particles can sufficiently be lower than the softening start temperature of the toner particles, and hence an image excellent in glossiness can be obtained. Therefore, an image having high image density can be obtained. When relation of Wn/Wc≦1.3W+0.31 is satisfied, an excessively low peak temperature in the DSC curve in temperature decrease of the toner particles can be prevented and hence occurrence of document offset can be prevented.


On the other hand, when Wn/Wc is smaller than 0.83W−0.08 (Wn/Wc<0.83W−0.08), a content of nigrosine with respect to a content of carbon black is excessively low, and hence a peak temperature in the DSC curve in temperature decrease of the toner particles cannot sufficiently be lowered in some cases. Therefore, an image excellent in glossiness may not be obtained, which may lead to lowering in image density. When Wn/Wc is greater than 1.3W+0.31 (1.3W+0.31<Wn/Wc), a content of nigrosine with respect to a content of carbon black is excessively high and hence a peak temperature in the DSC curve in temperature decrease of the toner particles may be excessively low. Therefore, document offset may occur. When Wn/Wc is greater than 1.3W+0.31 (1.3W+0.31<Wn/Wc), an amount of addition of nigrosine is large and hence a color of a formed image may be reddish. Therefore, when the liquid developer according to the present embodiment is used as a black liquid developer, a hue of the toner particles may be different from a desired hue (deviation of hue).


Though W, Wn, and Wc can be calculated from an amount of preparation, they can be determined, for example, with thermogravimetric/differential thermal analysis (TG-DTA), infrared (IR) spectroscopy, Raman spectroscopy, or inductively coupled plasma (ICP) atomic emission spectroscopy. A constituent element of the toner particles in the present embodiment will specifically be shown below.


<Resin>


The resin in the present embodiment contains the first resin containing a component derived from a crystalline polyester resin, preferably contains the first resin by 80 mass % or more, and more preferably contains the first resin by 80 mass % or more and a second resin by 20 mass % or less. The second resin is a resin different from the first resin and may be composed of one type of resin or two or more types of resins as being mixed. A content of the first resin or the second resin in the resin can be found, for example, based on an infrared absorption spectrum, also on a spectrum obtained from nuclear magnetic resonance, or also on a gas chromatograph mass spectrometer (GCMS).


<First Resin>


The first resin may be a polycondensed product (a polyester resin) obtained by polymerizing polyol (an alcohol component) with polycarboxylic acid (an acid component), acid anhydride of polycarboxylic acid (an acid component), or ester of lower alkyl of polycarboxylic acid (an acid component), or a urethane-modified polyester resin obtained by increasing a chain length of the polyester resin obtained through this polymerization with di(tri)isocyanate, or a mixture of the polycondensed product and the urethane-modified polyester resin. A known polycondensation catalyst can be used for polymerization reaction. A ratio between polyol and polycarboxylic acid is not particularly limited. A ratio between polyol and polycarboxylic acid should only be set such that an equivalent ratio between a hydroxyl group [OH] and a carboxyl group [COOH] ([OH]/[COOH]) is set preferably to 2/1 to 1/5, more preferably to 1.5/1 to 1/4, and further preferably to 1.3/1 to 1/3.


Since the first resin is manufactured through the polymerization reaction above, a component derived from a crystalline polyester resin contained in the first resin contains a constitutional unit derived from an acid component and a constitutional unit derived from an alcohol component. A ratio of a constitutional unit derived from an aliphatic monomer occupied in the constitutional unit derived form the acid component and the constitutional unit derived from the alcohol component is preferably not lower than 90 mass %, more preferably not lower than 95 mass %, and further preferably 100 mass %. Since the component derived from the polyester resin is thus linear, the first resin has excellent crystallinity. The ratio of the constitutional unit derived from the aliphatic monomer occupied in the constitutional unit derived from the acid component and the constitutional unit derived from the alcohol component may be found based on a spectrum obtained from nuclear magnetic resonance or with a GCMS.


In the present embodiment, polyol preferably has a straight chain alkyl skeleton having a carbon number not smaller than 4 and more preferably it is aliphatic diol. Polycarboxylic acid preferably has a straight chain alkyl skeleton having a carbon number not smaller than 4 and more preferably it is aliphatic dicarboxylic acid. This is also the case with “polycarboxylic acid” in each of acid anhydride of polycarboxylic acid and lower alkyl of polycarboxylic acid. Thus, the first resin will express crystallinity. So long as the first resin expresses crystallinity, the first resin may contain aromatic polyol or aromatic polycarboxylic acid. For example, a ratio of a constitutional unit derived from an aromatic monomer occupied in the constitutional unit derived from the acid component and the constitutional unit derived from the alcohol component may be not higher than 10 mass %.


Aliphatic diol is one type of an aliphatic monomer, it is preferably alkane diol having a carbon number from 4 to 10, and it is more preferably, for example, ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, or 1,10-decanediol.


Aliphatic dicarboxylic acid is one type of an aliphatic monomer, and it is preferably, for example, alkane dicarboxylic acid having a carbon number from 4 to 20, alkene dicarboxylic acid having a carbon number from 4 to 36, or an ester-forming derivative thereof. Aliphatic dicarboxylic acid is more preferably succinic acid, adipic acid, sebacic acid, maleic acid, fumaric acid, or an ester-forming derivative thereof.


When a chain length of a component derived from a polyester resin is increased by a compound containing an isocyanate group, the compound containing an isocyanate group is preferably a compound having a plurality of isocyanate groups in a molecule, and it is more preferably chain aliphatic polyisocyanate or cyclic aliphatic polyisocyanate.


Chain aliphatic polyisocyanate is preferably, for example, ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as “HDI”), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4-trimethyl hexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethyl caproate, bis(2-isocyanatoethyl)fumarate, bis(2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, or the like. Two or more of these may be used together.


Cyclic aliphatic polyisocyanate is preferably, for example, isophoron diisocyanate (hereinafter abbreviated as “IPDI”), dicyclohexylmethane-4,4′-diisocyanate (hereinafter also denoted as “hydrogenated MDI”), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hereinafter also denoted as “hydrogenated TDI”), bis(2-isocyanatoethyl)-4-cyclohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, or 2,6-norbornane diisocyanate. Two or more of these may be used together.


When the first resin is the urethane-modified polyester resin, a concentration of a urethane group in the first resin is preferably not lower than 0.8% and not higher than 5% and more preferably not lower than 1% and not higher than 3%. A concentration of a urethane group in the first resin can be found as a value defined as (a mass of a urethane group contained in a urethane-modified polyester resin)/(a mass of the urethane-modified polyester resin)×100 and can be measured with a GCMS. Specifically, under conditions shown below (conditions for thermal decomposition of a urethane-modified polyester resin), a urethane-modified polyester resin is thermally decomposed. Then, a concentration of a urethane group is measured with a GCMS under conditions shown below (conditions for measurement of a concentration of a urethane group in the urethane-modified polyester resin). Then, a concentration of a urethane group in the first resin is calculated by using a ratio of ion intensity detected from the thermally decomposed urethane-modified polyester resin.


(Conditions for Thermal Decomposition of Urethane-Modified Polyester Resin)


Apparatus: PY-20201D manufactured by Frontier Laboratories Ltd.


Mass of Sample: 0.1 mg


Heating Temperature: 550° C.


Heating Time Period: 0.5 minute


(Conditions for Measurement of Concentration of Urethane Group in Urethane-Modified Polyester Resin)


Apparatus: GCMS-QP2010 manufactured by Shimadzu Corporation


Column: UltraALLOY-5 manufactured by Frontier Laboratories Ltd. (inner diameter: 0.25 mm, length: 30 m, thickness: 0.25 μm)


Temperature Increase Condition: Temperature Increase Range: 100° C. to 320° C. (held at 320° C.), Rate of Temperature Increase: 20° C./min.


A number average molecular weight (hereinafter denoted as “Mn”) of the first resin is preferably not smaller than 10000 and not greater than 50000. When relation of 10000≦Mn is satisfied, excessive softening of the first resin during fixation can be prevented, and hence occurrence of high-temperature offset can be prevented. When relation of Mn≦50000 is satisfied, less likeliness of softening of the first resin during fixation can be prevented, and hence fixability can be ensured. Preferably, relation of 10000≦Mn≦30000 is satisfied. Thus, fixability can be improved.


Mn of the first resin can be measured with gel permeation chromatography (GPC) under conditions below, with respect to solubles in tetrahydrofuran (THF). Mn and Mw of a resin other than the polyurethane resin can also be measured under conditions shown below.


Measurement apparatus: Trade name “HLC-8120” manufactured by Tosoh Corporation


Column: Trade name “TSKgel GMHXL” (two) manufactured by Tosoh Corporation and trade name “TSKgel Multipore HXL-M” (one) manufactured by Tosoh Corporation


Sample solution: 0.25 mass % of THF solution


Amount of injection of sample solution into column: 100


Flow rate: 1 ml/min.


Measurement temperature: 40° C.


Detection apparatus: Refraction index detector


Reference material: 12 standard polystyrenes manufactured by Tosoh Corporation (TSK standard POLYSTYRENE) (molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000, 1090000, 2890000)


A number average molecular weight of a polyurethane resin can be measured with the use of GPC under conditions below.


Measurement apparatus: Trade name “HLC-8220GPC” manufactured by Tosoh Corporation


Column: Trade name “Guardcolumn α” (one) and trade name “TSKgel α-M”(one)


Sample solution: 0.125 mass % of dimethylformamide solution


Amount of injection of dimethylformamide solution into column: 100


Flow rate: 1 ml/min.


Measurement temperature: 40° C.


Detection apparatus: Refraction index detector


Reference material: 12 standard polystyrenes manufactured by Tosoh Corporation (TSK standard POLYSTYRENE) (molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000, 1090000, 2890000)


<Second Resin>


The second resin is preferably, for example, a vinyl resin, a polyester resin, a polyurethane resin, an epoxy resin, a polyamide resin, a polyimide resin, a silicon resin, a phenol resin, a melamine resin, a urea resin, an aniline resin, an ionomer resin, or a polycarbonate resin. The second resin is more preferably a vinyl resin, a polyester resin, a polyurethane resin, or an epoxy resin, and further preferably a vinyl resin. Thus, a median diameter D50 (which will be described later) of toner particles and circularity (which will be described later) of toner particles are readily controlled. The second resin preferably also has crystallinity.


The vinyl resin may be a homopolymer obtained by homopolymerizing a monomer having polymeric double bond or a copolymer obtained by copolymerizing two or more types of monomers having polymeric double bond. A monomer having polymeric double bond is, for example, (1) to (9) below.


(1) Hydrocarbon Having Polymeric Double Bond


Hydrocarbon having polymeric double bond is preferably, for example, aliphatic hydrocarbon having polymeric double bond shown in (1-1) below, aromatic hydrocarbon having polymeric double bond shown in (1-2) below, or the like.


(1-1) Aliphatic Hydrocarbon Having Polymeric Double Bond


Aliphatic hydrocarbon having polymeric double bond is preferably, for example, chain hydrocarbon having polymeric double bond shown in (1-1-1) below, cyclic hydrocarbon having polymeric double bond shown in (1-1-2) below, or the like.


(1-1-1) Chain Hydrocarbon Having Polymeric Double Bond


Chain hydrocarbon having polymeric double bond is preferably, for example, alkene having a carbon number from 2 to 30 (such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, or octadecene); alkadiene having a carbon number from 4 to 30 (such as butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, or 1,7-octadiene); or the like.


(1-1-2) Cyclic Hydrocarbon Having Polymeric Double Bond


Cyclic hydrocarbon having polymeric double bond is preferably, for example, mono- or di-cycloalkene having a carbon number from 6 to 30 (such as cyclohexene, vinyl cyclohexane, or ethylidene bicycloheptane); mono- or di-cycloalkadiene having a carbon number from 5 to 30 (such as cyclopentadiene or dicyclopentadiene); or the like.


(1-2) Aromatic Hydrocarbon Having Polymeric Double Bond


Aromatic hydrocarbon having polymeric double bond is preferably, for example, styrene; hydrocarbyl (such as alkyl, cycloalkyl, aralkyl, and/or alkenyl having a carbon number from 1 to 30) substitute of styrene (such as α-methylstyrene, vinyl toluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotylbenzene, divinyl benzene, divinyl toluene, divinyl xylene, or trivinyl benzene); vinyl naphthalene; or the like.


(2) Monomer Having Carboxyl Group and Polymeric Double Bond and Salt Thereof


A monomer having a carboxyl group and polymeric double bond is preferably, for example, unsaturated monocarboxylic acid having a carbon number from 3 to 15 [such as (meth)acrylic acid, crotonic acid, isocrotonic acid, or cinnamic acid]; unsaturated dicarboxylic acid (unsaturated dicarboxylic anhydride) having a carbon number from 3 to 30 [such as maleic acid (maleic anhydride), fumaric acid, itaconic acid, citraconic acid (citraconic anhydride), or mesaconic acid]; monoalkyl (having a carbon number from 1 to 10) ester of unsaturated dicarboxylic acid having a carbon number from 3 to 10 (such as maleic acid monomethyl ester, maleic acid monodecyl ester, fumaric acid monoethyl ester, itaconic acid monobutyl ester, or citraconic acid monodecyl ester); or the like. “(Meth)acrylic” herein means acrylic and/or methacrylic.


The salt of the monomer above is preferably, for example, alkali metal salt (such as sodium salt or potassium salt), alkaline earth metal salt (such as calcium salt or magnesium salt), ammonium salt, amine salt, or quaternary ammonium salt, or the like.


Amine salt is not particularly limited so long as it is an amine compound. Amine salt is preferably, for example, primary amine salt (such as ethylamine salt, butylamine salt, or octylamine salt); secondary amine salt (such as diethylamine salt or dibutylamine salt); tertiary amine salt (such as triethylamine salt or tributylamine salt); or the like.


Quaternary ammonium salt is preferably, for example, tetraethyl ammonium salt, triethyl lauryl ammonium salt, tetrabutyl ammonium salt, or tributyl lauryl ammonium salt, or the like.


Salt of the monomer having a carboxyl group and polymeric double bond is preferably, for example, sodium acrylate, sodium methacrylate, monosodium maleate, disodium maleate, potassium acrylate, potassium methacrylate, monopotassium maleate, lithium acrylate, cesium acrylate, ammonium acrylate, calcium acrylate, or aluminum acrylate, or the like.


(3) Monomer Having Sulfo Group and Polymeric Double Bond and Salt Thereof


A monomer having a sulfo group and polymeric double bond is preferably, for example, vinyl sulfonic acid, α-methylstyrene sulfonic acid, sulfopropyl(meth)acrylate, or 2-(meth)acryloylamino-2,2-dimethylethane sulfonic acid. Salt of a monomer having a sulfo group and polymeric double bond is preferably, for example, salts listed as the “salt of the monomer above” in “(2) Monomer Having Carboxyl Group and Polymeric Double Bond” above.


(4) Monomer Having Phosphono Group and Polymeric Double Bond and Salt Thereof


A monomer having a phosphono group and polymeric double bond is preferably, for example, 2-hydroxyethyl(meth)acryloyl phosphate or 2-acryloyloxy ethyl phosphonic acid. Salt of the monomer having a phosphono group and polymeric double bond is preferably, for example, salts listed as the “salt of the monomer above” in “(2) Monomer Having Carboxyl Group and Polymeric Double Bond” above.


(5) Monomer Having Hydroxyl Group and Polymeric Double Bond


A monomer having a hydroxyl group and polymeric double bond is preferably, for example, hydroxystyrene, N-methylol(meth)acrylamide, or hydroxyethyl(meth)acrylate.


(6) Nitrogen-Containing Monomer Having Polymeric Double Bond


A nitrogen-containing monomer having polymeric double bond is preferably, for example, a monomer shown in (6-1) to (6-4) below.


(6-1) Monomer Having Amino Group and Polymeric Double Bond


A monomer having an amino group and polymeric double bond is preferably, for example, aminoethyl(meth)acrylate, dimethylaminoethyl(meth)acrylate, diethylaminoethyl(meth)acrylate, t-butylaminoethyl(meth)acrylate, N-aminoethyl(meth)acrylamide, (meth)allyl amine, morpholinoethyl(meth)acrylate, 4-vinylpyridine, 2-vinylpyridine, crotyl amine, N,N-dimethylamino styrene, methyl-α-acetamino acrylate, vinylimidazole, N-vinylpyrrole, N-vinyl thiopyrrolidone, N-aryl phenylenediamine, aminocarbazole, aminothiazole, aminoindole, aminopyrrole, aminoimidazole, aminomercaptothiazole, or the like. The monomer having an amino group and polymeric double bond may be the salts of the monomer listed above. The salts of the monomer listed above are exemplified, for example, by salts listed as the “salt of the monomer above” in “(2) Monomer Having Carboxyl Group and Polymeric Double Bond and Salt Thereof” above.


(6-2) Monomer Having Amide Group and Polymeric Double Bond


A monomer having an amide group and polymeric double bond is preferably, for example, (meth)acrylamide, N-methyl(meth)acrylamide, N-butyl(meth)acrylamide, diacetone acrylamide, N-methylol (meth)acrylamide, N,N′-methylene-bis(meth)acrylamide, cinnamic acid amide, N,N-dimethyl(meth)acrylamide, N,N-dibenzyl(meth)acrylamide, (meth)acrylformamide, N-methyl-N-vinylacetamide, or N-vinylpyrrolidone, or the like.


(6-3) Monomer Having Carbon Number from 3 to 10 and Having Nitrile Group and Polymeric Double Bond


A monomer having a carbon number from 3 to 10 and having a nitrile group and polymeric double bond is preferably, for example, (meth)acrylonitrile, cyanostyrene, or cyanoacrylate, or the like.


(6-4) Monomer Having Carbon Number from 8 to 12 and Having Nitro Group and Polymeric Double Bond


A monomer having a carbon number from 8 to 12 and having a nitro group and polymeric double bond is preferably, for example, nitrostyrene or the like.


(7) Monomer Having Carbon Number From 6 to 18 and Having Epoxy Group and Polymeric Double Bond


A monomer having a carbon number from 6 to 18 and having an epoxy group and polymeric double bond is preferably, for example, glycidyl(meth)acrylate or the like.


(8) Monomer Having Carbon Number From 2 to 16 and Having Halogen Element and Polymeric Double Bond


A monomer having a carbon number from 2 to 16 and having a halogen element and polymeric double bond is preferably, for example, vinyl chloride, vinyl bromide, vinylidene chloride, allyl chloride, chlorostyrene, bromostyrene, dichlorostyrene, chloromethylstyrene, tetrafluorostyrene, or chloroprene, or the like.


(9) Ester Having Carbon Number from 4 to 16 and Having Polymeric Double Bond


An ester having a carbon number from 4 to 16 and having polymeric double bond is preferably, for example, vinyl acetate; vinyl propionate; vinyl butyrate; diallyl phthalate; diallyl adipate; isopropenyl acetate; vinyl methacrylate; methyl-4-vinyl benzoate; cyclohexyl methacrylate; benzyl methacrylate; phenyl(meth)acrylate; vinyl methoxy acetate; vinyl benzoate; ethyl-α-ethoxy acrylate; alkyl(meth)acrylate having an alkyl group having a carbon number from 1 to 11 [such as methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, or 2-ethylhexyl(meth)acrylate]; dialkyl fumarate (two alkyl groups being straight-chain alkyl groups, branched alkyl groups, or alicyclic alkyl groups, having a carbon number from 2 to 8); dialkyl maleate (two alkyl groups being straight-chain alkyl groups, branched alkyl groups, or alicyclic alkyl groups, having a carbon number from 2 to 8); poly(meth)allyloxy alkanes (such as diallyloxyethane, triallyloxyethane, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, or tetramethallyloxyethane); a monomer having a polyalkylene glycol chain and polymeric double bond [such as polyethylene glycol (Mn=300) mono(meth)acrylate, polypropylene glycol (Mn=500) mono(meth)acrylate, a 10-mole adduct (meth)acrylate of ethylene oxide (hereinafter “ethylene oxide” being abbreviated as “EO”) to methyl alcohol, or a 30-mole adduct (meth)acrylate of EO to lauryl alcohol]; poly(meth)acrylates {such as poly(meth)acrylate of polyhydric alcohols [such as ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, trimethylol propane tri(meth)acrylate, or polyethylene glycol di(meth)acrylate]}; or the like. “(Meth)allylo” herein means allylo and/or methallylo.


A vinyl resin is preferably, for example, a styrene-(meth)acrylic acid ester copolymer, a styrene-butadiene copolymer, a (meth)acrylic acid-(meth)acrylic acid ester copolymer, a styrene-acrylonitrile copolymer, a styrene-maleic acid (maleic anhydride) copolymer, a styrene-(meth)acrylic acid copolymer, a styrene-(meth)acrylic acid-divinylbenzene copolymer, a styrene-styrene sulfonic acid-(meth)acrylic acid ester copolymer, or the like.


The vinyl resin may be a homopolymer or a copolymer of a monomer having polymeric double bond in (1) to (9) above, or it may be a polymerized product of a monomer having polymeric double bond in (1) to (9) above and a monomer (m) having a molecular chain (k) and having polymeric double bond. The molecular chain (k) is preferably, for example, a straight-chain hydrocarbon chain having a carbon number from 12 to 27, a branched hydrocarbon chain having a carbon number from 12 to 27, a fluoro-alkyl chain having a carbon number from 4 to 20, a polydimethylsiloxane chain, or the like. A difference in SP value between the molecular chain (k) in the monomer (m) and the insulating liquid is preferably 2 or smaller. The “SP value” herein is a numeric value calculated with a Fedors' method [Polym. Eng. Sci. 14(2) 152, (1974)].


Though the monomer (m) having the molecular chain (k) and polymeric double bond is preferably, for example, monomers (m1) to (m3) below. Two or more of the monomers (m1) to (m3) may be used together as the monomer (m).


The monomer (m1) having straight-chain hydrocarbon chain having a carbon number from 12 to 27 (preferably from 16 to 25) and polymeric double bond is preferably, for example, mono-straight-chain alkyl (a carbon number of alkyl being from 12 to 27) ester of unsaturated monocarboxylic acid, mono-straight-chain alkyl (a carbon number of alkyl being from 12 to 27) ester of unsaturated dicarboxylic acid, or the like. Unsaturated monocarboxylic acid and unsaturated dicarboxylic acid above are, for example, a carboxyl group containing vinyl monomer having a carbon number from 3 to 24 such as (meth)acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, or citraconic acid. A specific example of the monomer (m1) is, for example, dodecyl(meth)acrylate, stearyl(meth)acrylate, behenyl(meth)acrylate, hexadecyl(meth)acrylate, heptadecyl(meth)acrylate, eicosyl(meth)acrylate, or the like.


The monomer (m2) having branched hydrocarbon chain having a carbon number from 12 to 27 (preferably from 16 to 25) and polymeric double bond is preferably, for example, branched alkyl (a carbon number of alkyl being from 12 to 27) ester of unsaturated monocarboxylic acid, mono-branched alkyl (a carbon number of alkyl being from 12 to 27) ester of unsaturated dicarboxylic acid, or the like. Unsaturated monocarboxylic acid and unsaturated dicarboxylic acid are exemplified, for example, by those the same as listed as specific examples of unsaturated monocarboxylic acid and unsaturated dicarboxylic acid with regard to the monomer (m1). A specific example of the monomer (m2) is exemplified by 2-decyltetradecyl(meth)acrylate or the like.


The monomer (m3) preferably has a fluoro-alkyl chain having carbon number from 4 to 20 and polymeric double bond.


The second resin has a melting point preferably from 0 to 220° C., more preferably from 30 to 200° C., and further preferably from 40 to 80° C. From a point of view of particle size distribution and a shape of toner particles, as well as powder fluidity, heat-resistant storage stability, and resistance to stress of the liquid developer, the second resin has a melting point preferably not lower than a temperature during manufacturing of the liquid developer. If a melting point of the second resin is lower than a temperature during manufacturing of the liquid developer, it may be difficult to prevent toner particles from uniting with each other and it may be difficult to prevent the toner particles from breaking. In addition, it may be difficult to achieve a narrow width of distribution in particle size distribution of the toner particles. In other words, variation in particle size of toner particles may be great. The “melting point” can be measured with a differential scanning calorimeter (trade name “DSC20” or trade name “SSC/580” manufactured by Seiko Instruments, Inc.) in compliance with a method defined under ASTM D3418-82.


Mn of the second resin (obtained through measurement with GPC) is preferably from 100 to 5000000, more preferably from 200 to 5000000, and further preferably from 500 to 500000. The second resin has an SP value preferably from 7 to 18 (cal/cm3)1/2 and more preferably from 8 to 14 (cal/cm3)1/2.


<Coloring Agent>


A coloring agent has a particle size preferably not larger than 0.5 μm and more preferably not larger than 0.2 μm. When a particle size of the coloring agent exceeds 0.5 μm, a color value of an image may deviate and a desired color may not be obtained. In addition, dispersibility of the coloring agent becomes poor and hence desired image density may not be obtained. A lower limit value for a particle size of the coloring agent is not particularly limited.


The coloring agent in the present embodiment contains carbon black and nigrosine as described above, and may further contain a pigment different from carbon black and nigrosine (for example, a coloring agent for magenta, a coloring agent for orange, or a coloring agent for green).


<Carbon Black>


Since a content of carbon black is preferably determined in accordance with a content of a coloring agent, carbon black is preferably contained in the coloring agent by 30 to 90 mass %, although it depends. Thus, a degree of gloss can be controlled and an image excellent in image density can be obtained. Since the toner particles in the present embodiment contain not only carbon black but also nigrosine, a content of carbon black can be increased. Namely, it is expected that nigrosine in the present embodiment functions not only as an agent for lowering a peak temperature in the DSC curve in temperature decrease of the toner particles but also as a dispersant for carbon black. When a content of carbon black is lower than 30 mass %, image density may lower. When a content of carbon black exceeds 90 mass %, control of a degree of gloss may become difficult.


Carbon black is preferably, for example, thermal black, acetylene black, channel black, furnace black, orchid black, or aniline black. Carbon black in the present embodiment also includes carbon black subjected to surface treatment for altering a characteristic of a surface. This treatment method is preferably any of known various methods, and more preferably a wet surface treatment method of immersing carbon black in an acid solution such as an acetic acid solution or a sulfonic acid solution or a dry surface treatment method without using a liquid. The dry surface treatment method is exemplified by a method of bringing carbon black in contact with nitric acid or a gas mixture of nitrogen oxide and air, a method of bringing carbon black in contact with an oxidizer such as ozone, or an air oxidation method. Carbon black of which pH has been adjusted is also included in commercially available carbon black.


Preferred examples of carbon black may include, for example, #2400, #2400B, #2650, OIL7B, MA77, MA100, MA100S, or PCF#10 manufactured by Mitsubishi Chemical Corporation, Black Pearls L, MOGUL-L, MONARCH 1100, MONARCH 1300, MONARCH 1400, REGAL 330R, or REGAL 400R manufactured by Cabot Corporation, or Printex U/V, Special Black 4, or Printex 140V manufactured by Evonik Degussa.


<Nigrosine>


Nigrosine is contained in a coloring agent preferably by 10 to 50 mass %. Thus, toner particles having a peak temperature in the DSC curve in temperature decrease not lower than 30° C. and not higher than 50° C. can be provided. Since an image excellent in glossiness can thus be obtained, an image excellent in image density is obtained. When a content of nigrosine is lower than 10 mass %, a peak temperature in the DSC curve of temperature decrease of the toner particles cannot be lowered in some cases and hence glossiness may lower. When a content of nigrosine exceeds 50 mass %, a peak temperature in the DSC curve in temperature decrease of the toner particle may excessively be low and hence document offset may occur.


Nigrosine is a mixture of various types of azine based compounds which can be obtained by subjecting aniline, aniline hydrochloride, and nitrobenzene to oxidation-reduction condensation in the presence of such a catalyst as iron chloride. A main component of nigrosine is an azine based compound which is a purple-black dye having a skeleton formed by phenazine, phenazine azine, triphenazine oxazine, or the like. Nigrosine is exemplified, for example, by C. I. Solvent Black 7 or C. I. Solvent Black 5.


C. I. Solvent Black 7 is, for example, a commercially available product under such a trade name as Spirit Black SB, Spirit Black SSBB, Spirit Black AB, Spirit Black ABL, NUBIAN BLACK NH-805, or NUBIAN BLACK NH-815 (each manufactured by Orient Chemical Industries Co., Ltd.).


As C. I. Solvent Black 5, for example, a commercially available product under such a trade name as Nigrosine Base SA, Nigrosine Base SAP, Nigrosine Base SAPL, Nigrosine Base EE, Nigrosine Base EEL, Nigrosine Base EX, Nigrosine Base EX-BP, Special Black EB, NUBIAN BLACK TN-870, NUBIAN BLACK TN-877, NUBIAN BLACK TH-807, NUBIAN BLACK TH-827, or NUBIAN GREY IR-B (each manufactured by Orient Chemical Industries Co., Ltd.) can be employed.


Other than C. I. Solvent Black 5 and C. I. Solvent Black 7 above, a commercially available product under such a trade name as BONTRON N-01, BONTRON N-04, BONTRON N-07, BONTRON N-09, BONTRON N-21, BONTRON N-71, BONTRON N-75, or BONTRON N-79 (each manufactured by Orient Chemical Industries Co., Ltd.) can be employed.


<Dispersant for Pigment>


A dispersant for pigment is exemplified as one example of an additive to toner particles. A dispersant for pigment has a function to uniformly disperse a coloring agent (a pigment) in toner particles and it is preferably a basic dispersant. The basic dispersant refers to a dispersant defined below. Namely, 0.5 g of a dispersant for pigment and 20 ml of distilled water are introduced in a screw bottle made of glass, the screw bottle is shaken for 30 minutes with the use of a paint shaker, and the resultant product is filtered. pH of a filtrate obtained through filtration is measured with a pH meter (trade name “D-51” manufactured by Horiba, Ltd.), and a filtrate of which pH is higher than 7 is defined as a basic dispersant. It is noted that a filtrate of which pH is lower than 7 is referred to as an acid dispersant.


A type of such a basic dispersant is not particularly limited. For example, a basic dispersant is preferably a compound (dispersant) having a functional group such as an amine group, an amino group, an amide group, a pyrrolidone group, an imine group, an imino group, a urethane group, a quaternary ammonium group, an ammonium group, a pyridino group, a pyridium group, an imidazolino group, or an imidazolium group in a molecule. It is noted that what is called a surfactant having a hydrophilic portion and a hydrophobic portion in a molecule normally falls under the dispersant, however, various compounds can be employed, so long as they have a function to disperse a coloring agent (a pigment) as described above.


A commercially available product of such a basic dispersant may be, for example, “Ajisper PB-821” (trade name), “Ajisper PB-822” (trade name), or “Ajisper PB-881” (trade name), manufactured by Ajinomoto Fine-Techno Co., Inc., or “Solsperse 28000” (trade name), “Solsperse 32000” (trade name), “Solsperse 32500” (trade name), “Solsperse 35100” (trade name), or “Solsperse 37500” (trade name), manufactured by Japan Lubrizol Limited. Since a dispersant for pigment is more preferably not dissolved in an insulating liquid, for example, “Ajisper PB-821” (trade name), “Ajisper PB-822” (trade name), or “Ajisper PB-881” (trade name), manufactured by Ajinomoto Fine-Techno Co., Inc. is more preferred. By using such a dispersant for pigment, it becomes easier to obtain toner particles having a desired shape, although a reason is not known.


Preferably 1 to 100 mass % and more preferably 1 to 40 mass % of such a dispersant for pigment is added to the coloring agent (pigment). When an amount of addition of the dispersant for pigment is lower than 1 mass %, dispersibility of the coloring agent (pigment) may be insufficient, and hence necessary ID (image density) cannot be achieved in some cases and fixation strength of toner particles may be lowered. When an amount of addition of the dispersant for pigment exceeds 100 mass %, the dispersant for pigment in an amount more than necessary for dispersing the pigment is added. Therefore, the excessive dispersant for pigment may be dissolved in the insulating liquid, which may adversely affect chargeability or fixation strength of toner particles. One type alone of such a dispersant for pigment may be used or two or more types may be mixed for use.


<Shape of Toner Particles>


A median diameter D50 found through measurement of particle size distribution of toner particles based on volume (hereinafter denoted as “median diameter D50 of toner particles”) is preferably not smaller than 0.5 μm and not greater than 5.0 μm. This particle size is smaller than a particle size of toner particles contained in a dry developer which has conventionally been used and represents one of the features of the present invention. If median diameter D50 of toner particles is smaller than 0.5 μm, toner particles have too small a particle size and hence mobility of toner particles in electric field may become poor, which may hence lead to lowering in development performance. If median diameter D50 of toner particles exceeds 5.0 μm, uniformity in particle size of toner particles may be lowered, which may hence lead to lowering in image quality. More preferably, toner particles have median diameter D50 not smaller than 0.5 μm and not greater than 2.0 μm.


Median diameter D50 of toner particles can be measured, for example, with a flow particle image analyzer (FPIA-3000S manufactured by Sysmex Corporation). This analyzer can use a solvent as it is as a dispersion medium. Therefore, this analyzer can measure a state of toner particles in a state closer to an actually dispersed state, as compared with a system in which measurement is conducted in a water system.


<Core/Shell Structure>


Toner particles in the present embodiment preferably have a core/shell structure. The “core/shell structure” is such a structure as having the first resin as a core and the second resin as a shell. The core/shell structure includes not only such a structure that the second resin covers at least a part of surfaces of first particles (the first particles containing the first resin) but also such a structure that the second resin adheres to at least a part of surfaces of the first particles. Thus, median diameter D50 of toner particles and circularity of toner particles are readily controlled. In the core/shell structure, a mass ratio between a shell resin (the second resin) and a core resin (the first resin) is preferably from 1:99 to 80:20. When a content of the second resin in the resin contained in the toner particles is lower than 1 mass %, formation of particles having the core/shell structure may become difficult. When a content of the second resin in the resin contained in the toner particles exceeds 80 mass %, fixability may lower.


In the core/shell structure, a coloring agent may be contained in the core resin or the shell resin, or in both of the core resin and the shell resin. This is also the case with an additive (for example, a dispersant for pigment) to toner particles.


<Insulating Liquid>


The insulating liquid in the present embodiment has a resistance value preferably to such an extent as not distorting an electrostatic latent image (approximately from 1011 to 1016 Q·cm) and preferably it is a solvent having low odor and toxicity. The insulating liquid is generally exemplified by aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, or polysiloxane. In particular from a point of view of low odor and toxicity as well as low cost, the insulating liquid is preferably a normal paraffin based solvent or an isoparaffin based solvent, and preferably Moresco White (trade name, manufactured by MORESCO Corporation), Isopar (trade name, manufactured by Exxon Mobil Corporation), Shellsol (trade name, manufactured by Shell Chemicals Japan Ltd.), or IP Solvent 1620, IP Solvent 2028, or IP Solvent 2835 (each of which is trade name and manufactured by Idemitsu Kosan Co., Ltd.).


<Manufacturing of Liquid Developer>


The liquid developer according to the present embodiment is preferably manufactured by dispersing toner particles in an insulating liquid. Toner particles are preferably manufactured in accordance with a method shown below.


<Method of Manufacturing Toner Particles>


Toner particles are preferably manufactured based on such a known technique as a crushing method or a granulation method. In the crushing method, resin particles and a pigment are mixed and kneaded, and then the mixture is crushed. Crushing is preferably carried out in a dry state or a wet state such as in oil.


The granulation method is exemplified, for example, by a suspension polymerization method, an emulsion polymerization method, a fine particle aggregation method, a method of adding a poor solvent to a resin solution for precipitation, a spray drying method, or a method of forming a core/shell structure with two different types of resins.


In order to obtain toner particles having a small diameter and sharp particle size distribution, the granulation method rather than the crushing method is preferably employed. A resin high in meltability or a resin high in crystallinity is soft even at a room temperature and less likely to be crushed. Therefore, with the granulation method, a desired toner particle size is obtained more easily than with the crushing method. Among the granulation methods, toner particles are preferably manufactured with a method shown below. Initially, a core resin solution is obtained by dissolving a resin in a good solvent. Then, the core resin solution described above is mixed, together with an interfacial tension adjuster, in a poor solvent different in SP value from the good solvent, shear is provided, and thus a droplet is formed. Thereafter, by volatilizing the good solvent, core resin particles are obtained. With this method, controllability of a particle size or a shape of toner particles based on variation in how to provide shear, difference in interfacial tension, or an interfacial tension adjuster (a material for the shell resin) is high. Therefore, toner particles having desired particle size distribution are likely to be obtained.


<Image Formation Apparatus>


A construction of an apparatus for forming an image (image formation apparatus) which is formed by a liquid developer according to the present embodiment is not particularly limited. An image formation apparatus is preferably, for example, a monochrome image formation apparatus in which a monochrome liquid developer is primarily transferred from a photoconductor to an intermediate transfer element and thereafter secondarily transferred to a recording medium (see FIG. 3), an image formation apparatus in which a monochrome liquid developer is directly transferred from a photoconductor to a recording medium, or a multi-color image formation apparatus forming a color image by layering a plurality of types of liquid developers.


EXAMPLES

Though the present invention will be described hereinafter in further detail with reference to Examples, the present invention is not limited thereto.


Manufacturing Example 1
Manufacturing of Dispersion Liquid (W1) of Shell Particles

In a beaker made of glass, 100 parts by mass of 2-decyltetradecyl(meth)acrylate, 30 parts by mass of methacrylic acid, 70 parts by mass of an equimolar reactant with hydroxyethyl methacrylate and phenyl isocyanate, and 0.5 part by mass of azobis methoxy dimethyl valeronitrile were introduced, and stirred and mixed at 20° C. Thus, a monomer solution was obtained.


Then, a reaction vessel provided with a stirrer, a heating and cooling apparatus, a thermometer, a dropping funnel, a desolventizer, and a nitrogen introduction pipe was prepared. In that reaction vessel, 195 parts by mass of THF were introduced, and the monomer solution above was introduced in the dropping funnel provided in the reaction vessel. After a vapor phase portion of the reaction vessel was replaced with nitrogen, the monomer solution was dropped in THF in the reaction vessel for 1 hour at 70° C. in a sealed condition. Three hours after the end of dropping of the monomer solution, a mixture of 0.05 part by mass of azobis methoxy dimethyl valeronitrile and 5 parts by mass of THF was added to the reaction vessel and caused to react for 3 hours at 70° C. Thereafter, cooling to room temperature was carried out. Thus, a copolymer solution was obtained.


The shell resin in a dry state was obtained by removing THF from some of the obtained copolymer solution. A glass transition temperature of the shell resin in the dry state was measured with a differential scanning calorimeter (trade name “DSC20” manufactured by Seiko Instruments, Inc.) in compliance with a method defined under ASTM D3418-82, and it was 53° C.


Four hundred parts by mass of the copolymer solution were dropped in 600 parts by mass of IP Solvent 2028 (manufactured by Idemitsu Kosan Co., Ltd.) which was being stirred, and THF was distilled out at 40° C. at a reduced pressure of 0.039 MPa. Thus, a dispersion liquid (W1) of shell particles was obtained. A volume average particle size of the shell particles in the dispersion liquid (W1) was measured with a laser particle size distribution analyzer (trade name “LA-920” manufactured by Horiba, Ltd.), which was 0.12 μm.


Manufacturing Example 2
Manufacturing of Solution (Y1) for Forming Core Resin

In a reaction vessel provided with a stirrer, a heating and cooling apparatus, and a thermometer, 970 parts by mass of polyester resin (Mn: 5400) obtained from sebacic acid, adipic acid, and ethylene glycol (a molar ratio of 0.8:0.2:1) and 300 parts by mass of acetone were introduced and stirred for uniform solution in acetone. In the obtained solution, 30 parts by mass of IPDI were introduced and caused to react for 6 hours at 80° C. When an NCO value attained to 0, 28 parts by mass of terephthalic acid were further added and caused to react for 1 hour at 180° C. Thus, a core resin which was a urethane-modified polyester resin was obtained. Mn of the obtained core resin was 23000 and a concentration of a urethane group therein was 1.6%.


One thousand parts by mass of the obtained core resin and 1000 parts by mass of acetone were stirred in a beaker, to thereby uniformly dissolve the core resin in acetone. Thus, a solution (Y1) for forming the core resin was obtained.


Manufacturing Example 3
Manufacturing of Dispersion Liquid of Coloring Agent

In a beaker, 173 parts by mass of carbon black (trade name “MOGUL L” manufactured by Cabot Corporation), 27 parts by mass of nigrosine (trade name “NUBIAN BLACK TH-827” manufactured by Orient Chemical Industries Co., Ltd.), 80 parts by mass of a dispersant for pigment (trade name “Ajisper PB-821” manufactured by Ajinomoto Fine-Techno Co., Inc.), and 720 parts by mass of acetone were introduced, to thereby uniformly disperse carbon black and nigrosine. Thereafter, carbon black and nigrosine were finely dispersed with the use of a bead mill, to thereby obtain a dispersion liquid (P1) of a coloring agent. An average value of a volume average particle size of carbon black and a volume average particle size of nigrosine in the dispersion liquid of a coloring agent was 0.25 μm.


Manufacturing Examples 4 to 18

Dispersion liquids of a coloring agent in Manufacturing Examples 4 to 18 were manufactured in accordance with the method described in Manufacturing Example 3 except that formulated amounts of carbon black and nigrosine were as shown in Table 1 and dispersants for pigment shown in Table 1 were used.











TABLE 1









Formulation of Dispersion Liquid of Coloring Agent



(Unit in Parts by Mass)












Carbon Black
Nigrosine
Dispersant for Pigment

















Type
CB1*11
CB2*12
NS1*13
NS2*14
PB-821*15
PB-822*16
Acetone



















Manufacturing Example 3
P1
173

27

80

720


Manufacturing Example 4
P2
133

67

80

720


Manufacturing Example 5
P3

151
49

80

720


Manufacturing Example 6
P4
111


89
80

720


Manufacturing Example 7
P5
129

71


80
720


Manufacturing Example 8
P6
150


50

80
720


Manufacturing Example 9
P7
114

86

80

720


Manufacturing Example 10
P8

174
26

80

720


Manufacturing Example 11
P9
133

67

80

720


Manufacturing Example 12
P10
111

89

80

720


Manufacturing Example 13
P11
154

46

80

720


Manufacturing Example 14
P12
182

18

80

720


Manufacturing Example 15
P13
157

43

80

720


Manufacturing Example 16
P14
200

 0

80

720


Manufacturing Example 17
P15
108

92

80

720


Manufacturing Example 18
P16
104

96

80

720





CB1*11: “MOGUL L” (manufactured by Cabot Corporation)


CB1*12: “MA77” (manufactured by Mitsubishi Chemical Corporation)


NS1*13: “NUBIAN BLACK TH-827” (manufactured by Orient Chemical Industries Co., Ltd.)


NS1*14: “BONTRON N-09” (manufactured by Orient Chemical Industries Co., Ltd.)


PB-821*15: “Ajisper PB-821” (manufactured by Ajinomoto Fine-Techno Co., Inc.)


PB-822*16: “Ajisper PB-822” (manufactured by Ajinomoto Fine-Techno Co., Inc.)






Example 1

In a beaker, 150 parts by mass of the solution (Y1) for forming the core resin and 54 parts by mass of the dispersion liquid (P1) of the coloring agent were introduced and stirred at 8000 rpm with the use of TK Auto Homo Mixer [manufactured by PREMIX Corporation] at 25° C. Thus, a resin solution (Y11) in which the coloring agent was uniformly dispersed was obtained.


In another beaker, 100 parts by mass of IP Solvent 2028 (manufactured by Idemitsu Kosan Co., Ltd.) and 25 parts by mass of the dispersion liquid (W1) of the shell particles were introduced to uniformly disperse the shell particles. Then, while TK Auto Homo Mixer was used at 25° C. to perform stirring at 10000 rpm, 204 parts by mass of the resin solution (Y11) were introduced and stirred for 2 minutes. This liquid mixture was then introduced in a reaction vessel provided with a stirrer, a heating and cooling apparatus, a thermometer, and a desolventizer, and a temperature was raised to 35° C. At a reduced pressure of 0.039 MPa at 35° C., acetone was distilled out until a concentration of acetone was not higher than 0.5 mass %. Thus, a liquid developer was obtained. The coloring agent was contained by 20 mass % with respect to the toner particles.


Examples 2 to 13 and Comparative Examples 1 to 4

Liquid developers in Examples 2 to 13 and Comparative Examples 1 to 4 were manufactured in accordance with the method described in Example 1 above, except that dispersion liquids of a coloring agent shown in Table 2 were employed, a formulated amount of the solutions for forming the core resin was set as shown in Table 2, and a content of the coloring agent was set as shown in Table 2.














TABLE 2









Dispersion Liquid of






Coloring Agent
Core Solution*21
Coloring













Content (Parts
Content (Parts
Agent
Content of Each Coloring Agent (Mass %)




















Type
by Mass)
by Mass)
W*22
CB1*11
CB2*12
Wc
NS1*13
NS2*14
Wn
Wn/Wc






















Example 1
P1
54
150
0.15
14

14
1

1
0.07


Example 2
P2
54
150
0.15
10

10
5

5
0.50


Example 3
P3
161
90
0.45

34
34
11

11
0.32


Example 4
P4
161
90
0.45
25

25

20
20
0.80


Example 5
P5
111
118
0.31
20

20
11

11
0.55


Example 6
P6
57
148
0.16
12

12

 4
4
0.33


Example 7
P7
125
110
0.35
20

20
15

15
0.75


Example 8
P8
82
134
0.23

20
20
3

3
0.15


Example 9
P9
161
90
0.45
30

30
15

15
0.50


Example 10
P10
129
108
0.36
20

20
16

16
0.80


Example 11
P11
46
154
0.13
10

10
3

3
0.30


Example 12
P12
79
136
0.22
20

20
2

2
0.10


Example 13
P13
168
86
0.47
37

37
10

10
0.27


Comparative
P14
50
152
0.14
14

14
0

0
0.00


Example 1


Comparative
P14
157
92
0.44
44

44
0

0
0.00


Example 2


Comparative
P15
132
106
0.37
20

20
17

17
0.85


Example 3


Comparative
P16
164
88
0.46
24

24
22

22
0.92


Example 4





Core Solution*21 means a solution for forming a core resin.


W*22 means a ratio of a mass of a coloring agent to a mass of toner particles.






<Fixation Process>


An image was formed by using an image formation apparatus shown in FIG. 3. A construction of the image formation apparatus shown in FIG. 3 is shown below. A liquid developer 21 is brought up from a development tank 22 by an anilox roller 23. Excessive liquid developer 21 on anilox roller 23 is scraped off by an anilox restriction blade 24, and remaining liquid developer 21 is sent to a leveling roller 25. Liquid developer 21 is adjusted to be uniform and small in thickness, on leveling roller 25.


Liquid developer 21 on leveling roller 25 is sent to a development roller 26. Liquid developer 21 on development roller 26 is charged by a development charger 28 and developed on a photoconductor 29 and the excessive liquid developer is scraped off by a development cleaning blade 27. Specifically, a surface of photoconductor 29 is evenly charged by a charging portion 30, and an exposure portion 31 arranged around photoconductor 29 emits light based on prescribed image information to the surface of photoconductor 29. Thus, an electrostatic latent image based on the prescribed image information is formed on the surface of photoconductor 29. As the formed electrostatic latent image is developed, a toner image is formed on photoconductor 29. The excessive liquid developer on photoconductor 29 is scraped off by a cleaning blade 32.


The toner image formed on photoconductor 29 is primarily transferred to an intermediate transfer element 33 at a primary transfer portion 37, and the liquid developer transferred to intermediate transfer element 33 is secondarily transferred to a recording medium 40 at a secondary transfer portion 38. The liquid developer transferred to recording medium 40 is fixed by fixation rollers 36a and 36b. The liquid developer which remained on intermediate transfer element 33 without being secondarily transferred is scraped off by an intermediate transfer element cleaning portion 34.


In the present Example, the surface of photoconductor 29 was positively charged by charging portion 30, a potential of intermediate transfer element 33 was set to −400 V, a potential of a secondary transfer roller 35 was set to −1200 V, a fixation NIP time was set to 40 milliseconds, and a temperature of fixation rollers 36a and 36b was set to 80° C. OK top coat (manufactured by Oji Paper Co., Ltd., 128 g/m2) was employed as recording medium 40 and a velocity of transportation of recording medium 40 was set to 400 mm/s. An amount of adhesion of toner on the recording medium was approximately 2.0 g/m2 or less.


<Peak Temperature in DSC Curve in Temperature Decrease of Toner Particles>


The DSC curve was measured in accordance with the method above, and a peak temperature in the DSC curve in temperature decrease of the toner particles was found from the obtained DSC curve. Table 3 shows results.


<Measurement of Degree of Gloss>


Seventy-five-degree Gloss Meter (VG-2000 manufactured by Nippon Denshoku Industries Co., Ltd.) was used to measure a degree of gloss of a solid portion of a fixed image. Results are shown in Table 3. In Table 3, a degree of gloss not lower than 60 is denoted as A1, a degree of gloss not lower than 50 and lower than 60 is denoted as B1, and a degree of gloss lower than 50 is denoted as C1. As a degree of gloss is higher, it can be concluded that such a liquid developer is excellent in glossiness.


<Measurement of Image Density>


Image density was measured with a reflection densitometer (trade name “X-Rite model 404” manufactured by X-Rite, Incorporated). Table 3 shows results. In Table 3, image density not less than 1.8 is denoted as A2 and image density not less than 1.7 and less than 1.8 is denoted as B2. It can be concluded that as image density is higher, such a liquid developer can provide an image excellent in image density.


<Measurement of Fixation Strength>


A tape (trade name “Scotch® mending tape” manufactured by Sumitomo 3M Limited) was stuck to a site of interest of measurement on coated paper to which the image had been fixed, and thereafter the tape was peeled off. Density of an image (ID) peeled by the tape was then determined with the reflection densitometer. Table 3 shows results. In Table 3, image density less than 0.1 is denoted as A3 and image density not less than 0.1 is denoted as B3. It can be concluded that lower image density indicates less likeliness of peel-off of a fixed image by the tape and hence such a liquid developer is excellent in fixability.


<Measurement of Document Offset>


While fixed images were layered on each other, load of 80 g/m2 was applied thereto and stored for 1 week at 55° C. Thereafter, after the temperature was lowered to room temperature and the load was removed, two sheets were separated from each other and whether or not the images were damaged at the time of separation was checked. Results are shown in Table 3. In Table 3, a case that the images were not at all separated at the time of separation is denoted as A4, a case that the images were slightly separated at the time of separation is denoted as B4, and a case that the images were significantly separated at the time of separation is denoted as C4. It can be concluded that no document offset took place if the images were not separated at the time of separation.















TABLE 3







T*31
Degree of
Image
Fixation
Document



(° C.)
Gloss
Density
Strength
Offset





















Example 1
46
A1
A2
A3
A4


Example 2
34
A1
A2
A3
A4


Example 3
45
A1
A2
A3
A4


Example 4
33
A1
A2
A3
A4


Example 5
42
A1
A2
A3
A4


Example 6
40
A1
A2
A3
A4


Example 7
34
A1
A2
A3
A4


Example 8
45
A1
A2
A3
A4


Example 9
38
A1
A2
A3
A4


Example 10
31
A1
A2
A3
B4


Example 11
39
A1
B2
A3
A4


Example 12
48
B1
B2
A3
A4


Example 13
49
B1
A2
B3
B4


Comparative
52
C1
B2
B3
B4


Example 1


Comparative
57
C1
B2
B3
B4


Example 2


Comparative
27
A1
A2
A3
C4


Example 3


Comparative
29
A1
A2
B3
C4


Example 4





T*31 means a peak temperature in the DSC curve in temperature decrease of the toner particles.






As shown in Table 3, an image excellent in glossiness could not be provided in Comparative Examples 1 to 2 and document offset occurred in Comparative Examples 3 to 4. In Examples 1 to 13, no document offset occurred and an image excellent in glossiness, image density, and fixability could be provided. The reason may be as follows. In Examples 1 to 13, a peak temperature in the DSC curve in temperature decrease of the toner particles was not lower than 30° C. and not higher than 50° C. In Comparative Examples 1 to 2, however, a peak temperature in the DSC curve in temperature decrease of the toner particles was higher than 50° C., and in Comparative Examples 3 to 4, a peak temperature in the DSC curve in temperature decrease of the toner particles was lower than 30° C.


Examples 1 to 13 will further be shown with reference to Tables 2 and 3 and FIG. 4. FIG. 4 is a graph showing relation (experimental results) among mass ratio W of a coloring agent with respect to the toner particles, content Wc of carbon black, and content Wn of nigrosine.


The results in Examples 1 to 9 were all present in a region surrounded by L21 to L24 shown in FIG. 4. In other words, relation of 0.83W−0.08≦Wn/Wc 1.3W+0.31 (0.15≦W≦0.45) is satisfied. Therefore, occurrence of document offset could completely be prevented and an image excellent in degree of gloss, image density, and fixability could be provided.


A result in Example 10 is present above L24 shown in FIG. 4. In other words, Wn/Wc is greater than 1.3W+0.31 (Wn/Wc>1.3W+0.31), which is the same as in Comparative Example 3. In Example 10, however, a peak temperature in the DSC curve in temperature decrease of the toner particles was not lower than 30° C. and not higher than 50° C., and hence occurrence of document offset was prevented as compared with Comparative Example 3.


A result in Example 11 is present on the left of L21 shown in FIG. 4. In other words, W is smaller than 0.15 (0.15>W). A peak temperature in the DSC curve in temperature decrease of the toner particles, however, was not lower than 30° C. and not higher than 50° C., and hence image density was merely slightly lower than in Examples 1 to 9.


A result in Example 12 is present under L23 shown in FIG. 4. In other words, Wn/Wc is smaller than 0.83W−0.08 (0.83W−0.08>Wn/Wc). A peak temperature in the DSC curve in temperature decrease of the toner particles, however, was not lower than 30° C. and not higher than 50° C., and hence a degree of gloss and image density were merely slightly lower than in Examples 1 to 9.


A result in Example 13 is present under L23 shown in FIG. 4, which is the same as in Comparative Examples 1 to 2. In addition, the result in Example 13 is present on the right of L22 shown in FIG. 4, which is the same as in Comparative Example 4. In Example 13, however, a peak temperature in the DSC curve in temperature decrease of the toner particles was not lower than 30° C. and not higher than 50° C., and hence lowering in degree of gloss was prevented as compared with Comparative Examples 1 to 2 and occurrence of document offset was prevented as compared with Comparative Example 4.


Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the scope of the present invention being interpreted by the terms of the appended claims.

Claims
  • 1. A liquid developer, comprising: an insulating liquid; andtoner particles which are dispersed in said insulating liquid and contain a resin and a coloring agent,said resin containing a first resin which is a resin containing a component derived from a crystalline polyester resin,said coloring agent containing carbon black and nigrosine, andsaid toner particles having a peak at not lower than 30° C. and not higher than 50° C. in a DSC curve in temperature decrease.
  • 2. The liquid developer according to claim 1, wherein relation in Equations (I) and (II) are satisfied: 0.83W−0.08≦Wn/Wc≦1.3W+0.31  Equation (I); and0.15≦W≦0.45  Equation (II),
  • 3. The liquid developer according to claim 1, wherein said toner particles further contain a basic dispersant.
  • 4. The liquid developer according to claim 1, wherein said toner particles have a core/shell structure.
Priority Claims (1)
Number Date Country Kind
2013-253067 Dec 2013 JP national