The present application is based on, and claims priority from JP Application Serial Number 2019-057887, filed Mar. 26, 2019, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a liquid discharge apparatus including a discharge unit configured to discharge a liquid such as ink onto a medium such as a paper, and a display control method for the liquid discharge apparatus.
For example, JP 2015-178179 A discloses a liquid injection apparatus such as an inkjet printer configured to discharge a liquid such as ink onto a medium such as a paper to perform printing. The liquid injection apparatus, while sending environmental information containing temperature and humidity to a server, receives, from the server, a first estimation model for estimating a recommended time for checking nozzles generated by the server. The liquid injection apparatus computes a recommended time based on the first estimation model, performs nozzle checking at the recommended time, and urges the user to perform cleaning. Thereafter, when the user does not perform cleaning within a predetermined preliminary period, the liquid injection apparatus forcibly performs cleaning.
Unfortunately, the liquid injection apparatus described in JP 2015-178179, when the recommended time is reached, causes the user to perform cleaning by a manual operation, or the liquid discharge apparatus forcibly performs cleaning after the subsequent preliminary period passes, and thus, the frequency of performing the cleaning is left to the environment at that time. For example, when the humidity becomes excessively low, foreign substances such as dust and fluff become easily suspended in the air. An air containing the foreign substances suspended in the air, when taken into the housing, facilitates the occurrence of nozzle clogging in the discharge unit. In this case, the recommended time is advanced and the frequency of the cleaning increases. A higher cleaning frequency leads to increased consumption of liquid such as ink that is not utilized for printing, and reduced productivity. Further, the liquid injection apparatus described in JP 2015-178179 A is only directed to the printing failure due to nozzles, and there is no consideration for the printing failure due to medium postures such as wrinkles and floating of a medium, which easily occur when the humidity is excessively high. For example, although managing the environment including temperature or humidity can suppress increase in frequencies of cleaning caused by nozzle clogging or an occurrence of wrinkles or the like in the medium, the user does not have any means to know that the humidity has deviated from the range suitable for printing. In addition, because the liquid injection apparatus is operated in a recommended environment, there is a case when the operator manages temperature and humidity, and this kind of managing temperature and humidity is troublesome and moreover, causes the burden of the operator.
A liquid discharge apparatus for solving the above-described problems includes a transport unit configured to transport a medium, a discharge unit configured to discharge a liquid onto the medium, a support portion that supports a portion of the medium, the liquid being discharged from the discharge unit onto the portion of the medium, a housing including therein the discharge unit, a humidity detection unit configured to detect a humidity, and a display control unit configured to display an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity less than a first predetermined value, and configured to display an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity exceeding a second predetermined value greater than the first predetermined value.
A display control method for a liquid discharge apparatus for resolving the above-described issue is a display control method for the liquid discharge apparatus including a transport unit configured to transport a medium, a discharge unit configured to discharge a liquid onto the medium, and a humidity detection unit configured to detect a humidity, the liquid discharge apparatus displaying information corresponding to the humidity, the display control method including a humidity detection step for detecting a humidity by the humidity detection unit, a first display step for displaying an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity less than a first predetermined value, and a second display step for displaying an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity exceeding a second predetermined value greater than the first predetermined value.
Hereinafter, a liquid discharge apparatus according to the first embodiment will be described with reference to the accompanying drawings.
A liquid discharge apparatus 11 illustrated in
The liquid discharge apparatus 11 includes a transport unit 14 configured to transport the medium 99. The transport unit 14 is provided inside the housing 12, and is configured to transport the medium 99 along a predetermined transport path. The liquid discharge apparatus 11 includes a feeding unit 15 configured to support a roll body 101 that the medium 99 to which a liquid is to be discharged is wound a plurality of times. The feeding unit 15 is attached to the base stage 13, for example, and supports the roll body 101 in a rotatable state. The feeding unit 15 includes a feeding motor 16 that is driven when the roll body 101 is rotated in the feeding direction. The transport unit 14 is configured to transport the medium 99 in an elongated form, which the feeding unit 15 fed out from the roll body 101.
The liquid discharge apparatus 11 includes the discharge unit 28 configured to discharge a liquid onto the medium 99. The liquid discharge apparatus 11 of this example is a serial printer in which the discharge unit 28 scans with respect to the medium 99. Accordingly, the discharge unit 28 is provided at the lower portion of a carriage 27 configured to move. The discharge unit 28 is an inkjet-type recording head. The region where the discharge unit 28 can discharge a liquid onto the medium 99 is referred to as printing region, where the direction in which the medium 99 is transported in the printing region is referred to as transport direction Y1. The carriage 27 reciprocatively moves along the X axis intersecting the transport direction Y1 of the medium 99, with respect to the medium 99 being transported. The discharge unit 28, during the movement of the carriage 27, discharges a liquid onto the medium 99 to cause an image and the like to be printed on the medium. The liquid discharge apparatus 11 includes the discharge unit 28 and the carriage 27 inside the housing 12. Note that the liquid discharge apparatus 11 may be a line printer in which the discharge units 28 are arranged in an elongated form that can discharge a liquid in the range across the width of the medium 99, which does not include the carriage 27.
As illustrated in
The liquid discharge apparatus 11 includes a tension bar 20 that applies tension to the medium 99. The tension bar 20 applies tension to the medium 99 by coming into contact with the medium 99. Applying tension to the medium 99 with the tension bar 20 improves the transport accuracy of the medium 99. The tension bar 20 comes in contact with, in the medium 99, a portion that passed through a drying device 40 and a portion before being wound around the winding unit 17. The tension bar 20 is attached to, for example, the base stage 13 in a pivotable manner. The tension bar 20, by changing the weight provided on the opposite side of the pivot fulcrum, can adjust the magnitude of the tension exerted on the medium 99.
The liquid discharge apparatus 11 includes an upstream support portion 21, a support portion 22, and a downstream support portion 23 that constitute the transport path of the medium 99. The upstream support portion 21, the support portion 22, and the downstream support portion 23 support the medium 99 being transported by the transport unit 14. The upstream support portion 21, the support portion 22, and the downstream support portion 23 are arranged in that order from the upstream to the downstream of the transport path. The support portion 22 is a platen for supporting a portion of the medium 99, to which a liquid is discharged by the discharge of the discharge unit 28. The support portion 22 is located inside the housing 12. Specifically, the upstream support portion 21, which configures the upstream portion of the transport path, supports the medium 99 at the portion from the feeding unit 15 to the transport unit 14. The support portion 22, which configures the middle stream portion of the transport path, supports the medium 99 at the portion downstream of the transport unit 14, which faces the discharge unit 28. The downstream support portion 23, which configures the downstream portion of the transport path, supports a portion, to which printing has been performed, of the medium 99 transported downstream by the transport unit 14, and to which a liquid discharged from the discharge unit 28 adheres. In the example illustrated in
As illustrated in
As illustrated in
As illustrated in
Further, as illustrated in
For example, the temperature of the preheater 31 and the platen heater 32 is set to approximately 40° C., and the temperature of the afterheater 33 is set to approximately 50° C. that is higher than the temperature of the preheater 31 and the platen heater 32. The preheater 31 is configured to gradually increase the temperature of the medium 99 from the ordinary temperature toward the heating temperature of the platen heater 32 via the upstream support portion 21. The platen heater 32 is configured to heat the medium 99 via the support portion 22 to promptly dry the ink that landed on the medium 99. The afterheater 33 is configured to heat the medium 99 to a temperature that is higher than the heating temperature of the platen heater 32 via the downstream support portion 23, and to cause the liquid that landed on the medium 99 to be completely dried and fixed to the medium 99 before the medium 99 is wound to the reel mechanism 18.
As illustrated in
The drying device 40 includes a heater tube 41. The heater tube 41 is located facing the downstream support portion 23. The heater tube 41 is configured to heat the printing surface of the medium 99 being supported and transported by the downstream support portion 23. The heater tube 41 is controlled to a predetermined heat-set temperature. In this case, as the heat-set temperature becomes higher, the output from the heater tube 41 becomes greater.
The drying device 40 includes a case 42 that accommodates the heater tube 41 and a circulation unit 43 configured to circulate gas inside the case 42. The case 42 opens at the side facing the downstream support portion 23. The circulation unit 43 includes a circulation path 44 through which gas flows, and an air blowing fan 45 located in the midstream of the circulation path 44. The circulation path 44 is a flow path coupling an intake port 46 that takes in gas and an air blowing port 47 that blows out gas. The circulation path 44 extends along a path surrounding the heater tube 41. The intake port 46 is located facing the downstream portion of the downstream support portion 23. The air blowing port 47 is located facing the upstream portion of the downstream support portion 23. The circulation unit 43 generates a first airflow AF1 by circulating the gas heated by the heater tube 41 at the paths inside the case 42 and along the upper surface of the downstream support portion 23. Specifically, a part of the gas heated near the surface of the medium 99 by the heater tube 41 is taken in through the intake port 46, and the intake gas is heated with the heat from the heater tube 41 in the course of passing through the circulation path 44. The heated gas is blown through the air blowing port 47 to the surface of the medium 99 again by the air blowing fan 45 to thus facilitate drying of the medium 99. The drying device 40 includes a reflection plate 48 that reflects the heat from the heater tube 41 toward the downstream support portion 23. The reflection plate 48 efficiently transmits heat from the heater tube 41 to the medium 99.
As illustrated in
As illustrated in
The liquid discharge apparatus 11 also includes a humidity detection unit 53 configured to detect a humidity. In this example, the humidity detection unit 53 is provided inside the housing 12. The humidity detection unit 53 detects the humidity of the air taken in from the exterior of the housing 12 at a position downstream of the fan 51 in the air intake direction of the fan 51 inside the housing 12. This detection humidity corresponds to the humidity at the exterior of the housing 12, that is, a detection value of the humidity at the periphery of the liquid discharge apparatus 11.
The humidity detection unit 53 of this example includes a temperature/humidity sensor configured to detect a temperature in addition to a humidity. The temperature/humidity sensor detects the humidity and temperature of the outside air near the intake port of the outside air into the housing 12. The humidity detection unit 53 is located at the upper portion relative to the lower portion at which the discharge unit 28 is located inside the housing 12. Here, the lower portion inside the housing 12 tends to be relatively highly humid due to the influence of moisture vapor evaporated from the liquid adhering to the medium 99 immediately after performing printing is performed and the like. Further, at the lower portion inside the housing 12, the temperature of the outside air cannot be accurately detected due to the influence of the heat from the heating source such as the platen heater 32. Accordingly, the temperature/humidity sensor configuring the humidity detection unit 53 detects a humidity and temperature at the upper position inside the housing 12 that is not susceptible to this kind of moisture vapor and heating source. Note that the humidity detection unit 53 may be attached to the outer side face of the housing 12.
Further, as illustrated in
The humidifier 54 includes a water reservoir section that retains water, and a humidification drive unit that converts the water in the water reservoir section into mist or moisture vapor. The humidification drive unit may be any type of a vapor type, an evaporated type, an ultrasonic type, an electrolysis type for performing humidification accompanying electrolysis of water using a solid polymeric electrolyte, or the like.
Further, as illustrated in
Further, a display unit 60 is provided on the outer face of the housing 12. The display unit 60 displays, in addition to various menu screens, input screens for printing condition information, and the like, messages or images prompting the user to perform various adjustments including adjustment of the humidity or temperature to make the environment at the periphery of the liquid discharge apparatus 11 or the inside the housing 12 suitable for printing, and messages or images prompting the user to perform various adjustments to suppress the occurrence of nozzle clogging or wrinkles, and the like. The liquid discharge apparatus 11 includes the control unit 70 inside the housing 12. The control unit 70 controls the transport unit 14, the feeding unit 15, the winding unit 17, the discharge unit 28, the carriage 27, the drying device 40, the display unit 60, and the like.
The liquid discharge apparatus 11 is used with selecting one of the winding scheme illustrated in
Next, a detailed configuration of the suction mechanism 30 will be described with reference to
In the liquid discharge apparatus 11, when there is a possibility that wrinkles 99S and floating occur in the medium 99 at the time when the discharge unit 28 discharges a liquid to print an image on the medium 99, the exhaust fan 38 is driven to cause the medium 99 to be suctioned to and supported by the support surface 22A. Further, a pressure sensor 39 configured to detect a pressure is provided inside the negative pressure chamber 37. The control unit 70, based on the detection pressure detected by the pressure sensor 39, controls the suction mechanism 30 such that the pressure inside the negative pressure chamber 37 reaches a predetermined set negative pressure value. In the first embodiment, a negative pressure is applied through the suction port 35 when the medium 99 is transported as well, and a suction force that causes the medium 99 to be suctioned to the support surface 22A is exerted on the medium 99 being transported. In this case, the excessive suction force during the transport process of the medium 99 increases the transport load of the medium 99, and also causes the wrinkles 99S to occur due to the transport load. Note that the control unit 70 may perform control that does not cause negative pressure to be applied through the suction port 35 while the medium 99 is transported.
As illustrated in
Next, the dust catcher 55 will be described below with reference to
As illustrated in
The removal member 61, by deforming its loop shape with its own weight, makes it possible to adjust the contact area between a curved portion 63 at its lower portion and the printed surface 99A of the medium 99. The elastic member 62 has a function to retain the shape of the removal member 61 while allowing deformation within a predetermined range of the removal member 61. Accordingly, even when the removal member 61 is formed of a collection of fibers such as a nonwoven fabric, the curved portion 63 comes into contact with the printed surface 99A at a predetermined area and with a predetermined pressing force. The removal member 61, which is formed of a collection of fibers, collects the removed foreign substances inside the removal member 61 and suppresses scattering of the foreign substances. An increase of the area between the curved portion 63 of the dust catcher 55 and the printed surface 99A enhances the effect of suppressing intrusion of the foreign substances into the housing 12, however, the transport load of the medium 99 increases. The increase in the transport load of the medium 99 causes a reduction in the transport position accuracy of the medium 99, which leads to a defective, lateral displacement of the printing position. Accordingly, it is desirable that the dust catcher 55 be installed only when printing is performed in an environment where an intrusion of the foreign substances easily occurs. Note that the dust catcher 55 may be configured such that the control unit 70 drives a member for control to deform the removal member 61, to make it possible to adjust the contact area between the curved portion 63 and the printed surface 99A.
In this example, the liquid discharge apparatus 11 produces a printed material that printing is performed on the medium 99. The liquid discharge apparatus 11 may be configured as a textile printing machine of a sublimation-transfer type that the discharge unit 28 discharges a liquid to perform printing on a transfer paper being one example of the medium 99, and transfers the printed image from the transfer paper to a cloth. The liquid discharge apparatus 11, when being a textile printing machine, includes a pasting roller, in place of the tension bar 20 and the suction mechanism 30, as the function of pressing the medium 99 against the support surface 22A of the support portion 22. Driving the pasting roller to press the medium 99 against the support surface 22A has an effect of suppressing the occurrence of the wrinkles 99S in the medium 99, as in the suction mechanism 30.
Further, as illustrated in
When the humidity is at a first humidity, the foreign substances FM, such as dust and fibers, are easily suspended in the air compared to when the humidity is at the second humidity exceeding the first humidity. In the first embodiment, when the detection humidity detected by the humidity detection unit 53 is less than the lower limit value A, there is a concern in that nozzle clogging and the like occur due to the foreign substances FM. The control unit 70 then causes the display unit 60 to display a message prompting the user to perform temperature adjustment to raise the humidity. Here, the humidity tends to be high when the temperature is raised. Accordingly, the message prompts the user to raise the temperature. The message also prompts the user to conduct a countermeasure for reducing the foreign substances FM. Moreover, the message prompts the user to conduct a countermeasure for suppressing the occurrence of nozzle clogging due to the foreign substances FM. Note that the content of the message will be described later in detail.
As illustrated in
As illustrated in
Then, the control unit 70, when the detection humidity detected by the humidity detection unit 53 exceeds an upper limit value B, causes the display unit 60 to display a message prompting the user to perform temperature adjustment to reduce humidity. Here, the humidity tends to be low when the temperature is lowered. Accordingly, in the first embodiment, a message is displayed to prompt the user to lower the temperature. Moreover, a message is displayed to prompt the user to conduct a countermeasure for suppressing the occurrence of the wrinkles 99S. Note that the content of the messages will be described later in detail.
Next, with reference to
The control unit 70 is communicably coupled with a host apparatus 150 via the communication unit 71. The host apparatus 150 includes a display unit 160 and an operation unit 170 operated by the user. The host apparatus 150 includes a print driver (not illustrated) configured to generate data of a print job PJ when the user operates the operation unit 170 to provide a command for printing. The control unit 70 receives the data of the print job PJ from the host apparatus 150 via the communication unit 71. Note that the host apparatus 150 is configured by one of a personal computer, a Personal Digital Assistant (PDA), a tablet PC, a smart phone, a mobile phone, or the like, for example.
The humidity detection unit 53 includes a humidity sensor 75 configured to detect the relative humidity outside the housing 12, and a temperature sensor 76 configured to detect the temperature outside the housing 12. The humidity detection unit 53 of this example is composed of a temperature/humidity sensor that the humidity sensor 75 and the temperature sensor 76 are built into a single sensor unit. The humidity detection unit 53 calculates an absolute humidity AH in accordance with a predetermined calculation equation using information about a relative humidity RH (%) detected by the humidity sensor 75 and a temperature T (° C.) detected by the temperature sensor 76. The absolute humidity AH is calculated with AH=217×e(T)/(T+273.15)×RH/100, where e(T) is saturation vapor pressure and is calculated using Tetens equation given as e=6.11×10{circumflex over ( )}(7.5T/(T+237.3)). Note that the humidity detection unit 53 may be configured to include a part (humidity calculation unit) of the control unit 70 configured to calculate the absolute humidity AH from each of the values of the humidity and temperature detected by the humidity sensor 75 and the temperature sensor 76, respectively. In addition, the humidity detection unit 53 may be configured to include the humidity sensor 75 and the temperature sensor 76 separately in place of the temperature/humidity sensor. Alternatively, one or both of the humidity sensor 75 and the temperature sensor 76 may be provided at the external of the housing 12.
The control unit 70 is input with, via a non-illustrated input interface, an operation signal generated when the operation unit 74 is operated, a humidity detection value detected by the humidity sensor 75, a temperature detection value detected by the temperature sensor 76, an absolute humidity detection value detected by the humidity detection unit 53 based on information about humidity and temperature, a pressure detection signal from the pressure sensor 39, and a temperature detection signal from the temperature detector 73.
The control unit 70 is also electrically coupled with the feeding motor 16, the transport motor 77, the winding motor 19, the discharge unit 28, a carriage motor 78, the suction mechanism 30, the preheater 31, the platen heater 32, the afterheater 33, the gap adjustment mechanism 29, the humidifier 54, and the maintenance device 56. The control unit 70 is also electrically coupled with the heater tube 41 and the air blowing fan 45 configuring the drying device 40. The transport motor 77 is the drive source for the driving roller 25 configuring the transport unit 14. The carriage motor 78 is the drive source for the carriage 27. Note that the liquid discharge apparatus 11, when being a line printer, is electrically configured such that the carriage motor 78 is removed from the configuration in
The print job PJ received by the control unit 70 from the host apparatus 150 contains various commands necessary for the print control, the printing condition information designated by the user, and the print image data. The control unit 70 controls various motors 16, 19, and 77 and the like based on the printing condition information contained in the print job PJ, and controls the discharge unit 28 based on the print image data to discharge a liquid through the nozzles 28A, to thus draw an image with dots formed by droplets that land on the medium 99. Note that hereinafter, the term “print job PJ” is also referred to as “job PJ” in a simple manner.
The control unit 70 drives the gap adjustment mechanism 29 in accordance with a medium type acquired from the printing condition information to displace the carriage 27 along the Z axis, to thus adjust the gap between the discharge unit 28 and the medium 99 to a value corresponding to the medium type. The control unit 70, when the “high definition printing” of high print resolution is required in the job PJ, performs adjustment of the gap between the discharge unit 28 and the medium 99 to a first gap in order to enhance the dot position accuracy of the discharge unit 28. On the other hand, the control unit 70, when the “regular printing” of low print resolution is required in the job PJ, printing speed is prioritized over the dot position accuracy of the discharge unit 28, and thus the gap is adjusted to a second gap greater than the first gap. In this way, even with the same medium type, the gap is adjusted in accordance with the print resolution that is required. Note that the gap adjustment mechanism 29 employs a mechanically driven scheme in which the control unit 70 causes the carriage 27 to reciprocatively move in a predetermined interval within the movement region, and causes the carriage 27 to operate a drive lever (not illustrated) to mechanically drive the gap adjustment mechanism 29, or an electrical operation scheme in which a dedicated motor is driven to adjust the gap.
The control unit 70 measures the elapsed time since the previous cleaning time with a non-illustrated timer, and provides, when the elapsed time has elapsed for a predetermined period of time and reaches the edge period of the job PJ, that is, the cleaning time set before or after the job, a command for performing a discharge maintenance operation to the maintenance device 56 in a state where the carriage 27 is disposed at the home position HP. The maintenance device 56 causes, based on the command from the control unit 70, the cap 57 to be in a capping state where the cap 57 is brought into contact with the nozzle opening surface 28B of the discharge unit 28, and causes a liquid to be forcibly discharged through the nozzles 28A, to thus perform cleaning of the nozzles 28A.
The control unit 70 illustrated in
The reference data RD are data referred to by the control unit 70 when the control unit 70 determines, based on an absolute humidity detected by the humidity detection unit 53, whether the absolute humidity is in a printing environment appropriate region HA suitable for printing. The display data D1 are data of the display screen to be displayed on the display unit 60. The control unit 70 includes a display control unit 81, a medium type determination unit 82, a liquid discharge amount acquisition unit 83, and a roll diameter measuring unit 84 as function units that function by executing the program PR.
The control unit 70 refers to the reference data RD based on the absolute humidity detected by the humidity detection unit 53, and determines whether the absolute humidity falls within the printing environment appropriate region HA. As a result, the control unit 70, when the absolute humidity deviates from the printing environment appropriate region HA, provides a command for causing the display units 60 and 160 to display an indication for the user about the determination result and an indication prompting the user to conduct a countermeasure that can suppress the printing failure to the display control unit 81. The display control unit 81 selects one set of display screen data corresponding to the determination results of the control unit 70 from the display data D1 stored in the storage unit 80, and causes the display unit 60 to display the display screen. The display control unit 81 also provides a command for displaying the display screen corresponding to the determination results to the host apparatus 150. The host apparatus 150 displays the display screen instructed to be displayed by the display control unit 81 on the display unit 160. The display control unit 81 and the host apparatus 150 cause the display units 60 and 160 to display display screens 91 illustrated in
The medium type determination unit 82 determines a medium type being a type of the medium. The medium type determination unit 82 determines the medium type based on medium type information in the printing condition information contained in the job PJ. Examples of the medium type include plain paper, glossy paper, matte paper, and the like. In addition, the information about the medium type contains information about basis weight regarding the medium thickness. Accordingly, the medium type determination unit 82 distinguishes thin paper, cardboard, or the like that are classified by the medium thickness using the information about the basis weight, without the medium type being limited to plain paper, glossy paper, and the like, to determine the medium type. The medium type determination unit 82 determines whether the medium 99 is of a specific medium type.
The liquid discharge amount acquisition unit 83 acquires an average discharge amount, which is the discharge amount per medium area of the liquid discharged from the discharge unit 28. The liquid discharge amount acquisition unit 83 calculates the total amount (g) of the liquid to be discharged for one image based on the image data contained in the job PJ, and divides the total amount of the liquid by the medium area (mm{circumflex over ( )}2) on which the image is to be printed, to thus acquire the average discharge amount (g/mm{circumflex over ( )}2). The value of the average discharge amount is multiplied with “100” to obtain the average discharge amount (%). For example, a solid printing, which ink adheres to the entire image region and with no white space, has the average discharge amount of 100%. Note that the symbol “{circumflex over ( )}” indicates power. The “m{circumflex over ( )}2” indicates square meters. In addition, the “m{circumflex over ( )}3” that will be described later indicates cubic meters.
The roll diameter measuring unit 84 measures the roll diameter of the roll body 102 loaded on the winding unit 17. The roll diameter measuring unit 84 acquires the medium type and the basis weight from the printing condition information of the medium 99. The user also operates the operation panel 72 or the operation unit 170 of the host apparatus 150 to input the initial roll size when the roll body 102 is loaded on the winding unit 17. The roll diameter measuring unit 84 counts the number of pulse edges of the detection pulse input from the rotary encoder configured to detect the rotation of the winding motor to acquire the winding rotation amount of the roll body 102. The roll diameter measuring unit 84 measures the current roll diameter using the initial roll diameter, the winding rotation amount, and the medium thickness. Here, even when the winding force of the winding unit 17 is constant, when the roll diameter of the roll body 102 becomes greater, the front tension exerted on the medium 99 become relatively greater. Note that the roll diameter measuring unit 84 may be configured to include a sensor configured to measure the roll diameter of the roll body 102 loaded on the winding unit 17, to measure the roll diameter based on the detection value of the sensor.
Note that the control unit 70, upon receiving a command for initiating reel measurement in a state where the medium 99 is set to the transport unit 14 after powered on, executes the reel measurement. In the reel measurement, the winding load is measured when the winding unit 17 is caused to wind the medium 99 under a state where no tension is being exerted on the medium 99. The control unit 70 then adds the torque corresponding value of the target tension to be exerted on the medium 99 corresponding to the medium type and the medium width to the torque corresponding value of the winding load obtained from the measurement result of the reel measurement, to obtain a target rotational torque over the control of the winding motor 19. The control unit 70 controls the winding motor 19 with the obtained target rotational torque to thus apply a front tension, which is a tension exerted on the region between the transport unit 14 and the roll body 102 in the medium 99 being wound.
The control unit 70 also controls the amount of transport by which the transport unit 14 transports the medium 99 and the feed amount by which the feeding unit 15 feeds out the medium 99 from the roll body 101, to apply a back tension, which is a tension exerted on the region between the roll body 101 and the transport unit 14 in the medium 99. Specifically, the control unit 70 transports the medium 99 while controlling the feed amount to be slightly less than the transport amount to cause a slight slippage between the rollers, to thus apply a back tension to the medium 99.
In the liquid discharge apparatus 11 of this example, the liquid discharged from the discharge unit 28 is a water-based ink, for example. Accordingly, in the heating and drying process in which the medium 99 to which the discharged liquid adheres is heated for drying, a moisture vapor evaporated from water in the liquid is generated. In addition, the medium 99 is, for example, a paper, and the medium 99 to which the discharged liquid adheres expands when the paper fibers absorb the liquid to swell, and then contracts when the moisture is evaporated and the medium 99 is dried in the heating and drying process. The amount of expansion and contraction of the medium 99 at this time varies depending on the medium type and the average discharge amount (%). Note that the solvent or dispersion medium contained in the liquid may be a water-soluble organic solvent. The solvent or dispersion medium may further be a water-insoluble organic solvent.
In the graph illustrated in
where the absolute humidity represents the density of moisture vapor contained in the atmosphere. In contrast, the amount of moisture (saturated moisture vapor content) that an air can contain in the form of moisture vapor is determined to a constant value by temperature under atmospheric pressure. With this limit value being 100, a numerical value represented by some percentage % of the amount of moisture in the actual air per the maximum limit, is the relative humidity (% RH).
The region below the line LA where the absolute humidity AH is less than the lower limit value A (g/m{circumflex over ( )}3) is a first inappropriate region in which the ratio of the foreign substances FM such as dust and fluff being suspended in the atmosphere is high, facilitating the occurrence of the printing failure caused by nozzle clogging due to the adhesion of the foreign substances FM to the discharge unit 28. Further, the region above the line LB where the absolute humidity AH exceeds the upper limit value B (g/m{circumflex over ( )}3) of the printing environment appropriate region HA is a second inappropriate region in which the wrinkles 99S easily occur due to high humidity. In the second inappropriate region, the medium 99 absorbs the moisture in the atmosphere to increase the moisture content in the medium 99, increasing the total moisture content in the medium 99 to which the liquid has adhered. Then, the amount of expansion and contraction when the medium 99 swells and contracts during the drying process increases. This facilitates the occurrence of the wrinkles 99S. That is, the line LB is a boundary line that indicates the threshold value at which the occurrence of the wrinkles 99S in the medium 99 is facilitated when the absolute humidity exceeds the value of the line LB.
The upper limit value B is a value greater than the lower limit value A (B>A). The lower limit value A is a value within the range from 3 to 7 (g/cm{circumflex over ( )}3), as one example. Further, the upper limit value B is a value within the range from 13 to 20 (g/cm{circumflex over ( )}3), as one example. The lower limit value A and the upper limit value B vary depending on the models of the printer because the printing conditions and the heating/drying conditions vary for each of the models. In addition, the lower limit value A and the upper limit value B vary depending on the types of the medium 99 even with the same one model. Note that in the first embodiment, the lower limit value A corresponds to one example of the first predetermined value, and the upper limit value B corresponds to one example of the second predetermined value.
In the graph of
In addition, the liquid discharge apparatus 11 has a suitable operating environment regarding the absolute humidity. For example, in view of the operating performance of the liquid discharge apparatus 11 and the durability of the components, an operating environment appropriate region MA is set as the range of the absolute humidity suitable for the operation. In the graph illustrated in
The range of the absolute humidity AH defining the printing environment appropriate region HA illustrated in
The control unit 70, when the current absolute humidity deviates from the printing environment appropriate region HA, causes the display unit 60 to display the display screen 91 prompting the user to manually adjust the temperature or humidity, to cause the absolute humidity AH to fall within the printing environment appropriate region HA. For example, the display screen 91 includes a recommended temperature range, a recommended absolute humidity range, a current temperature, a current absolute humidity, and a message 92 prompting the user to manually adjust the content of the message 92 (
Note that the control unit 70 calculates the absolute humidity AH using the relative humidity RH detected by the humidity sensor 75 and the temperature T detected by the temperature sensor 76 by the following method. In addition, the control unit 70 separately determines whether the current absolute humidity falls within the operating environment appropriate region MA. Then, the control unit 70 may determine a content prompting the user to manually adjust the content to cause the absolute humidity AH to fall within the printing appropriate region PA indicated by the hatching in
In the liquid discharge apparatus 11, one set of the job PJ is a unit of command data that can instruct, at one time, the liquid discharge apparatus 11 to print one image or to sequentially print a plurality of images. The user can perform processing called nesting that connects a plurality of images to lengthen the one set of the job PJ, to thus eliminate a wasted white space between images. When a cleaning is performed in the middle of an image when performing printing, color unevenness occurs at the middle of the image. Accordingly, a discharge maintenance operation for cleaning the nozzles 28A before the start or after the termination of the printing operation based on the one set of the job PJ is performed. When the one set of the job PJ is lengthened, the length that can be printed without causing white spaces can be elongated, to thus enhance the productivity of the printed material. However, when the length of the job PJ is lengthened, there is a concern in that the cleaning interval is elongated to increase the occurrence frequency of clogging of the nozzles 28A.
Accordingly, the liquid discharge apparatus 11 guarantees the length of the job PJ that does not cause the printing failure caused by nozzle clogging or the like to occur without performing cleaning. The user sets the length of the job PJ within the range not greater than an upper limit L1 (m) of a guaranteed job length MLBD that is the length of the job PJ that is guaranteed. The user performs processing of connecting a plurality of images within the range not greater than the upper limit of the guaranteed job length MLBD to lengthen the one set of the job PJ to reduce the white space between jobs. In addition, the guaranteed job length MLBD is a value guaranteed when the absolute humidity AH falls within the printing environment appropriate region HA, where the absolute humidity AH is less than the lower limit value A, then the guaranteed job length MLBD is no longer guaranteed. That is, the guaranteed job length MLBD is shortened. In this case, the user processes the length of the job PJ to a value less than the upper limit of the guaranteed job length MLBD that is guaranteed under the humidity at that time after the guaranteed job length MLBD is changed. Even when the absolute humidity AH is less than the lower limit value A, the length of the job PJ is set to be short to less than a predetermined value shorter than the upper limit L1 (m) of the guaranteed job length MLBD, causing the cleaning interval to be shortened. This can contribute to the suppression of the nozzle clogging in the discharge unit 28. This is effective as a countermeasure to suppress nozzle clogging, although reducing the productivity.
Note that the upper limit value B (g/cm{circumflex over ( )}3) is determined by conducting a printing evaluation test on the presence or absence of wrinkles that occur in the medium 99 under various absolute humidity conditions. In the printing evaluation test, under the various absolute humidity conditions, printing is performed on the medium 99 under a predetermined printing condition under which the wrinkles 99S easily occur. The presence or absence of the wrinkles 99S is visually observed for the medium 99 being printed, and the absolute humidity under which the wrinkles 99S do not occur is added with a predetermined margin and is set to the upper limit value B (g/cm{circumflex over ( )}3) of the printing environment appropriate region HA.
The display control unit 81 illustrated in
The display control unit 81, when the humidity detection unit 53 detects a humidity less than the lower limit value A, displays an indication prompting adjustment of the temperature or humidity. In the first embodiment, the lower limit value A corresponds to one example of the first predetermined value. The display control unit 81, when the humidity detection unit 53 detects a humidity exceeding the upper limit value B, also displays an indication prompting adjustment of the temperature or humidity. In the first embodiment, the upper limit value B corresponds to one example of the second predetermined value. In the first embodiment, the display control unit 81 displays an indication prompting adjustment of the temperature of the temperature and humidity. The temperature is adjusted to indirectly adjust the humidity. This is because the temperature can be adjusted by changing the set temperature of the air conditioner, and can be easily coped with compared to the adjustment of the humidity. This is also because, compared to the case where the user manages both the temperature and relative humidity, it is sufficient to perform temperature adjustment when an indication prompting adjustment of the temperature is displayed, which reduces the burden on the user.
The display control unit 81, when the length of the job PJ to be executed by the discharge unit 28 and the transport unit 14 is not less than the predetermined value JL3 in case when the humidity detection unit 53 detects a humidity less than the lower limit value A, displays an indication prompting change of the length of the job PJ to less than a predetermined value JL3. Here, the predetermined value JL3 is a value corresponding to a value corresponding to the print length or the value subtracted with a predetermined margin, where the print length can be printed during the execution interval time of the discharge maintenance operation applied when the humidity detection unit 53 detects the absolute humidity AH within a suitable humidity range (not less than A and less than B). The user viewing the indication then operates the operation unit 74 or 170, and provides a command to the control unit 70 to change the length of the job PJ to less than the predetermined value JL3. The control unit 70, when the length of the job PJ is less than the predetermined value JL3, changes the time to execute the discharge maintenance operation of the discharge unit 28 to before the start or after the termination of the job PJ. Note that in the first embodiment, the predetermined value JL3 corresponds to one example of the third predetermined value.
The display control unit 81, when the humidity detection unit 53 detects a humidity exceeding the upper limit value B and when the diameter of the medium in a rolled form is not less than a predetermined value WD4 (cm), also displays an indication prompting change of the length of the job PJ to be executed by the discharge unit 28 and the transport unit 14. Here, the predetermined value WD4 is a value that facilitates the occurrence of the lateral displacement of the medium 99 when the roll diameter becomes not less than the value. Note that in the first embodiment, the predetermined value WD4 corresponds to one example of the fourth predetermined value.
The display control unit 81, when the humidity detection unit 53 detects a humidity exceeding the upper limit value B and when the diameter of the medium in a rolled form is not less than the predetermined value WD4, displays an indication prompting setting the total job length, which is the lengths of all of the jobs when the display control unit 81 causes the discharge unit 28 and the transport unit 14 to execute the job and causes the winding unit 17 to wind the medium 99 into a rolled form, to be less than a predetermined value JL5. Here, the predetermined value JL5 is a value shorter than the maximum total job length allowed when the humidity detection unit 53 detects a humidity not greater than the upper limit value B. Note that in the first embodiment, the predetermined value JL5 corresponds to one example of the fifth predetermined value. The display control unit 81, based on the humidity detected by the humidity detection unit 53, also displays the time to execute the discharge maintenance operation of the discharge unit 28.
Next, with reference to
Next, the action of the liquid discharge apparatus 11 will be described below. The foreign substances FM adhering to the medium 99 and the foreign substances FM suspended in the air intrude into the housing 12 through the feeding port 12A. The foreign substances FM intruded into the housing 12 are positively or negatively charged. The discharge unit 28, which is at an electrical potential of 0 V, facilitates the foreign substances FM that is charged to adhere to the nozzle opening surface 28B. The foreign substances FM adhering to the nozzle opening surface 28B induces nozzle clogging. Note that the nozzle clogging refers to a phenomenon that droplets cannot be normally discharged, and includes, in addition to the phenomenon that a liquid cannot be discharged, a phenomenon that the amount of discharging the liquid is less than the amount at normal time.
Incidentally, the amount of the foreign substances FM suspended in the air varies depending on the absolute humidity. When the absolute humidity is low, the foreign substances FM are easily suspended in the air. Thus, the amount of the foreign substances suspended in the air increases. On the other hand, when the absolute humidity is high, the foreign substances FM contain moisture and are less likely to be suspended in the air. Thus, the amount of the foreign substances suspended in the air decreases. When the absolute humidity is low as such, the amount of foreign substances FM suspended in the air inside the housing 12 increases, facilitating the occurrence of nozzle clogging, which is unfavorable as a printing environment. Accordingly, in the first embodiment, printing in an environment where the absolute humidity is not less than the lower limit value A is recommended. Note that there is a tendency that the absolute humidity becomes higher as the temperature becomes higher.
On the other hand, when the humidity is high, the medium 99 absorbs the moisture in the air, and the moisture content of the medium 99 is high. When the moisture content of the medium 99 before performing printing is high, the total moisture content of the medium 99, which is the sum with the moisture in the liquid discharged to the medium 99, is high, facilitating the occurrence of the wrinkles 99S and floating of the medium 99, and moreover, causing the medium 99 to be hardly dried. Accordingly, in the first embodiment, printing in an environment in which the absolute humidity is not greater than the upper limit value B is recommended. Note that there is a tendency that the absolute humidity becomes lower as the temperature becomes lower.
The user operates the operation unit 170 of the host apparatus 150 or the operation unit 74 of the liquid discharge apparatus 11 to input and set the printing condition information. For example, the user performs nesting to connect a plurality of images, to create one set of the job PJ. The user also sets the number of times of printing by which the one set of the job PJ is repeatedly executed. The user further sets the set temperature of the heaters 31 to 33, the heating temperature and the blowing air volume of the drying device 40, and the ventilation air volume of the fan 51. The printing condition information contains medium size, medium type, print color, job length, number of times of printing, total job length, heater temperature, heating temperature, blowing air volume, ventilation air volume, and the like.
The user causes the medium 99 drawn from the roll body 101 loaded on the feeding unit 15 to be nipped by the rollers 25 and 26 to set the medium 99 on the transport unit 14. Before the start of the printing operation, a preparatory operation is executed until the drying device 40 is heated to a target temperature. The user also operates the operation unit 170 of the host apparatus 150 or the operation unit 74 of the liquid discharge apparatus 11 to instruct the control unit 70 to perform the reel measurement. The motors 19 and 77 are controlled to apply a predetermined front tension based on the measurement results of the reel measurement. The motors 16 and 77 are also controlled to apply a predetermined back tension. This allows the medium 99 to be applied with a predetermined suitable tension. Note that the dust catcher 55 is installed only when necessary because the transport load due to the sliding of the curved portion 63 against the printed surface 99A causes the back tension to be greater than a suitable value, which causes an influence on the printing position accuracy.
The control sequence executed by the control unit 70 will be described below. The control unit 70, after the liquid discharge apparatus 11 is powered on, executes the control sequence illustrated in the flowchart in
First, in step S11, the control unit 70 acquires an absolute humidity. The control unit 70 acquires the absolute humidity AH detected by the humidity detection unit 53. Alternatively, the control unit 70 may execute a predetermined calculation based on the relative humidity RH detected by the humidity sensor 75 configuring the humidity detection unit 53 and the temperature T (° C.) detected by the temperature sensor 76 to acquire the absolute humidity AH. Note that in the first embodiment, the processing in step S11 corresponds to one example of the “humidity detection step”.
In step S12, the control unit 70 determines whether the absolute humidity is less than the lower limit value A. When the absolute humidity AH is less than the lower limit value A, the process proceeds to step S13, while when the absolute humidity AH is not less than the lower limit value A, that is, equal to or greater than the lower limit value A, the process proceeds to step S21.
In step S13, the display control unit 81 prompts adjustment of the temperature. As illustrated in
In step S14, the control unit 70 determines whether the length of the job is less than a predetermined value. When the length of the job is not less than the predetermined value, the control unit 70 proceeds to step S15, while when the length of the job is less than the predetermined value, the control unit 70 proceeds to step S17. Note that the predetermined value corresponds to the print length that can be printed at a predetermined printing speed during the execution interval time of the discharge maintenance operation. The predetermined printing speed is the print speed employed during the execution of the job PJ.
In step S15, the display control unit 81 prompts processing of the job. As illustrated in
In the next step S16, the control unit 70 determines whether the processing of the job has been done. When the processing of the job has been done, the control unit 70 proceeds to step S17, while when the processing of the job has not been done, the control unit 70 proceeds to step S18.
In step S17, the control unit 70 performs adjustment of the time of the discharge maintenance operation. That is, the control unit 70 performs adjustment of the time of the discharge maintenance operation that the maintenance device 56 performs cleaning of the nozzles 28A of the discharge unit 28. The control unit 70 performs adjustment of the time of the discharge maintenance operation in accordance with the job length (positive determination in step S14) less than the predetermined value JL3 or the job length processed to less than the predetermined value JL3 (positive determination in step S16). That is, the control unit 70 changes the time of the discharge maintenance operation to before the start or after the termination of the job PJ, which has the job length less than the predetermined value JL3. The display control unit 81 then causes the display units 60 and 160 to display the time of the discharge maintenance operation at a predetermined display time (see
In this way, the execution interval of the discharge maintenance operation executed by the maintenance device 56 is adjusted to be short in accordance with the job length. Accordingly, the absolute humidity AH is raised by performing adjustment to raise the temperature when the absolute humidity AH is less than the lower limit value A, however, even if the absolute humidity AH remains less than the lower limit value A and does not fall within the printing environment appropriate region HA, the execution frequency of the discharge maintenance operation increases to suppress the nozzle clogging.
In step S18, the control unit 70 determines whether the discharge amount is less than a predetermined value. The discharge amount herein referred to is a discharge amount per unit area. The control unit 70 causes the liquid discharge amount acquisition unit 83 to acquire the discharge amount per unit area. The liquid discharge amount acquisition unit 83 calculates the total amount of the liquid discharged in one image based on the image data contained in the job PJ and divides the total amount of the liquid by the medium area to which the image is to be printed, to acquire the discharge amount of the liquid per unit area, that is, the amount of the liquid per unit area. Here, the predetermined value indicates a discharge amount per unit area that is small not to adversely affect the drying of the medium 99 even when humidifying the interior of the housing 12. The control unit 70 determines whether the discharge amount is less than 5 g/m{circumflex over ( )}2, for example. When the discharge amount is less than the predetermined value, the control unit 70 proceeds to step S19, while when the discharge amount is not less than the predetermined value, the control unit 70 proceeds to step S20. Here, when the discharge amount is less than the predetermined value, the medium 99, to which the liquid is discharged, is easily dried. Thus, there is no issue even if humidification is performed to some extent. However, when the discharge amount is not less than the predetermined value, the medium 99 to which the liquid has been discharged is hardly dried when humidification is performed, and there is a concern in that drying of the medium 99 is inhibited. Note that in step S18, the control unit 70 may determine whether the printed image pattern is a specific pattern that can be deemed as a solid pattern, in addition to determining whether the discharge amount is less than the predetermined value. Here, the specific pattern indicates a pattern in which the occupancy of the liquid adhesion area with respect to the area of the region to be printed on the medium 99 is 80% or greater. For example, the solid pattern satisfies the condition of the specific pattern. In this case, the control unit 70 proceeds to step S20 when the discharge amount is less than the predetermined value and is not the specific pattern, and otherwise terminates the routine.
In step S19, the control unit 70 humidifies the interior of the housing 12. The control unit 70 humidifies the interior of the housing 12 by one of the two methods. One method is that the humidifier 54 provided inside the housing 12 is driven. The humidifier 54 converts water in the water reservoir section into mist or moisture vapor. The other method is that the drying device 40 is caused to heat the medium 99 under a state where the fans 45 and 51 are stopped. The third airflow AF3, which includes moisture vapor evaporated from a liquid by heating the medium 99, flows upward by a chimney effect between the drying device 40 and the downstream support portion 23 and flows into the housing 12 through the exhaust port 12B. This allows the interior of the housing 12 to be humidified. Note that the fan 51 may be driven with a small blowing air volume that does not inhibit the third airflow AF3 from flowing into the housing 12. In this case, the second airflow AF2, which is generated when the fan 51 takes a clean air into the housing 12, is mainly exhausted through the feeding port 12A, and the interior of the housing 12 is ventilated with the second airflow AF2.
In step S20, the display control unit 81 displays an indication prompting installation of a dust catcher. As illustrated in
Note that when the humidification is not performed, the control unit 70 drives the fan 51 to generate the second airflow AF2, to thus ventilate the interior of the housing 12 with a clean air, removing the foreign substances FM inside the housing 12. That is, the fan 51 is driven to cause the clean air filtered through the filter 52 to be taken into the housing 12 through the intake port 12C at the upper portion of the housing 12, and the second airflow AF2 being clean that is thus taken in flows at the periphery of the discharge unit 28, thus removing the foreign substances FM from the periphery of the discharge unit 28. This makes the foreign substances FM hardly adhere to the discharge unit 28.
In step S21, the control unit 70 determines whether the absolute humidity exceeds the upper limit value B. When the absolute humidity AH exceeds the upper limit value B, the control unit 70 proceeds to step S22, while when the absolute humidity is not greater than the upper limit value B, the control unit 70 terminates the routine. That is, when the absolute humidity AH falls within the printing environment appropriate region HA in which the absolute humidity is not less than the lower limit value A and not greater than the upper limit value B, and is an absolute humidity suitable for printing, the control unit 70 terminates the routine.
In step S22, the display control unit 81 prompts adjustment of the temperature. As illustrated in
In step S23, the control unit 70 determines whether the medium 99 is of a specific medium type. Specifically, the medium type determination unit 82 determines whether the medium 99 is of a specific medium type. Here, the specific medium type refers to the medium 99 such as a paper of thin thickness. For example, the specific medium type refers to a medium such as a thin paper with basis weight of 90 g/m{circumflex over ( )}2 or less. In case of the thin paper, the liquid content ratio, which is the ratio of the amount of a liquid such as ink occupying in the volume of the medium 99 is high. Thus, the wrinkles 99S easily occur due to the large amount of expansion and contraction when the medium 99 expanded in the swelling process contracts during the drying process. When the medium 99 is of the specific medium type, the control unit 70 proceeds to step S24, while when not of the specific medium type, the control unit 70 terminates the routine.
In step S24, the control unit 70 determines whether the discharge amount is less than the predetermined value. The control unit 70 causes the liquid discharge amount acquisition unit 83 to acquire the discharge amount per unit area. For example, the control unit 70 determines whether the discharge amount per unit area is less than 10 g/m{circumflex over ( )}2. When the discharge amount is less than the predetermined value, the control unit 70 proceeds to step S25, while when the discharge amount is not less than the predetermined value, the control unit 70 proceeds to step S26. Note that in step S24, the control unit 70 may determine whether the printed image pattern is the specific pattern that can be deemed as a solid pattern, in addition to determining whether the discharge amount is less than the predetermined value. Here, the specific pattern indicates a pattern in which the occupancy of the liquid adhesion area with respect to the area of the medium 99 is 80% or greater. For example, the solid pattern satisfies the condition of the specific pattern. In this case, the control unit 70 proceeds to step S26 when the discharge amount is not less than the predetermined value and the printed image pattern is the specific pattern.
In step S25, the control unit 70 lowers the heater temperature. When the medium 99 is of a medium type other than the specific medium type, the medium 99 to which only the liquid discharged at the discharge amount of less than the predetermined value adheres, when heated at a prescribed heat-set temperature, contracts greatly, facilitating the occurrence of the wrinkles 99S. Accordingly, the heater temperature is lowered to suppress the occurrence of the wrinkles 99S due to the drying shrinkage of the medium 99. Here, the heater temperature may be the heat-set temperature of the heaters 31 to 33 without being limited to the heat-set temperature of the heater tube 41 of the drying device 40. Any one, any two, any three, or all of the heater temperatures from among the heater tube 41 and the heaters 31 to 33 may be lowered. In particular, it is preferred that the heat-set temperature of one or both of the drying device 40 and the afterheater 33 be lowered. Further, the lowering of the heater temperature is not limited to reducing the amount of current supplied to the heater, and may include a lowering of the temperature that does not energize the heater, that is, the heater temperature is lowered to the room temperature, for example. Note that, in a configuration in which the user needs to manually adjust the heater temperature, the display control unit 81 may cause the display units 60 and 160 to display a display screen including a message prompting the heater temperature to be lowered. In this case, the user operates the operation unit 74 or 170 to perform adjustment to lower the heater temperature with respect to the liquid discharge apparatus 11.
In step S26, the control unit 70 determines whether the roll diameter is less than a predetermined value. The control unit 70 acquires the roll diameter of the roll body 102 at present from the roll diameter measuring unit 84. The control unit 70 determines whether the current roll diameter is less than a predetermined value WD4. The predetermined value WD4 is the lower limit value of the range of the roll diameter, which facilitates the occurrence of the lateral displacement of the medium 99 when the roll diameter becomes not less than this value, or is a roll diameter shorter than the lower limit value by a predetermined margin length. The predetermined value WD4 may be set as a common value among a plurality of medium types, or may be set as individual values corresponding to the medium types. When the roll diameter is less than the predetermined value WD4, the process proceeds to step S27, while when the roller diameter is not less than the predetermined value WD4, the process proceeds to step S28.
In step S27, the control unit 70 reduces the winding force. Specifically, the control unit 70 performs control to reduce the rotational speed or rotational torque of the winding motor 19, and by thus reducing the winding force, reduces the front tension exerted on the medium 99 at the portion between the transport unit 14 and the winding unit 17. This makes it possible to suppress the occurrence of the wrinkles 99S in the medium 99. Note that in step S27, the control unit 70, in place of the front tension or in addition to the front tension, may control the feeding motor 16 to reduce the back tension exerted on the medium 99 at the portion between the feeding unit 15 and the transport unit 14. Note that, in a configuration in which the user needs to manually reduce the winding force and to perform adjustment, the display control unit 81 may cause the display unit 60 or 160 to display a message prompting reduction of the winding force. The user viewing the message operates the operation unit 74 or 170 to instruct the liquid discharge apparatus 11 to reduce the winding force.
In step S28, the display control unit 81 prompts change of the total job length. Here, when the roll diameter of the roll body 102 is large, which is not less than the predetermined value WD4, a lateral displacement easily occurs between the layers in the medium 99 wound in a plurality of layers in a rolled form. The lateral displacement of the medium 99 during winding causes the occurrence of the wrinkles 99S that extend in the longitudinal direction in the medium 99, and when the wrinkles 99S propagate upstream to the vicinity of the position facing the discharge unit 28, a printing failure may be caused. Further, in the roll body 102, there is a tendency that the roll diameter becomes greater in the range of the predetermined value WD4 or greater, then the amount of the lateral displacement becomes greater. Then, the display control unit 81, when the current roll diameter is not less than the predetermined value WD4, displays an indication prompting the total job length to be shortened in order to prevent the lateral displacement or suppress the lateral displacement to a small degree.
As illustrated in
The user viewing the message 92 operates the job processing screen button 93 in the display screen 91 to open the job processing screen. The user operates the operation unit 74 or 170 on the job processing screen, to change the job length of the job PJ being executed to be short if printing is being performed, and to change the job length of the job PJ to be executed to be short if printing is to be performed. Examples of the change of the job length include reprocessing the job to shorten the content of the job as is, reducing the number of times of printing of the job, and the like. In this way, the user changes the total job length to be short. The control unit 70, upon receiving the operation signal that the user operates to change the job length, updates the job length of the job PJ being executed or the job length of the job PJ to be executed to the changed value, and updates the total job length in conjunction with the updating of the job length.
This allows the printing to be performed with the changed total job length. The roll diameter of the roll body 102 wound around the winding unit 17 does not become excessively large because the total job length is not excessively long, which prevents the lateral displacement from occurring in the medium 99. This makes it possible to suppress an occurrence of the wrinkles 99S, a printing failure, a winding displacement of the roll body 102, and the like due to the lateral displacement of the medium 99.
Further, the display control unit 81 causes the display units 60 and 160 to display the display screen 91 indicating the time to execute the discharge maintenance operation illustrated in
As described above in detail, according to the first embodiment, the following advantageous effects are achieved.
(1) The liquid discharge apparatus 11 includes the transport unit 14 configured to transport the medium 99, the discharge unit 28 configured to discharge a liquid onto the medium 99, and the humidity detection unit 53 configured to detect a humidity. The liquid discharge apparatus 11 includes the display control unit 81 configured to display an indication prompting adjustment of the temperature when the humidity detection unit 53 detects a humidity less than the lower limit value A (one example of the first predetermined value) or when the humidity detection unit 53 detects a humidity exceeding the upper limit value B (one example of the second predetermined value) greater than the lower limit value A. Thus, the user can be notified that the humidity has deviated from a suitable range. The user adjusts the temperature in accordance with the indication prompting adjustment of the temperature or humidity. This allows the humidity to be adjusted to a suitable range of not less than the lower limit value A or not greater than the upper limit value B. For example, this makes it possible to suppress the clogging in the discharge unit 28 due to the foreign substances FM such as dust and fluff that are easily suspended in the air when the humidity is low, which is less than the lower limit value A. In this case, the printing failure due to the discharge failure caused by the clogging in the discharge unit 28 is suppressed. Further, for example, the wrinkles S99 of the medium 99 that easily occur when the humidity exceeds the upper limit value B are suppressed. In this case, the printing failure that occurs when a liquid is discharged to the wrinkles 99S of the medium 99 or the wrinkles 99S are rubbed against the discharge unit 28 is suppressed.
(2) The display control unit 81, when the humidity detection unit 53 detects a humidity less than the lower limit value A, displays an indication prompting the length of the job PJ to be executed by the discharge unit 28 and the transport unit 14 to be less than the predetermined value JL3 (one example of the third predetermined value) shorter than a predetermined job length allowed when the humidity detection unit 53 detects a humidity being not less than the lower limit value A. Thus, the user can be notified of a countermeasure to be conducted in order to suppress the printing failure caused by the clogging in the discharge unit 28 while suppressing the printing failure due to the execution of the discharge maintenance operation during printing. For example, the user sets the length of the job to be shorter than the predetermined value JL3. This makes it possible to increase the execution frequency of the discharge maintenance operation while avoiding the execution of the discharge maintenance operation during the execution of printing of the job PJ. Thus, this makes it possible to suppress the printing unevenness due to the execution of the discharge maintenance operation during printing of the image and the printing failure caused by the clogging in the discharge unit 28, for example.
(3) The control unit 70, when the length of the job PJ is less than the predetermined value JL3, changes the time to execute the discharge maintenance operation of the discharge unit 28 to before the start or after the termination of the job. Thus, when the humidity detection unit 53 detects a humidity less than the lower limit value A, the time or print length until the discharge maintenance operation is executed is shortened than the value allowed when the humidity is not less than the lower limit value A, to thus suppress the printing failure caused by the clogging in the discharge unit 28.
(4) The display control unit 81, when the humidity detection unit 53 detects a humidity exceeding the upper limit value B and when the diameter of the roll body 102, which is the diameter of the medium 99 in a rolled form, is not less than the predetermined value WD4 (one example of the fourth predetermined value), displays an indication prompting change of the length of the job PJ to be executed by the discharge unit 28 and the transport unit 14. Thus, the user can be notified, by the indication, of a countermeasure to be conducted in order to suppress the lateral displacement of the medium 99, which easily occurs when the diameter of the roll body 102 is not less than the predetermined value WD4. For example, the user viewing the indication can change the length of the job PJ to suppress the lateral displacement of the medium 99. For example, this makes it possible to suppress the wrinkles 99S, the printing failure, the winding displacement, and the like due to the lateral displacement of the medium 99.
(5) The display control unit 81, when the humidity detection unit 53 detects a humidity exceeding the upper limit value B and when the diameter of the roll body 102, which is the diameter of the medium 99 in a rolled form, is not less than the predetermined value WD4, displays an indication prompting change of the length of the job PJ. The display control unit 81 displays, as the indication prompting change of the length of the job PJ, an indication prompting setting the total job length, which is the lengths of all of the jobs when the display control unit 81 causes the discharge unit 28 and the transport unit 14 to execute the job and causes the winding unit 17 to wind the medium 99 into a rolled form, to be less than the predetermined value JL5 (one example of the fifth predetermined value). The predetermined value JL5 is a value shorter than the maximum total job length allowed when the humidity detection unit 53 detects a humidity not greater than the upper limit value B, that is, when the humidity is the absolute humidity AH within the printing environment appropriate region HA. Thus, the user can be notified, by the indication, of a countermeasure for changing the length of the total job to be short in order not to cause the lateral displacement to occur in the medium 99. For example, the user viewing the indication shortens the length of the job PJ or reduces the number of time of printing of the job PJ to change the total job length to be short to less than the predetermined value JL5. This makes it possible to suppress the lateral displacement of the medium 99.
(6) The display control unit 81, based on the absolute humidity AH detected by the humidity detection unit 53, displays the time to execute the discharge maintenance operation of the discharge unit 28. Thus, the user can be notified of the time to execute the discharge maintenance operation. For example, the user can conduct a countermeasure such as for changing the length of the job PJ in accordance with the time to execute the discharge maintenance operation.
(7) The display control method for the liquid discharge apparatus 11 provides a display control method for displaying information corresponding to the humidity detected by the humidity detection unit 53 in the liquid discharge apparatus 11 including the transport unit 14 configured to transport the medium 99, the discharge unit 28 configured to discharge a liquid onto the medium 99, and the humidity detection unit 53 configured to detect a humidity. The display control method includes a humidity detection step in which the humidity detection unit 53 detects a humidity (step S11), and a first display step in which an indication is displayed prompting adjustment of the temperature or humidity when the humidity detection unit 53 detects a humidity less than the lower limit value A (steps S12 and S13). The display control method also includes a second display step in which an indication is displayed prompting adjustment of the temperature or humidity when the humidity detection unit 53 detects a humidity exceeding the upper limit value B greater than the lower limit value A (steps S21 and S22). Thus, according to the display control method, the same advantageous effect as in the liquid discharge apparatus 11 described in the above-described item (1) is achieved.
Next, the second embodiment will be described below with reference to
As illustrated in
Further, in step S21, when the control unit 70 determines that the absolute humidity exceeds the upper limit value, the display control unit 81 displays, in step S32, an indication prompting control of the humidity. As illustrated in
When the liquid discharge apparatus 11 is configured to include a dehumidifier, the user viewing the display screen 91 operates the operation unit 74 or 170 to instruct the liquid discharge apparatus 11 to drive the dehumidifier. Further, the user may drive a dehumidifier of another apparatus disposed at the periphery or in the interior of the liquid discharge apparatus 11 to lower the absolute humidity at the periphery or in the interior of the liquid discharge apparatus 11. As a result of the dehumidification, the absolute humidity AH inside and outside the housing 12 lowers, facilitating drying of the medium 99 after performing printing. In addition, this makes it possible to suppress the occurrence of the wrinkles 99S without reducing the tension exerted on the medium 99, or without applying or enhancing the suction force of the suction mechanism 30, thus, an image and the like can be printed on the medium 99 with high print quality. Note that in step S21, when the control unit 70 determines that the absolute humidity is not greater than the upper limit value B (negative determination in step S21), the control unit 70 terminates the routine. That is, when the absolute humidity AH falls within the printing environment appropriate region HA in which the absolute humidity is not less than the lower limit value A and not greater than the upper limit value B, and is an absolute humidity suitable for printing, the control unit 70 terminates the routine as in the above-described first embodiment.
Note that the above-described embodiments may also be modified as embodiments in the following modifications. Moreover, the combinations as appropriate of the above-described embodiments and the modifications described below can be further modifications, and the combinations as appropriate of the modifications described below can be further modifications.
Hereinafter, technical concepts recognized from the above-described embodiments and modifications will be described along with the advantageous effects.
A liquid discharge apparatus includes a transport unit configured to transport a medium, a discharge unit configured to discharge a liquid onto the medium, a support portion that supports a portion of the medium, the liquid being discharged from the discharge unit onto the portion of the medium, a housing including therein the discharge unit, a humidity detection unit configured to detect a humidity, and a display control unit configured to display an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity less than a first predetermined value, and configured to display an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity exceeding a second predetermined value greater than the first predetermined value.
According to the above configuration, when the humidity detection unit detects a humidity less than the first predetermined value, an indication prompting adjustment of the temperature or humidity is displayed, and when the humidity detection unit detects a humidity exceeding a second predetermined value greater than the first predetermined value, an indication prompting adjustment of the temperature or humidity is displayed. Thus, the user can be notified that the humidity has deviated from a suitable range. The user adjusts the temperature or humidity in accordance with an indication prompting adjustment of the temperature or humidity. This allows the humidity to be adjusted to a suitable range of not less than the first predetermined value or not greater than the second predetermined value. For example, this makes it possible to suppress the clogging in the discharge unit due to the foreign substances such as dust and fluff that are easily suspended in the air when the humidity is low, which is less than the first predetermined value. In this case, the printing failure due to the discharge failure caused by the clogging in the discharge unit is suppressed. In addition, for example, the wrinkles of the medium that easily occur when the humidity exceeds the second predetermined value are suppressed. In this case, the printing failure that occurs when a liquid is discharged to the wrinkles of the medium or the wrinkles are rubbed against the discharge unit is suppressed.
In the above-described liquid discharge apparatus, when the humidity detection unit detects a humidity less than the first predetermined value, the display control unit may display an indication prompting setting a length of a job to be executed by the discharge unit and the transport unit to be less than a third predetermined value.
According to the above configuration, the user can be notified of a countermeasure to be conducted in order to suppress the printing failure caused by the clogging in the discharge unit while suppressing the printing failure due to the execution of the discharge maintenance operation during printing. The user may set the length of the job to be shorter than the third predetermined value. This makes it possible to suppress the printing unevenness due to the execution of discharge maintenance operation during printing of the image and the printing failure caused by the clogging in the discharge unit, for example.
The liquid discharge apparatus may include a control unit configured to change a timing, at which a discharge maintenance operation of the discharge unit is executed, to before a start of a job or after a completion of the job when the length of the job is less than the third predetermined value.
According to the above configuration, when the length of the job is less than the third predetermined value, the timing, at which the discharge maintenance operation is executed, is changed to perform the discharge maintenance operation of the discharge unit before the start of or after the job. This allows the discharge maintenance operation of the discharge unit to be performed before the start of or after the job having a length less than the third predetermined value. The time or the print length until the discharge maintenance operation is executed may be shortened compared to a value allowed when the humidity is not less than the first predetermined value. For example, the printing failure caused by the clogging in the discharge unit is suppressed.
The liquid discharge apparatus may further include a winding unit configured to wind the medium, onto which a liquid is discharged from the discharge unit, in a rolled form, wherein the display control unit may display an indication prompting change of the length of the job to be executed by the discharge unit and the transport unit, when the humidity detection unit detects a humidity exceeding the second predetermined value and when a diameter of the medium in a rolled form is not less than a fourth predetermined value.
According to the above configuration, the user can be notified, by the indication, of a countermeasure to be conducted in order to suppress a lateral displacement of the medium 99 that easily occurs when the diameter of the medium 99 in a rolled form is not less than the fourth predetermined value. For example, the user viewing the indication can change the length of the job to suppress the lateral displacement of the medium.
In the above-described liquid discharge apparatus, the indication prompting change of the length of the job may be an indication prompting setting a total job length for all of jobs to be less than a fifth predetermined value, the jobs being executed when the discharge unit and the transport unit are to be executed to wind the medium into a rolled form around the winding unit.
According to the above configuration, the user can be notified, by the indication, that the total job length is shortened to less than the fifth predetermined value as a countermeasure to be conducted in order to suppress a lateral displacement of the medium. For example, the user viewing the indication adjusts the total job length to be short to less than the fifth predetermined value. This makes it possible to suppress a lateral displacement of the medium that easily occurs when the diameter of the medium wound in a rolled form becomes not less than the fourth predetermined value.
In the above-described liquid discharge apparatus, the display control unit may be configured to display a time to execute a discharge maintenance operation of the discharge unit based on the humidity detected by the humidity detection unit.
According to the above configuration, the user can be notified of the time to execute the discharge maintenance operation. For example, this makes it possible to conduct a countermeasure for changing the length of the job in accordance with the time to execute the discharge maintenance operation.
A display control method for a liquid discharge apparatus is a display control method for the liquid discharge apparatus including a transport unit configured to transport a medium, a discharge unit configured to discharge a liquid onto the medium, and a humidity detection unit configured to detect a humidity, the liquid discharge apparatus displaying information corresponding to the humidity, the display control method including: a humidity detection step for detecting a humidity by the humidity detection unit, a first display step for displaying an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity less than a first predetermined value, and a second display step for displaying an indication prompting adjustment of a temperature or humidity when the humidity detection unit detects a humidity exceeding a second predetermined value greater than the first predetermined value. According to the above configuration, the same advantageous effect as in the above-described liquid discharge apparatus is achieved.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-057887 | Mar 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20020101472 | Tsuboi | Aug 2002 | A1 |
20040041892 | Yoneyama | Mar 2004 | A1 |
20080238982 | Kaneko et al. | Oct 2008 | A1 |
20160263923 | Tsubota | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2006-150873 | Jun 2006 | JP |
2015-178179 | Oct 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20200307186 A1 | Oct 2020 | US |