The entire disclosure of Japanese Patent Application No. 2016-157193, filed Aug. 10, 2016 is expressly incorporated by reference herein.
The present invention relates to a technology that distributes a liquid such as ink.
In a liquid discharge apparatus that discharges ink from nozzles that communicate with pressure chambers provided in a liquid discharge head by changing the pressure inside each pressure chamber, there is a risk of incomplete discharge from a nozzle occurring because of a bubble having entered a common liquid chamber that communicates with a plurality of pressure chambers so as to supply ink. Therefore, technologies that expel ink from nozzles to expel bubbles with flows of ink during maintenance have been proposed. For example, in JP-A-2015-30153, taking it into account that the longer and narrower the internal space (flow path) of a common liquid chamber is made in a direction in which ink supply openings to pressure chambers are aligned, the more easily bubbles reside, the flow speed of ink is made relatively high at end portions of the common liquid chamber in the alignment direction of the ink supply openings to the pressure chambers at the time of expelling ink from the nozzles during maintenance, so that bubbles are easily expelled with flows of ink.
However, the local increase of the flow speed of ink at the end portions of the common liquid chamber in the alignment direction of the ink supply openings to the pressure chambers as in JP-A-2015-30153 does not necessarily cause bubbles residing at locations other than the end portions (e.g., in a central portion) to be easily expelled. Increasing the amount of ink discharged from the nozzle during maintenance will increase the overall flow speed of ink in the common liquid chamber and therefore will more easily expel bubbles. However, this will result in increased amounts of ink expelled for maintenance.
An advantage of some aspects of the invention is that the bubble expelling capability is improved while the amount of liquid expelled during maintenance is restrained.
An aspect of the invention provides a liquid discharge apparatus that includes a plurality of pressure chambers that generate a pressure for discharging a liquid, a plurality of nozzles that communicate individually with the pressure chambers arranged in one direction and that discharge the liquid from the pressure chambers, a common liquid chamber that includes a plurality of supply openings which are arranged along an arrangement of the pressure chambers and through which the liquid is supplied individually to the pressure chambers and that has, at an end portion side in an arrangement direction of the supply openings, a region in which flow speed of the liquid flowing toward the supply openings is higher than in another region, and a controller that controls a maintenance by expelling the liquid from the nozzles. During the maintenance, the controller controls expelling the liquid from a first nozzle that is one of the nozzles from which the liquid is expelled during the maintenance to a second nozzle that is one of nozzles located on the end portion side of the first nozzle in the arrangement direction of the supply openings, in an order of the first nozzle to the second nozzle. According to the foregoing construction, during maintenance, the liquid expelling is performed in the order of the first nozzle to the second nozzle, so that local flows toward which bubbles are drawn are generated in the common liquid chamber in the order of the supply opening that communicates with the pressure chamber of the first nozzle to the supply opening that communicates with the pressure chamber of the second nozzle. Since the second nozzle is located at the end portion side of the first nozzle, local flows in the common liquid chamber shift toward the end portion. Because of this, bubbles in the common liquid chamber are drawn by local flows to move in the direction toward the end portion so that bubbles are led to a region in which the flow speed is high. In a region with high flow speed, bubbles are more likely to be expelled than in other regions. Therefore, moving bubbles into a region of the end portion in which the flow speed is high will improve the capability of expelling bubbles while minimizing the amount of ink expelled during the maintenance process.
Another aspect of the invention provides a liquid discharge apparatus that includes a plurality of pressure chambers that generate a pressure for discharging a liquid, a plurality of nozzles that communicate individually with the pressure chambers arranged in one direction and that discharge the liquid from the pressure chambers, a common liquid chamber that has an inlet opening through which the liquid flows into the common liquid chamber and a plurality of supply openings which are arranged along an arrangement of the pressure chambers and through which the liquid is supplied individually to the pressure chambers, and a controller that controls a maintenance by expelling the liquid from the nozzles. The common liquid chamber has a first width in the one direction on which the inlet opening is located and a second width in the one direction on which the supply openings are located and the second width is greater than the first width. During the maintenance, the controller controls expelling the liquid from a first nozzle that is one of the nozzles from which the liquid is expelled during the maintenance and a second nozzle that is one of nozzles located on the end portion side of the first nozzle in the arrangement direction of the supply openings, in an order of the first nozzle to the second nozzle. According to the foregoing construction, since the common liquid chamber has the first width in the one direction on which the inlet opening is located and the second width in the one direction on which the supply openings are located and the second width is greater than the first width, a region in which the flow speed of the liquid flowing to supply openings is higher than in other regions exists at the end portion side in the alignment direction of the supply openings (the one direction). During the maintenance, the liquid expelling is performed in the order of the first nozzle to the second nozzle, so that local flows that draw bubbles are generated in the common liquid chamber in the order of the supply opening that communicates with the pressure chamber of the first nozzle to the supply opening that communicates with the pressure chamber of the second nozzle. Since the second nozzle is located at the end portion side of the first nozzle, local flows in the common liquid chamber shift toward the end portion. Because of this, bubbles in the common liquid chamber are drawn by local flows to move in the direction toward the end portion so that bubbles are led to a region in which the flow speed is high. In a region with high flow speed, bubbles are more likely to be expelled than in other regions. Therefore, moving bubbles into a region of the end portion in which the flow speed is high will improve the capability of expelling bubbles while minimizing the amount of ink expelled during the maintenance process.
In either one of the foregoing aspects of the invention, the first nozzle and the second nozzle may be adjacent to each other. In this construction, the first nozzle and the second nozzle are adjacent to each other. Therefore, during the maintenance, performing the liquid expelling in the order of the first nozzle to the second nozzle will reduce intervals between local flows generated in the common liquid chamber. Therefore, bubbles can be easily moved to the end portion side even when the bubbles are in a region with low flow speed.
Furthermore, the plurality of nozzles may include a plurality of the first nozzle adjacent to each other and a plurality of the second nozzle adjacent to each other. According to this construction, during the maintenance, the liquid expelling performed in the order of the plurality of first nozzles to the plurality of second nozzles will generate local flows through a plurality of supply openings at a time, so that the moving speed of bubbles will increase.
In the foregoing aspects of the invention, the first nozzle and the second nozzle may be nozzles separated from each other by at least one of the nozzles. According to this construction, since the first nozzle and the second nozzle are separated from each other by one or more nozzles, the maintenance in which the liquid expelling is performed in the order of the first nozzle to the second nozzle increases intervals between local flows generated in the common liquid chamber. There, bubbles can be easily moved to the end portion side even when the bubbles are in a region with high flow speed.
In the foregoing aspects of the invention, the common liquid chamber may have a first region that includes a central portion in the arrangement direction of the supply openings and a second region located at the end portion side of the first region and, of the nozzles from which the liquid is expelled during the maintenance, nozzles in the second region are separated from each other by an interval that is longer than an interval by which nozzles in the first region are separated from each other. In this construction, a high-flow speed region exists at the end portion of the common liquid chamber, so that the flow speed is higher at the end portion side than at the central portion side. Therefore, even when, as in this construction, intervals by which the nozzles in the second region from which the liquid is expelled during the maintenance are separated from each other are made longer than intervals by which the nozzles in the first region are separated from each other, bubbles can be sufficiently moved. This achieves an overall reduction of the amount of the liquid expelled during the maintenance.
In the foregoing aspects of the invention, the common liquid chamber may include a first region that includes a central portion in the arrangement direction of the supply openings and a second region located at the end portion side of the first region and, of the nozzles from which the liquid is expelled during the maintenance, nozzles in the second region each have a less amount of the liquid expelled than each of nozzles in the first region. In this construction, a high-flow speed region exists at the end portion of the common liquid chamber, so that the flow speed is higher at the end portion side than at the central portion side. Therefore, even when, as in this construction, the amount of the liquid expelled from each of the nozzles in the second region is less than the amount of the liquid expelled from each of the nozzles in the first region, bubbles can be sufficiently moved. This achieves an overall reduction of the amount of the liquid expelled during the maintenance.
In the foregoing aspects of the invention, the common liquid chamber may include a first region that includes a central portion in the arrangement direction of the supply openings and a second region located at the end portion side of the first region and number of nozzles from which the liquid is expelled during the maintenance is less in the second region than in the first region. In this construction, a high-flow speed region exists at the end portion of the common liquid chamber, so that the flow speed is higher at the end portion side than at the central portion side. Therefore, even when, as in this construction, the number of nozzles in the second region from which the liquid is expelled during the maintenance is made less than the number of such nozzles in the first region, bubbles can be sufficiently moved. This achieves an overall reduction of the amount of the liquid expelled during the maintenance.
Still another aspect of the invention provides a liquid discharge apparatus that includes a plurality of pressure chambers that generate a pressure for discharging a liquid, a plurality of nozzles that communicate individually with the pressure chambers arranged in one direction and that discharge the liquid from the pressure chambers, a common liquid chamber that includes a plurality of supply openings which are arranged along an arrangement of the pressure chambers and through which the liquid is supplied individually to the pressure chambers and that has, at an end portion side in an arrangement direction of the supply openings, a region in which flow speed of the liquid flowing toward the supply openings is higher than in another region, and a controller that controls a maintenance by expelling the liquid from the nozzles. During the maintenance, the controller controls expelling the liquid from nozzles and stops expelling the liquid in an order of a first nozzle that is one of the nozzles from which the liquid is expelled during the maintenance to a second nozzle that is one of nozzles located on the end portion side of the first nozzle in the arrangement direction of the supply. According to this construction, when, during the maintenance, the liquid is expelled from a plurality of nozzles and the liquid expelling is stopped in the order of the first nozzle to the second nozzle, bubbles in the common liquid chamber are drawn to move toward where flows are generated. Because of this, bubbles in the common liquid chamber move toward the end portion and are therefore led to a high-flow speed region. Since in a high-flow speed region, bubbles are more likely to be expelled than in other regions, movement of bubbles to a high-flow speed region of the end portions will improve the capability of expelling bubbles while minimizing the amount of the liquid expelled during the maintenance.
Yet another aspect of the invention provides a liquid discharge apparatus that includes a plurality of pressure chambers that generate a pressure for discharging a liquid, a plurality of nozzles that communicate individually with the pressure chambers arranged in one direction and that discharge the liquid from the pressure chambers, a common liquid chamber that has an inlet opening through which the liquid flows into the common liquid chamber and a plurality of supply openings which are arranged along an arrangement of the pressure chambers and through which the liquid is supplied individually to the pressure chambers, and a controller that controls a maintenance by expelling the liquid from the nozzles. The common liquid chamber has a first width in the one direction on which the inlet opening is located and a second width in the one direction on which the supply openings are located and the second width is greater than the first width. During the maintenance, the controller controls expelling the liquid from nozzles and stops expelling the liquid from a first nozzle that is one of the nozzles from which the liquid is expelled during the maintenance and a second nozzle that is one of nozzles located on the end portion side of the first nozzle in the arrangement direction of the supply openings, in an order of the first nozzle to the second nozzle. According to this construction, since the common liquid chamber has the first width in the one direction on which the inlet opening is located and the second width in the one direction on which the supply openings are located and the second width is greater than the first width, a region in which the flow speed of the liquid flowing toward supply openings is higher than in other regions exists at the end portion side in the alignment direction of the supply openings (one direction). Then, when, during the maintenance, the liquid is expelled from a plurality of nozzles and the liquid expelling is stopped in the order of the first nozzle to the second nozzle, bubbles in the common liquid chamber are drawn toward where flows are generated. Because of this, bubbles in the common liquid chamber move toward the end portion and are led to a high-flow speed region. Since in a high-flow speed region, bubbles are more likely to be expelled than in other regions, movement of bubbles to a high-flow speed region of the end portion will improve the capability of expelling bubbles while minimizing the amount of the liquid expelled during the maintenance.
In the foregoing aspects of the invention, the liquid discharge apparatus may further include a driving element that generates in the pressure chambers a pressure for discharging the liquid from the nozzles and, during the maintenance, the controller may control expelling the liquid from the nozzles by driving the driving element so as to discharge the liquid from the nozzles. According to this construction, during the maintenance, the liquid is discharged and therefore expelled from nozzles by driving the driving element, so that bubbles in the common liquid chamber are moved to the end portion side and therefore are likely to be expelled.
In the foregoing aspects of the invention, the liquid discharge apparatus may further include a maintenance mechanism that sucks the liquid from the nozzles and, during the maintenance, the controller may control expelling the liquid from the nozzles by using the maintenance mechanism so that the liquid is sucked separately for each nozzle. According to this construction, during the maintenance, the liquid is discharged and therefore expelled from nozzles by using the maintenance mechanism, so that bubbles in the common liquid chamber are moved to the end portion side and therefore are likely to be expelled.
In the foregoing aspects of the invention, during the maintenance, the controller may control a first cleaning in which the liquid is expelled from a plurality of nozzles that include the first nozzle and the second nozzle and then may control a second cleaning in which the liquid is expelled from the plurality of nozzles so that each of the plurality of nozzles has a larger amount of the liquid expelled than each nozzle in the first cleaning. According to this construction, even if a bubble remains without being expelled in the first cleaning, the bubble can be expelled by the second cleaning. Furthermore, since the first cleaning is performed so that bubbles are moved to the end portions of the common liquid chamber that allow bubbles to be easily expelled before the second cleaning is performed, remaining bubbles will be more likely to be expelled than in the case where the second cleaning alone is performed. This further improves the capability of expelling bubbles present in the common liquid chamber.
A further aspect of the invention provides a maintenance method for a liquid discharge apparatus which performs a maintenance by expelling a liquid from a plurality of nozzles, the liquid discharge apparatus including a plurality of pressure chambers that generate a pressure for discharging a liquid, a plurality of nozzles that communicate individually with the pressure chambers arranged in one direction and that discharge the liquid from the pressure chambers, a common liquid chamber that includes a plurality of supply openings which are arranged along an arrangement of the pressure chambers and through which the liquid is supplied individually to the pressure chambers and that has, at an end portion side in an arrangement direction of the supply openings, a region in which flow speed of the liquid flowing toward the supply openings is higher than in another region, and a controller that controls the maintenance by expelling the liquid from the nozzles. The maintenance method includes expelling the liquid from a first nozzle that is one of nozzles from which the liquid is expelled during the maintenance and a second nozzle that is one of nozzles located on the end portion side of the first nozzle in the arrangement direction of the supply openings, in an order of the first nozzle to the second nozzle. According to this aspect, bubbles in the common liquid chamber are drawn by local flows to move toward the end portion, so that the bubbles are led to a high-flow speed region. Since in a high-flow speed region, bubbles are more likely to be expelled than in other regions, movement of bubbles to a high-flow speed region of the end portion will improve the capability of expelling bubbles while minimizing the amount of the liquid expelled during the maintenance.
A still further aspect of the invention provides a maintenance method for a liquid discharge apparatus which performs a maintenance by expelling a liquid from a plurality of nozzles, the liquid discharge apparatus including a plurality of pressure chambers that generate a pressure for discharging a liquid, a plurality of nozzles that communicate individually with the pressure chambers arranged in one direction and that discharge the liquid from the pressure chambers, a common liquid chamber that includes a plurality of supply openings which are arranged along an arrangement of the pressure chambers and through which the liquid is supplied individually to the pressure chambers and that has, at an end portion side in an arrangement direction of the supply openings, a region in which flow speed of the liquid flowing toward the supply openings is higher than in another region, and a controller that controls the maintenance by expelling the liquid from the nozzles. The maintenance method includes expelling the liquid from the plurality of nozzles and stopping expelling the liquid from a first nozzle that is one of nozzles from which the liquid is expelled during the maintenance and a second nozzle that is one of nozzles located on the end portion side of the first nozzle in the arrangement direction of the supply openings, in an order of the first nozzle to the second nozzle. According to this aspect, when, during the maintenance, the liquid is expelled from a plurality of nozzles and the liquid expelling is stopped in the order of the first nozzle to the second nozzle, bubbles in the common liquid chamber are drawn toward where flows are generated. Because of this, bubbles in the common liquid chamber move toward the end portion and are led to a high-flow speed region. Since in a high-flow speed region, bubbles are more likely to be expelled than in other regions, movement of bubbles to a high-flow speed region of the end portion will improve the capability of expelling bubbles while minimizing the amount of the liquid expelled during the maintenance.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
The liquid container 14 is an ink tank type cartridge made up of a box-shaped container detachably attached to a main body of the liquid discharge apparatus 10. The liquid container 14 is not limited to a box-shaped container but may also be an ink pack type cartridge made up of a bag-shaped container. The liquid container 14 stores ink. The ink may be a black ink or may also be a color ink. The ink stored in the liquid container 14 is pumped to the liquid discharge head 28 by a pump (not depicted).
The controller 22 controls various components of the liquid discharge apparatus 10 in an overall manner. The controller 22 includes a CPU, a ROM, a RAM, etc. The ROM stores various programs such as a program for performing a printing operation which the CPU executes. Furthermore, the RAM is configured to temporarily stores results of computation by the CPU, various data that are processed by executing control programs, etc.
The transporting mechanism 24 is made up of transport rollers 242 and the like and transports a medium 12 in a Y direction under the control of the controller 22. Each liquid discharge head 28 is supplied with ink from the liquid container 14. Each liquid discharge head 28 discharges ink from a plurality of nozzles N to the medium 12 under the control of the controller 22.
The liquid discharge head 28 is mounted on the carriage 26. Although
The liquid discharge apparatus 10 includes a maintenance mechanism 29 that performs maintenance of the liquid discharge head 28. The maintenance mechanism 29 includes a cap that seals (caps) a discharge surface to which the plurality of nozzles N have openings, a suction pump that sucks ink from the nozzles N by generating a negative pressure inside the sealed cap. The controller 22 executes a maintenance process of expelling bubbles having entered the liquid discharge head 28 by expelling ink from the nozzles N while discharge surface of the liquid discharge head 28 is capped with the cap of the maintenance mechanism 29. In this maintenance process, piezoelectric elements 385 described below are driven to discharge ink from the nozzles N, so that bubbles are expelled with flows of ink. The maintenance may be performed not only by discharging ink from nozzles N but also by expelling ink by sucking ink from nozzles N through the use of the suction pump of the maintenance mechanism. The above-described maintenance is executed when the liquid discharge head 28 is at a home position H.
The nozzle plate 52 is a flat plate member that forms the discharge surface in which the nozzles N are formed and aligned in the Y direction (first direction). The nozzle plate 52 is made of, for example, a silicon material. The nozzles N form two nozzle rows L1 and L2. The nozzle rows L1 and L2 are each a set of a plurality of nozzles N aligned along the Y direction. The arrangement of the nozzle rows L1 and L2 is not limited to what is depicted in conjunction with this exemplary embodiment. For example, the nozzle rows L1 and L2 may be shifted from each other in the Y direction. Furthermore, the row arrangement of nozzles formed in the nozzle plate 52 is not limited to a two-row arrangement but may also be a one-row arrangement.
In the liquid discharge head 28 according to this exemplary embodiment, a structure (a left-side portion in
The flow path substrate 32 illustrated in
The closure plates 54 are each a flexible film and functions as a vibration absorber that absorbs pressure changes of ink in the common liquid chamber 34. As illustrated in
The stack unit 38 has been formed by stacking the pressure chamber substrate 382 that forms pressure chambers SC that communicate with the nozzles N, a vibration plate 384, and a protective plate 386 in this order. However, the invention is not limited to this construction. For example, the stack unit 38 may be provided without the protective plate 386. The pressure chamber substrate 382 is provided with a plurality of opening portions 383 that each form a pressure chamber SC (cavity) that communicates with one of the nozzles N. The pressure chamber substrate 382 is formed from, for example, a silicon material as is the case with the flow path substrate 32.
An opposite side surface of the pressure chamber substrate 382 to the flow path substrate 32 is provided with the vibration plate 384. The vibration plate 384 is a flat plate member that can be elastically vibrated. The vibration plate 384 and the flow path substrate 32 face each other across a distance through the opening portions 383 formed in the pressure chamber substrate 382. Each of spaces inside the opening portions 383 of the pressure chamber substrate 382 sandwiched between the flow path substrate 32 and the vibration plate 384 forms a pressure chamber SC in which a pressure for discharging ink from a corresponding one of the nozzles N is generated. The supply openings 344 of the flow path substrate 32 provide communication between the common liquid chamber 34 (described below) and the pressure chambers SC. The communication flow paths 326 of the flow path substrate 32 provide communication between the pressure chambers SC and the nozzles N.
The opposite side surface of the vibration plate 384 to the pressure chamber substrate 382 is provided with a plurality of piezoelectric elements 385 that individually correspond to different nozzles N (different pressure chambers SC). Each piezoelectric element 385 is a driving element in which a piezoelectric body is interposed between two electrodes facing each other. The piezoelectric elements 385 individually vibrates upon drive signals supplied from the controller 22. The protective plate 386 is a component that protects the piezoelectric elements 385 and is fixed to the surface of the pressure chamber substrate 382 (the vibration plate 384) by, for example, an adhesive. A vibration plate 384-side surface of the protective plate 386 has recess portions 387 that house the piezoelectric elements 385. When a piezoelectric element 385 vibrates in response to a drive signal supplied from the controller 22, the vibration plate 384 vibrates correspondingly to the piezoelectric element 385. This changes the pressure of ink in the pressure chamber SC so that the nozzle N discharges ink. Thus, the piezoelectric elements 385 function as pressure-generating elements that change the pressure inside the pressure chambers SC so that ink inside the pressure chambers SC is discharged from the nozzles N.
A positive Z direction-side surface of a case member 40 (hereinafter, referred to as “junction surface”) is fixed to a negative Z direction-side surface of the flow path substrate 32 by, for example, an adhesive. The case member 40 is formed from a resin molding material, for example, a plastic material or the like. When the case member 40 is formed from a resin molding material, the case member 40 can be unitarily molded by injection molding of a resin molding material. The case member 40 is a case for storing ink that is to be supplied to the plurality of pressure chambers SC and is a structural body that has a liquid storage chamber 42 that communicates with the common liquid chamber 34 via the inlet opening 342. The liquid storage chamber 42 communicates with an introduction port 43 through which ink is introduced.
The common liquid chamber 34 and the liquid storage chamber 42 form a space common to the plurality of nozzles N and store ink supplied from the liquid container 14 through the introduction port 43. As illustrated in
As illustrated in
As illustrated in
The common liquid chamber 34 in the exemplary embodiment has such a shape that the flow path gradually expands from the inlet opening 342 side to the supply opening (outlet opening) 344 side. That is, the common liquid chamber 34 is larger in cross-sectional area (Y-Z section) at the supply openings 344 than at the inlet opening 342 side. The common liquid chamber 34 is oblique from the first region A, which includes the central portion G, toward the end portions G′ of the second regions B on both sides of the first region A so that the common liquid chamber 34 gradually expands from the inlet opening 342 side to the supply opening 344 side. Therefore, in each second region B, the flow path gradually becomes narrower toward the end portion G′. That is, each second region B has smaller cross-sectional areas (X-Z sections) than the first region A and gradually becomes smaller in cross-sectional area (X-Z section) toward the end portion G′.
To further describe the shape of the common liquid chamber 34, a width (first width) of the common liquid chamber 34 in a direction (Y direction) measured at a location at which the inlet opening 342 is formed is smaller than a width (second width) of the common liquid chamber 34 in the Y direction measured at a location at which the supply openings (outlet openings) 344 are formed. In the Z direction, the common liquid chamber 34 has a substantially uniform width. However, it should be noted that the width of the common liquid chamber 34 in the Z direction may increase or decrease. In any case, there is an upper-limit restriction that the width of the common liquid chamber 34 in the Z direction cannot be made larger than the thickness of the flow path substrate 32 in the Z direction, which is smaller than the width of the flow path substrate 32 in the Y direction. Therefore, the influence that the width of the common liquid chamber 34 in the Z direction has on the flow speed in each second region B is small and limited.
According to the common liquid chamber 34 having a shape as described above, ink flowing in through the inlet opening 342 spreads from the first region A to a wide region that includes the second regions B on both sides, forming flows of ink that move into the supply openings 344 as indicated by thinner-line arrows in
By the way, a bubble Bu entering the common liquid chamber 34 will cause incomplete discharge of ink, decreasing the print quality. Therefore, the liquid discharge head 28 is subjected to a maintenance process of expelling bubbles Bu from the common liquid chamber 34. If a maintenance process of sucking ink from the nozzles N with the discharge surface sealed (capped) by the cap of the maintenance mechanism 29, there occur flows of ink that move in through the inlet openings 342 and move toward the supply openings 344 as indicated by arrows in
However, in a portion other than the end portion G′-side second region B, for example, in the central portion G-side first region A, the flow speed is lower than in the end portion G′-side second region B and such a flow speed that a bubble Bu closes a supply opening 344 cannot be obtained. Therefore, in the central portion G-side first region A, bubbles Bu tend to reside. Particularly, in a structure in which the projected portion 346 is provided as illustrated in
Therefore, in this exemplary embodiment, the liquid discharge apparatus does not simultaneously expel ink from all the nozzles N during maintenance but switches nozzles N from which to expel ink during maintenance sequentially from the central portion G side to the end portion G′ sides. This forms local flows that draw bubbles Bu to supply openings 344 and shifts such local flows from the central portion G side to the end portion G′ sides. According to this maintenance process, as illustrated by thick-line arrows in
Concretely, as illustrated in
On the positive Y direction side (the right side in
Such a maintenance method in the first exemplary embodiment will be concretely described below. In this exemplary embodiment, maintenance is executed by the controller 22. For example, the controller 22 periodically starts a maintenance process every time the time of use or the number of times of use of the liquid discharge apparatus 10 reaches a predetermined value. The maintenance process may also be started every time a predetermined number of printing media 12 have been subjected printing. Furthermore, the maintenance process may also be started according to an instruction from a user. The maintenance process in the exemplary embodiment is executed while the discharge surface of the liquid discharge head 28 is capped (covered) by the cap of the maintenance mechanism 29.
In the maintenance process of this exemplary embodiment, the controller 22 controls expelling ink from nozzles N sequentially from the first nozzle N1 to the second nozzle N2. In this exemplary embodiment, the controller 22 performs a flushing process of expelling ink by driving the piezoelectric elements 385 to discharge ink from the nozzles N.
As illustrated in
By switching nozzles N from which to expel ink in the maintenance process sequentially from the central portion G to the end portion G′ as described above, the bubble Bu in the common liquid chamber 34 is drawn by local flows to move in the positive Y direction toward the end portion G′ so that the bubble Bu is led to the high-flow speed region Q. Since bubbles Bu are more likely to be expelled in the high-flow speed region Q than in the other regions, the foregoing movement of bubbles Bu to a region of the end portion G′ where the flow speed is high will improve the capability of expelling bubbles Bu while minimizing the amount of ink expelled during the maintenance process.
As illustrated in
Furthermore, in the maintenance process of the exemplary embodiment, a first cleaning in which ink is expelled from nozzles N that include the first nozzle N1 and the second nozzle N2 may be followed by a second cleaning in which ink is expelled from the nozzles N in such a manner that the amount of discharged from each one of the nozzles N is larger during the second cleaning than during the first cleaning. According to this, even if a bubble remains without being expelled by the first cleaning, that bubble can be expelled by the second cleaning. Furthermore, since the first cleaning is performed so that bubbles are moved to the end portions G′ of the common liquid chamber that allow bubbles to be easily expelled before the second cleaning is performed, remaining bubbles will be more likely to be expelled than in the case where the second cleaning alone is performed. This further improves the capability of expelling bubbles from inside the common liquid chamber.
In an example of the second cleaning, nozzles N are capped by the cap of the maintenance mechanism 29 and ink is sucked from all the nozzles N. However, the second cleaning is not limited to this. For example, the capping and ink suction can be performed only on the nozzles N in the end portion G′-side second regions B of the common liquid chamber 34 or the nozzles N in the high-flow speed regions Q. Since bubbles are moved to the end portion G′ sides in the common liquid chamber 34 by the first cleaning, it is highly likely that, after the first cleaning, bubbles, if any remain, are residing in or near the second regions B or the high-flow speed regions Q. By sucking ink only from the nozzles N in certain regions in which bubbles are highly likely to remain (e.g., the second regions B or the high-flow speed regions Q), the amount of ink expelled can be restrained in the second cleaning as well.
In a maintenance process according to the first modification illustrated in
In a maintenance process according to the second modification illustrated in
Furthermore, as for the nozzles N from which ink is expelled in the maintenance process of the second modification, the intervals between the non-contiguous nozzles N in the second regions B may be longer than the intervals between the non-contiguous nozzles N in the first region A. In the present exemplary embodiment, the flow speed is higher in the end portion G′-side second regions B in the common liquid chamber 34 than in the central portion G-side first region A therein. Therefore, although the intervals between the nozzles N from which ink is expelled in the maintenance process are longer in the second regions B than in the first region A, bubbles can be sufficiently moved. This achieves an overall reduction of the amount of ink expelled during maintenance.
During the maintenance process in the third modification illustrated in
As for the nozzles from which ink is expelled in the maintenance process of the first exemplary embodiment described above, the nozzles N in the second regions B have a smaller amount of ink expelled than the nozzles N in the first region A. In this exemplary embodiment, the end portion G′-side second regions B in the common liquid chamber 34 have higher flow speeds than the central portion G-side first region A. Therefore, even though the amount of ink expelled from the nozzles N in the second regions B is made smaller than that expelled from the nozzles N in the first region A as described above, bubbles Bu can be sufficiently moved. This achieves an overall reduction of the amount of ink expelled during maintenance.
Furthermore, in the maintenance process of the first exemplary embodiment, the number of nozzles N from which ink is expelled may be less in the second regions B than in the first region A. In this exemplary embodiment, the end portion G′-side second regions B in the common liquid chamber 34 has higher flow speeds than the central portion G-side first region A. Therefore, even though the number of nozzles N from which ink is expelled during the maintenance process is less in the second regions B than in the first region A, bubbles can be sufficiently moved. This also achieves an overall reduction of the amount of ink expelled during maintenance.
A second exemplary embodiment of the invention will be described.
According to the maintenance mechanism 29 of the second exemplary embodiment described above, ink can be expelled by suction separately for each nozzle N by separately opening and closing each of the open/close valves 294 of the nozzles N. According to this construction, nozzles N from which ink is expelled in the maintenance process can be switched sequentially from the central portion G to the end portion G′ sides by separately opening and closing each open/close valve 294. Therefore, similarly to the first exemplary embodiment, local flows that draw bubbles Bu toward supply openings 344 are formed and such local flows are shifted to the end portion G′ sides. Hence, the second exemplary embodiment constructed as described above is also capable of moving bubbles Bu to the high-flow speed regions Q of the second regions B in which bubbles Bu are more likely to be expelled, and therefore improves the capability of expelling bubbles Bu that have entered the common liquid chamber 34. Incidentally, in the second exemplary embodiment, the foregoing various modifications of the first exemplary embodiment are also applicable.
The exemplary embodiments described above as examples can be modified in various manners. Concrete modifications will be described as examples. Any two or more modifications selected from the following modifications can be appropriately combined unless selected modifications contradict each other.
(1) Although the foregoing exemplary embodiments have been described in conjunction with examples in which the common liquid chamber 34 has such a shape as to continuously expand from the inlet opening 342 side to the supply opening 344 side, the shape of the common liquid chamber 34 is not limited to this shape. For example, the common liquid chamber 34 may expand stepwise (in the manner of stairs). Furthermore, side wall portions of the common liquid chamber 34 that expand from the inlet opening 342 side to the supply opening 344 side do not need to have a planar shape but may have an arcuate shape. It suffices that the common liquid chamber 34 is configured so that, as a result, regions near the end portions G′ of the second regions B are regions (high-flow speed regions Q) in which the flow speed is higher than in other regions (e.g., the first region A).
Furthermore, the common liquid chamber 34 does not need to expand from the inlet opening 342 side to the supply opening 344 side. It suffices that the common liquid chamber 34 is configured so that, as a result, regions near the end portions G′ of the second regions B are regions (high-flow speed regions Q) in which the flow speed is higher than in other regions (e.g., the first region A). For example, flow path resistance portions (projections, obstacles, etc.) may be provided between the inlet opening 342 and the supply openings 344 in the first region A to intentionally decrease the flow speed in the first region A, so that regions near the end portions G′ of the second regions B are regions (high-flow speed regions Q) in which the flow speed is higher than in other regions (e.g., the first region A).
(2) Although the exemplary embodiments have been described in conjunction with the piezoelectric type liquid discharge head 28 in which piezoelectric elements that mechanically vibrate the pressure chambers are employed, it is also possible to adopt a thermal type liquid discharge head that uses heating elements that thermally produce bubbles within the pressure chambers. Furthermore, the configuration of the nozzles N in the liquid discharge head 28 is not limited to what have been described as examples in conjunction with the foregoing exemplary embodiments.
(3) The liquid discharge apparatuses described as examples in conjunction with the foregoing exemplary embodiments can be adopted as appliances dedicated to printing and also as various other appliances such as facsimile apparatuses, copiers, etc. However, uses of the liquid discharge apparatus of the invention are not limited to printing. For example, a liquid discharge apparatus that discharges a solution of a color material can be used as a production apparatus that forms a color filter of a liquid crystal display apparatus. Furthermore, a liquid discharge apparatus that discharges a solution of an electroconductive material can be used as a production apparatus that forms electrodes, wiring, etc., on wiring substrates.
Number | Date | Country | Kind |
---|---|---|---|
2016-157193 | Aug 2016 | JP | national |