The present application claims priority from Japanese Patent Application No. 2019-069623, filed on Apr. 1, 2019, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates to liquid discharge heads configured to discharge a liquid such as an ink or the like onto a medium, and liquid discharge apparatuses including such a liquid discharge head.
There is known an ink jet recording apparatus having an ink jet recording head and an ink tank. The ink jet recording head and the ink tank are connected by a supply tube and a circulation tube. The ink sent from the ink tank to the ink jet recording head via the supply tube is sent back from the ink jet recording head to the ink tank via the circulation tube. In this manner, by circulating the ink, the ink is prevented from drying. Inside the ink jet recording head, there are provided a supply manifold to supply the ink to a plurality of pressure chambers, and a feedback manifold to discharge the ink which is not jetted from the nozzles among the ink supplied to the pressure chambers. The supply manifold is in communication with the supply tube, while the feedback manifold is in communication with the circulation tube. Note that in the ink jet recording apparatus as described above, a double-layer structure is adopted to arrange a common supply path and a common discharge path to overlap with each other in an up-down direction.
In this context, in the ink jet recording apparatus as described above, when the ink is circulated, some air bubbles may come into the supply manifold. If the air bubbles flowing in the supply manifold intrude into the pressure chambers, then the jet characteristic of the ink from the nozzles is liable to vary when the recording head is driven. Therefore, it is desired to adopt a flow channel structure where the air bubbles having come into the supply manifold are less likely to intrude into the pressure chambers. Further, in case the air bubbles have once come into the pressure chambers, it is desired to discharge the air bubbles immediately to the feedback manifold. Hence, it is desired to adopt a flow channel structure where the air bubbles having intruded into the pressure chambers are easily discharged to the feedback manifold.
An object of the present disclosure is to provide a liquid discharge head having a flow channel structure where a liquid is circulated, and air bubbles flowing in a supply manifold are less likely to intrude into pressure chambers and, in the flow channel structure, the air bubbles having intruded into the pressure chambers are easily discharged to a feedback manifold. Another object of the present disclosure is to provide a liquid discharge apparatus including the above liquid discharge head.
According to an aspect of the present disclosure, there is provided a liquid discharge head including: a supply manifold extending in a first direction; a feedback manifold extending in the first direction; and a plurality of individual flow channels having a plurality of pressure chambers and a plurality of nozzles. Each of the individual flow channels includes: a supply portion connecting the supply manifold and one of the plurality of pressure chambers, a descender portion extending in a second direction orthogonal to the first direction and connecting the one of the plurality of pressure chambers and one of the plurality of nozzles, and a feedback portion branching from the descender portion and connected to the feedback manifold. The supply manifold has a plurality of supply ports connected to the supply portions of the plurality of individual flow channels, and the feedback manifold has a plurality of feedback ports connected to the feedback portions of the plurality of individual flow channels. A distance, in a third direction orthogonal to the first direction and to the second direction, between the center of the supply manifold in the third direction and the plurality of supply ports of the supply manifold is longer than ¼ of the width of the supply manifold in the third direction, and a distance in the third direction between the center of the feedback manifold in the third direction and the plurality of feedback ports of the feedback manifold is shorter than ¼ of the width of the feedback manifold in the third direction.
The flow speed of the liquid flowing in a center portion of the supply manifold in the third direction is faster than the flow speed of the liquid flowing in the vicinity of the end of the supply manifold in the third direction. Likewise, the flow speed of the liquid flowing in the vicinity of the center of the feedback manifold in the third direction is faster than the flow speed of the liquid flowing in the vicinity of the end of the feedback manifold in the third direction. Suppose that in the supply manifold, the number of air bubbles is uniform per unit volume. Then, the number of air bubbles passing through is larger in an area where the flow speed is fast than in an area where the flow speed is slow per unit time. Further, usually, a feeding port is more often arranged in an approximately central portion of the supply manifold in the third direction to feed the liquid to the supply manifold. In this case, it is conceivable that air bubbles flow in from the feeding port arranged in the approximately central portion of the supply manifold in the third direction. Therefore, the number of air bubbles (the number of air bubbles passing through per unit time) is even larger when flowing in the vicinity of the center of the feedback manifold in the third direction than when flowing in the vicinity of the end of the supply manifold in the third direction. From such reason, the number of air bubbles is larger when passing through the center portion of the supply manifold in the third direction per unit time than when passing through the vicinity of the end of the supply manifold in the third direction per unit time where the flow speed is slower than in the central portion. Hence, by letting the supply ports of the supply manifold be closer to the end of the supply manifold in the third direction than to the central portion of the supply manifold in the third direction, the air bubbles flowing in the supply manifold are prevented from intruding into the individual flow channels through the supply ports. Further, the feedback ports of the feedback manifold are arranged closer to the center of the feedback manifold in the third direction than to the end of the feedback manifold in the third direction. By virtue of this, it is possible to bring the air bubbles discharged from the feedback ports of the individual flow channels onto the fast flow in the vicinity of the center of the feedback manifold in the third direction, thereby easily discharging the same from the individual flow channels.
<Overall Configuration of a Printer>
As depicted in
Note that hereinbelow, as depicted in
The ink jet head 2 is a so-called line-type ink jet head, having eight head units 3. As depicted in
The platen 4 is arranged to face the lower surface of the ink jet head 2. The platen 4 extends across the entire length of the recording paper P in the left-right direction. The platen 4 supports the recording paper P from below. The conveyance rollers 5 and 6 are arranged at the upstream side and the downstream side of the ink jet head 2 in the conveyance direction, respectively, to convey the recording paper P in the conveyance direction.
In the ink jet printer 1, the controller 7 controls an unsown motor provided for the conveyance rollers 5 and 6 to cause the conveyance rollers 5 and 6 to convey the recording paper P through a predetermined distance in the conveyance direction. Each time the recording paper P is conveyed, the controller 7 causes the ink to be jetted from the plurality of nozzles 45 of the ink jet head 2. By virtue of this, the ink jet printer 1 carries out printing on the recording paper P.
<The Head Units 3>
Next, an explanation will be made on the head units 3 of the ink jet head 2. As depicted in
<The Flow Channel Unit 21>
As depicted in
The plurality of pressure chambers 40 are formed in the plate 101. Each pressure chamber 40 has an approximately rectangular shape with the left-right direction as its lengthwise direction. Further, the plurality of pressure chambers 40 form six pressure chamber arrays 119 aligning in the left-right direction. Each pressure chamber array 119 extends in the conveyance direction. Between two adjacent pressure chamber arrays 119, the pressure chambers 40 deviate in position in the conveyance direction.
The plurality of supply portions 41 are formed through the plates 102 and 103. Each supply portion 41 is a flow channel linking one pressure chamber 40 to a supply manifold 46. One end of each supply portion 41 is connected to a pressure chamber 40 via an opening 40a formed at the left end of the pressure chamber 40. The other end of each supply portion 41 is connected to the supply manifold 46 via a supply port 41a (an example of the supply port of the present disclosure). The supply portion 41 is smaller in cross-sectional area than the descender portion 42. The supply portion 41 is connected with the left end of the pressure chamber 40, and extends leftward from the connection part with the pressure chamber 40.
The plurality of descender portions 42 are formed of through holes which are overlapped in the up-down direction and formed in the plates 102 and 109. Each descender portion 42 is a flow channel connecting one pressure chamber 40 to a nozzle 45, and extends downward from the right end of the pressure chamber 40. The nozzle 45 is arranged in the lower end of the descender portion 42.
The plurality of feedback portions 43 are formed through the plate 109. Each feedback portion 43 is a flow channel linking one descender portion 42 to a feedback manifold 47. The feedback portion 43 extends leftward from the connection part with the descender portion 42 formed in the plate 109. Further, the feedback portion 43 is connected to the feedback manifold 47 via a feedback port 43a (an example of the feedback port of the present disclosure) formed in the plate 109. Note that the feedback port 43a is larger in opening area than the supply port 41a.
The plurality of nozzles 45 are formed in the plate 110. Each nozzle 45 is arranged in the lower end of one descender portion 42. One individual flow channel 30 is formed from a nozzle 45, a descender portion 42 connected to the nozzle 45, a feedback portion 43 and a pressure chamber 40 connected to the descender portion 42, and a supply portion 41 connected to the pressure chamber 40.
As depicted in
As depicted in
Further, as depicted in
In this embodiment, an undepicted pump is provided in midstream of the flow channel between the feeding port 128 and the ink tank, or provided in midstream of the flow channel between the retrieving port 129 and the ink tank. Due to the ink flow caused by the undepicted pump being driven, the ink circulates between the ink jet head 2 and the undepicted ink tank. Note that, in this embodiment, the pressure on the ink flowing in the supply manifold 46 is rendered larger than the pressure on the ink flowing in the feedback manifold 47.
Further, in the flow channel unit 21, a damper 130 is formed to extend into the lower part of the plate 105 and into the upper part of the plate 106, and to overlap with the supply manifold 46 and the feedback manifold 47 in the up-down direction. Then, by deforming a partition wall formed by a lower end portion of the plate 106 to separate the supply manifold 46 from the damper 130, the ink inside the supply manifold 46 is restrained from pressure variation. Further, by deforming a partition wall formed by an upper end portion of the plate 105 to separate the feedback manifold 47 from the damper 130, the ink inside the feedback manifold 47 is restrained from pressure variation.
<Piezoelectric Actuator>
As depicted in
The common electrode 143 is arranged between the piezoelectric layer 141 and the piezoelectric layer 142 to extend continuously through the entire area of the piezoelectric layers 141 and 142. The common electrode 143 is maintained at the ground potential. The plurality of individual electrodes 144 are provided individually for the plurality of pressure chambers 40. The individual electrodes 144 each have an approximately rectangular planar shape and are arranged to overlap with a central portion of the corresponding pressure chamber 40 in the up-down direction. Connection terminals 144a of the plurality of individual electrodes 144 are connected to the driver IC 8 (see
Hereinafter, an explanation will be made on a method for driving the piezoelectric actuator 22 to jet the ink from the nozzles 45. In this embodiment, as will be explained below, the ink is jetted by way of so-called “retreat shooting”. The following control is carried out by the controller 7 (see
In order to jet the ink from a certain nozzle 45, the potential of the individual electrode 144 corresponding to that nozzle 45 is switched to the ground potential. By virtue of this, the parts of the piezoelectric layers 141 and 142 overlapping with the pressure chamber 40 in the up-down direction are recovered from the deformation such that the pressure chamber 40 increases in volume. Thereafter, by switching the potential of the individual electrode 144 back to the drive potential, the parts of the piezoelectric layers 141 and 142 overlapping with the pressure chamber 40 in the up-down direction deform again to project toward the pressure chamber 40. By virtue of this, the pressure of the ink in the pressure chamber 40 increases so as to be jetted from the nozzle 45 in communication with the pressure chamber 40. After the ink is jetted from the nozzle 45, the individual electrode 144 is still kept at the drive potential.
<Functions and Effects of This Embodiment>
In the ink jet head 2 as explained in the above, air bubbles may be mixed into the ink supplied to the supply manifolds 46 from the ink tank. The ink mixed with the air bubbles flows on the ink flow course in the supply manifolds 46, but some of the air bubbles may flow into the supply portions 41 from the supply manifolds 46. If the air bubbles having flowed into the supply portions 41 flow into the pressure chambers 40 and the descender portions 42, then the ink from the nozzles 45 is liable to vary in jet characteristic.
The flow speed of the ink is not completely uniform in the supply manifolds 46 of this embodiment. For example, the flow speed of the ink flowing in the vicinity of the center of the supply manifold 46 in the left-right direction is faster than the flow speed of the ink flowing in the vicinity of the two opposite ends of the supply manifold 46 in the left-right direction. This is because when the ink flows near the wall surface, due to the friction against the wall surface, the flow resistance becomes large. Suppose that in the supply manifold 46, the number of air bubbles is uniform per unit volume. Then, the number of air bubbles passing through is larger in an area where the flow speed is fast than in an area where the flow speed is slow per unit time. Therefore, in the supply manifold 46, there is a high possibility that the number of air bubbles passing through is larger in the vicinity of the center in the left-right direction where the flow speed is fast than in the vicinity of the two opposite ends in the left-right direction where the flow speed is slow per unit time. In this embodiment, therefore, the supply port 41a, which is the connection port between the supply manifold 46 and the supply portion 41, is arranged near the end of the supply manifold 46 in the left-right direction. In particular, as depicted in
In this embodiment, the supply port 41a, which is the connection port between the supply manifold 46 and the supply portion 41, is arranged far away from the center of the supply manifold 46 in the left-right direction, and near the end of the supply manifold 46 in the left-right direction. Therefore, it is possible to reduce the possibility that the air bubbles flowing in the supply manifold 46 flow into the supply port 41a.
Likewise, the flow speed of the ink is not completely uniform, too, in the feedback manifolds 47. The flow speed of the ink flowing in the vicinity of the center of the feedback manifold 47 in the left-right direction is faster than the flow speed of the ink flowing in the vicinity of the two opposite ends of the feedback manifold 47 in the left-right direction. Hence, it is desirable to discharge the air bubbles having flowed into the supply portion 41 through the supply port 41a, immediately to the feedback manifold 47 through the feedback portion 43. In this embodiment, therefore, the feedback port 43a, which is the connection port between the feedback manifold 47 and the feedback portion 43, is arranged near the center of the feedback manifold 47 in the left-right direction. In particular, as depicted in
In this embodiment, the feedback port 43a, which is the connection port between the feedback manifold 47 and the feedback portion 43, is arranged far away from the end of the feedback manifold 47 in the left-right direction, and near the center of the feedback manifold 47 in the left-right direction. By virtue of this, it is possible to bring the air bubbles discharged from the feedback port 43a onto the fast flow in the vicinity of the center of the feedback manifold 47 in the left-right direction, thereby reliably discharging the same from the feedback port 43a.
As described above, in the communication flow channel 50 arranged at the downstream end of the supply manifold 46 and the feedback manifold 47 in the conveyance direction, the communication port 50a is arranged at almost the center of the supply manifold 46 in the left-right direction, while the communication port 50b is arranged at almost the center of the feedback manifold 47 in the left-right direction. Because the communication port 50a is arranged at almost the center of the supply manifold 46 in the left-right direction, it is possible to guide, to the communication port 50a reliably, the air bubbles flowing in on the fast flow in the vicinity of the center of the supply manifold 46 in the left-right direction. In addition, because the communication port 50b is arranged at almost the center of the feedback manifold 47 in the left-right direction, it is possible to bring the air bubbles having flowed from the communication port 50a to the communication flow channel 50 onto the fast flow in the vicinity of the center of the feedback manifold 47 in the left-right direction, thereby reliably discharging the same from the communication port 50b. By virtue of this, it is possible to discharge the air bubbles flowing in the supply manifold 46 to the feedback manifold 47 and finally return the same to the undepicted ink tank.
In this embodiment, the opening area of the supply port 41a of the supply portion 41 is larger than the opening area of the feedback port 43a of the feedback portion 43. By virtue of this, air bubbles are less likely to intrude from the supply port 41a and, from the feedback port 43a, the air bubbles are easily discharged.
Further, the supply manifold 46 is lower in height than the feedback manifold 47 in the up-down direction (in the layered direction). Therefore, compared to the case where the supply manifold 46 and the feedback manifold 47 are formed to conform in height in the up-down direction, it is possible to increase the ratio of the length in the left-right direction to the length in the up-down direction of the cross-sectional shape of the supply manifold 46 depicted in
In this embodiment, the center of the supply manifold 46 in the left-right direction is positioned between the supply port 41a and the descender portion 42 in the left-right direction. In other words, the supply port 41a and the descender portion 42 are arranged on the opposite side to each other with respect to the center of the supply manifold 46 in the left-right direction. Along with that, the supply portion 41 linking the pressure chamber 40 and the supply manifold 46 extends straightly in the left-right direction. Because the ink flows also straightly in the supply portion 41, even if air bubbles flow into the supply port 41a, it is still possible to cause the same to pass through the supply portion 41 immediately.
In this embodiment, the center of the supply manifold 46 in the left-right direction is positioned between the supply port 41a and the feedback port 43a in the left-right direction. In other words, the supply port 41a and the feedback port 43a are arranged on the opposite side to each other with respect to the center of the supply manifold 46 in the left-right direction. Therefore, the supply port 41a and the feedback port 43a are positioned to deviate in the left-right direction, and do not overlap in the up-down direction. The pressure wave arising from the ink flow toward the supply port 41a and the pressure wave arising from the ink flow discharged from the feedback port 43a both propagate radially to arrive at the damper 130. On this occasion, the pressure wave arising from the ink flow toward the supply port 41a first arrives at a position of the damper 130 overlapping with the supply port 41a in the up-down direction. Further, the pressure wave arising from the ink flow discharged from the feedback port 43 a first arrives at a position of the damper 130 overlapping with the feedback port 43a in the up-down direction. In this embodiment, the supply port 41a and the feedback port 43a deviate in position in the left-right direction, and do not overlap in the up-down direction. Therefore, the part of the damper 130 at which the pressure wave arising from the ink flow toward the supply port 41a first arrives deviates in position in the left-right direction from the part of the damper 130 at which the pressure wave arising from the ink flow discharged from the feedback port 43a first arrives, such that there is no interference with each other.
In this embodiment, the supply port 41a is located in a position to deviate a little to the center in the left-right direction from the end of the supply manifold 46 in the left-right direction but not in a position to overlap in the up-down direction with the end thereof in the left-right direction. In other words, the supply port 41a is positioned between the end of the supply manifold 46 in the left-right direction and the center of the supply manifold 46 in the left-right direction. The flow channels formed from the supply port 41a, the supply manifold 46 and the like are formed by layering the plates 101 to 110 after each of the plates 101 to 110 is etched. On this occasion, due to some manufacturing errors, those plates may deviate in position from the target positions. However, as described above, because the supply port 41a is located in a position to deviate a little to the center in the left-right direction from the end of the supply manifold 46 in the left-right direction, even if the plates 101 to 110 deviate in positional conformation, the supply port 41a is still not liable to interfere with the end of the supply manifold 46 in the left-right direction. By virtue of this, it is possible to prevent variation from arising in the flow channel resistance of the supply portion 41.
In the above embodiment, the feedback port 43a is positioned between the center of the feedback manifold 47 in the left-right direction and the descender portion 42 in the left-right direction. In other words, in the left-right direction, the feedback port 43a and the descender portion 42 are positioned at the same side with respect to the center of the feedback manifold 47 in the left-right direction. By virtue of this, in the left-right direction, it is possible to lessen the length of the feedback portion 43, compared to the case where the feedback port 43a and the descender portion 42 are positioned at the opposite side to each other with respect to the center of the feedback manifold 47 in the left-right direction. By virtue of this, it is possible to lower the flow channel resistance of the feedback portion 43, compared to the case where the feedback port 43a and the descender portion 42 are positioned at the opposite side to each other with respect to the center of the feedback manifold 47 in the left-right direction. Therefore, it is possible to effectively discharge the air bubbles having flowed into the individual flow channel 30 through the feedback portion 43.
In this embodiment, between the ink jet head 2 and the undepicted ink tank, the ink flows in circulation via the supply manifold 46 and the feedback manifold 47. Therefore, a positive pressure is applied on the ink flowing in the supply manifold 46. If the positive pressure is applied on the ink flowing in the supply manifold 46, then such a force acts on the plurality of plates forming the flow channel unit 21 as to detach the adhesions between the plates (to be referred to simply as detachment force below). Then, in some cases, the flow channel unit 21 is liable to damage.
In this embodiment, the supply manifold 46 and the feedback manifold 47 adopt a double-layer structure to overlap in the up-down direction. By virtue of this, it is possible to make a compact ink jet head 2. Further, because the feedback manifold 47 is positioned below the supply manifold 46, it is possible to raise the rigidity of the flow channel unit 21 below the supply manifold 46 with the plates 106 to 109 forming the feedback manifold 47. By virtue of this, compared to the case where the feedback manifold 47 is not arranged below the supply manifold 46, it is possible to suppress such a detachment force toward the downside of the supply manifold 46 as arising from the pressure of the ink flowing in the supply manifold 46. In this embodiment, especially, the depth of the feedback manifold 47 (the length in the up-down direction) is larger than the depth of the supply manifold 46, and the number of plates constituting the feedback manifold 47 is larger than the number of plates constituting the supply manifold 46. Therefore, compared to the case where the number of plates constituting the feedback manifold 47 is smaller than the number of plates constituting the supply manifold 46, it is possible to greatly raise the rigidity of the lower part of the flow channel unit 21 below the supply manifold 46.
Further, in this embodiment, the piezoelectric layers 141 and 142 are not segmented to cover one pressure chamber 40 but spread over the entire area where the flow channels of the flow channel unit 21 are formed, so as to cover all pressure chambers 40 (see
In the above embodiment, as described earlier on, the pressure on the ink flowing in the supply manifold 46 is rendered larger than the pressure on the ink flowing in the feedback manifold 47. By virtue of this, because it is possible to raise the flow speed of the ink flowing in the supply manifold 46, it is possible to lessen the air bubbles flowing into the supply portion 41. However, if the pressure on the ink flowing in the supply manifold 46 is large, then there is also a large detachment force arising from the pressure of the ink flowing in the supply manifold 46. In the above embodiment, however, as described earlier on, because the piezoelectric layers 141 and 142 spread to cover all pressure chambers 40, it is possible to raise the rigidity of the flow channel unit 21 in the part above the supply manifold 46. Therefore, even if there is a large detachment force arising upward in the supply manifold 46, from the pressure of the ink flowing in the supply manifold 46, it is still possible to suppress the same.
In the above embodiment, the individual electrodes 144 cover right end portions of the supply manifolds 46 from above. By virtue of this, it is possible to raise the rigidity of the upper part of the flow channel unit 21 in the end portions of the supply manifold 46, and thus it is possible to suppress the detachment force arising upward in the supply manifold 46, from the pressure of the ink flowing in the supply manifold 46. Further, in this embodiment, because the retreat shooting method is adopted as described earlier on, when no ink is jetted, the individual electrodes 144 are still constantly kept at the drive potential. Therefore, when no ink is jetted, a voltage is still applied to the parts of the piezoelectric layers 141 and 142 overlapping with the pressure chambers 40 in the up-down direction, such that the parts of the piezoelectric layers 141 and 142 overlapping with the pressure chambers 40 in the up-down direction deform as a whole to project toward the pressure chambers 40. While the voltage is applied, the piezoelectric layers 141 and 142 are to maintain the deformed state, such that the rigidity of the piezoelectric layers 141 and 142 is higher than that when the voltage is not applied. By virtue of this, it is possible to raise the rigidity of the upper part of the flow channel unit 21 above the supply manifold 46, and thus it is possible to suppress the detachment force arising upward in the supply manifold 46, from the pressure of the ink flowing in the supply manifold 46.
In the above embodiment, the supply port 41a and the descender portion 42 are arranged on the opposite side to each other with respect to the center of the supply manifold 46 in the left-right direction. However, the present disclosure is not limited to such an aspect. As depicted in
Further, as depicted in
Further, each of the supply manifold 46 and the feedback manifold 47 may have an inflection portion inflecting in the left-right direction. For example, as depicted in
Note that in the above embodiment, the supply port 41a, the feedback port 43a, the descender portion 42, and the nozzle 45 align in one row in the left-right direction to be positioned at the same level in the conveyance direction. However, the present disclosure is not limited to that. For example, as depicted in
The embodiment and the modified embodiments explained above are merely exemplifications in each and every aspect, and therefore may be changed appropriately. For example, it is possible to set up the number, arrangement, shape, pitch and the like for the pressure chambers 40 in an arbitrary manner and, in accordance with that, to adjust the number, arrangement, shape, pitch and the like for the individual electrodes 144. Further, in the embodiment and the modified embodiments described above, the supply manifolds 46 and the feedback manifolds 47 are arranged to overlap in the up-down direction, but the present disclosure is not limited to that. The supply manifolds 46 and the feedback manifolds 47 may be arranged to align in the left-right direction. Further, the piezoelectric layers 141 and 142 are arranged in the upper part of the flow channel unit 21 to cover all pressure chambers 40. However, the piezoelectric layers 141 and 142 may be divided into a plurality of blocks, for example, for the piezoelectric blocks to cover the plurality of pressure chambers 40 respectively. In such a case, compared to the case where the piezoelectric layers 141 and 142 are divided into individual blocks to cover one pressure chamber 40 with one block, it is still possible to suppress the detachment force arising upward in the supply manifold 46, from the pressure of the ink flowing in the supply manifold 46. Further, while the ink jet head 2 is a so-called line-type ink jet head, the present disclosure is not limited to that but may also apply to so-called serial-type ink jet heads. Further, the present disclosure is not limited to ink jet heads jetting an ink. The present disclosure may also apply to liquid discharge apparatuses used for various purposes other than printing images and the like. For example, it is also possible to apply the present disclosure to liquid discharge apparatuses for forming an electrically conductive pattern on a substrate surface by jetting an electrically conductive liquid onto the substrate.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-069623 | Apr 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20190009554 | Nakagawa | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2008-290292 | Dec 2008 | JP |
2019166820 | Oct 2019 | JP |
WO-2020189695 | Sep 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20200307182 A1 | Oct 2020 | US |