The present invention relates to a liquid discharge head for recording on a recording medium by, for example, discharging liquid such as ink and a method for manufacturing the liquid discharge head. In particular, the invention relates to a liquid discharge head for performing ink jet recording.
Ink jet recording heads are examples of liquid discharge heads that are generally known. Referring to
As shown in
Ink is supplied from an ink tank (not shown) to a recording element unit H1002 through an ink flow path formed in the tank holder unit H1003.
The ink flow path is formed in the tank holder unit H1003 by joining a tank holder H1500 shown in
Known methods for joining the tank holder H1500 to the flow path forming member H1600 include ultrasonic welding (Patent Citation 1) and laser welding (Patent Citation 2).
Among the methods, the laser welding method is described. The term “laser welding” generally refers to a method of making a member being transparent to a laser beam and a member being capable of absorbing a laser beam contact each other and irradiating a region to be welded with a laser beam so as to join the members together.
As compared with ultrasonic welding, laser welding has an advantage in that foreign matter is negligibly generated at the welded portion and is used as effective means for forming an ink flow path.
Referring to
The tank holder H1500, which is capable of absorbing a laser beam, and the flow path forming member H1600, which is transparent to a laser beam, are made to contact each other using a press jig 510 (
Examples of laser irradiation methods include a scanning method described in Patent Citation 2 and a simultaneous irradiation method.
By the scanning method, a desired junction surface is irradiated with a laser beam along a locus in a scanning manner by concentrating the spot diameter of the laser beam emitted from a laser irradiation apparatus 500 as shown in
By the simultaneous irradiation method, a desired junction surface is irradiated with a laser beam in one go.
Because the ink flow path and the junction surface have fine structures, the scanning method and the simultaneous irradiation method have the following problems.
The scanning method has a problem in that a very long time is required to scan a junction surface along a fine locus so as to weld the surface.
To be specific, as shown in
On the other hand, the simultaneous irradiation method is suitable for manufacturing a large number of ink jet recording heads because less time is required for welding than by the scanning method.
In general, to join members together by laser welding, only a region to be welded is irradiated with a laser beam. However, when a junction surface has a fine structure such as the case in forming an ink flow path in an ink jet recording head, providing a mask in a region corresponding to a fine ink flow and irradiating only the junction surface with a laser beam is difficult.
To be specific, as shown in
The damaged portion 620 in the ink flow path H1601 may block ink flow and may impair the reliability of the ink jet recording head H1001.
The invention provides an ink jet recording head in which damage to an ink flow path caused by a laser beam is reduced, when members that form the ink flow path are welded together by irradiating a region including the ink flow path with a laser beam.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A liquid discharge head used in an embodiment is described with an example of a general ink jet recording head.
In this description, the term “recording” not only refers to forming meaningful information such as characters or figures but also to forming meaningless information irrespective of whether the information is visually perceptible to the human eye. Moreover, the term also refers to forming an image, a design, a pattern or the like on a recording medium or processing the recording medium.
The term “recording medium” refers not only to general paper that is used for recording apparatuses but also to any material that can receive ink, such as cloth, a plastic film, a metal plate, glass, a ceramic, wood, and leather.
The term “ink”, which should be interpreted in a broad sense as the term “recording medium”, refers to liquid that can be used for forming an image, a design, a pattern or the like on a recording medium; liquid for processing a recording medium; and liquid for treating ink. Thus, the term “ink” refers to any liquid that can be used in regard to recording.
An ink jet recording head includes discharge ports for discharging ink and an ink flow path that communicate with the discharge ports so as to supply ink to the discharge ports.
Referring to
As shown in
The recording head cartridge 10 is supported by and fixed to a carriage (not shown) in a detachable manner with positioning members and electric contacts of the carriage. The carriage is installed in an ink jet recording apparatus (not shown), which is hereinafter referred to only as a recording apparatus.
Ink is supplied to the ink jet recording head 20 from the ink tank 40. The ink jet recording head 20 discharges ink from ink discharge ports disposed in a recording element substrate H1101 by driving recording elements in accordance with electric signals sent from the recording apparatus. Examples of the recording elements include exothermic elements and piezoelectric elements. An ink jet recording head using exothermic elements is described here.
The inkjet recording head 20 includes a recording element unit 300 and a tank holder unit 200. The recording element unit 300 includes an electric wiring substrate 340 and a recording element substrate H1101.
The electric wiring substrate 340 has connection terminals 341 for connecting the electric wiring substrate 340 to the recording apparatus, electrode terminals (not shown) for connecting the electric wiring substrate 340 to the recording element substrate H1101, wiring for connecting the connection terminals 341 to the electrode terminals, and an opening for incorporating the recording element substrate H1101.
The electric wiring substrate 340 is connected to the recording element substrate H1101, for example, in the following manner: electrically conductive thermosetting adhesive resin is applied to electrode portions of the recording element substrate H1101 and to the electrode terminals of the electric wiring substrate 340; and the electrode portions and the electrode terminals are pressed and heated using a heat tool so that the electrode portions and the electrode terminals are electrically connected at the same time. The area in which the electrode portions and the electrode terminals are electrically connected is sealed with a sealing compound so that the area is protected from corrosion by ink or from an external shock.
The recording element substrate H1101 includes discharge ports H1107 for discharging ink and ink supply ports H1102 that communicate with the discharge ports and supply ink to the discharge ports. The discharge ports are formed in a discharge port forming member H1106, and the ink supply ports are formed in a silicon substrate H1110.
The silicon substrate H1110 has a thickness of 0.5-1.0 mm. The ink supply ports H1102 are formed in the silicon substrate H1110 by anisotropic etching. Moreover, exothermic elements H1103 are formed on the silicon substrate H1110. The discharge ports H1107 are formed in the silicon substrate H1110 by photolithography in such a manner that the discharge ports H1107 corresponds to the exothermic elements H1103. Furthermore, bumps H1105 made of Au or the like are disposed on the silicon substrate H1110. The bumps H1105 serve as electrode portions for supplying electric signals and electric power for driving the exothermic elements H1103.
Referring to
As shown in
In the embodiment of the invention, the first flow path forming member 211 is integrally formed with the tank holder 210. However, the first flow path forming member 211 and the tank holder 210 may be independently formed. In this case, the first flow path forming member 211 is attached to the tank holder 210.
The first flow path forming member 211 has a first flow path portion 229 in a surface thereof. The first flow path portion 229 constitutes a portion of a wall of an ink flow path 224. The second flow path forming member 220 has a second flow path portion 239 (not shown) in a surface thereof. The second flow path portion 239 constitutes a portion of the wall of the ink flow path 224. The first flow path forming member 211 and the second flow path forming member 220 are joined together with the first flow path portion 229 and the second flow path portion 239 disposed therebetween so that the ink flow path 224 is formed. To provide the structure, it is sufficient that at least one of the first flow path portion and the second flow path portion be formed as a depression (groove) in a surface of a corresponding one of the first flow path forming member and the second flow path forming member.
In order to join the first flow path forming member 211 and the second flow path forming member 220 together by laser welding, it is necessary that one of the flow path forming members be transparent to a laser beam and the other of the flow path forming members be capable of absorbing a laser beam.
In the embodiment of the invention, the second flow path forming member 220 is transparent to a laser beam and the first flow path forming member 211 is capable of absorbing a laser beam so that the flow path forming members can be easily irradiated with a laser beam. Which flow path forming member is provided with transparency or absorption may be changed as appropriate.
In the invention, the phrase “a transparent member being transparent to a laser beam” refers to a member having a transmittance of equal to or greater than 30% when the member of a thickness of 2.0 mm is irradiated with a laser beam. The phrase “an absorption member being capable of absorbing a laser beam” refers to a member having an absorptance of equal to or greater than 90% when the member of a thickness of 2.0 mm irradiated with a laser beam. By using the members having such transmittance and absorptance, the transparent member and the absorption member can be laser welded.
Hereinafter, specific embodiments of the invention are described in detail with reference to the drawings.
A first example of the invention is described in detail with reference to the drawings.
As shown in
The principal planes of the first surface 220a and the second surface 220b are substantially parallel to each other, excluding a contact surface 223, which is described below, the reflecting portion 225, and members for joining a recording element unit 300 (
The reflecting portion 225 is constituted by flat surfaces that are configured such that a laser beam is incident on the flat surfaces of the reflecting portion 225 at an incident angle theta 1 of, for example, equal to or greater than 45 degrees. Because the laser beam is incident on the principal planes of the first surface 220a and the second surface 220b substantially perpendicularly, the incident angle theta 1 is substantially the same as the angle at which the inclined surfaces are inclined with respect to the principal planes of the first surface 220a and the second surface 220b.
As shown in
The case in which the laser beam that has not been reflected by the reflecting portion 225 passes through the second flow path forming member is described. In the example, the reflecting portion is disposed on the first surface 220a of the second flow path forming member, and the laser beam is refracted when the laser beam passes through the reflecting portion 225 into the second flow path forming member. Thus, the laser beam that has passed through the second flow path forming member is prevented from being directed toward the first flow path portion 229. Even if the laser beam reaches the first flow path portion 229, damage caused by the laser beam to the first flow path portion 229 is small, because the laser beam that reaches the first flow path portion has been attenuated by reflection at the reflecting portion 225 and passage through the second channel forming member.
The inclination angle at which the reflecting portion is inclined with respect to the principal plane of the first surface of the second channel forming member, i.e., the incident angle theta 1, may be set as appropriate such that the reflecting portion can reflect the laser beam, because the angle depends on the wavelength lambda of the laser beam and the specularity of the reflecting portion 225.
Next, a welding portion at which the first flow path forming member and the second flow path forming member are welded together is described in detail. The first and second flow path forming members 211 and 220 are configured to be in contact with each other in the periphery of the flow path portions 229 and 239 that is irradiated with a laser beam, wherein the flow path portions 229 and 239 constitute portions of the wall of the ink flow path 224. The first and second flow path forming members 211 and 220 are also configured not to be in contact with each other in the portions that are not irradiated with the laser beam.
The first and second flow path forming members 211 and 220 are in contact with each other on a contact surface 223. By providing a contact portion and a non-contact portion, the first and second flow path forming members 211 and 220 can be made to contact each other in such a manner that a pressure is applied only to the contact portion (contact surface 223) so that cohesion at the contact portion (contact surface 223) is improved.
As shown in
In the first example, the reflecting portion 225 disposed on the first surface 220a is configured to reflect a part or all of the laser beam emitted toward the first flow path portion 229 constituting a portion of a wall of the ink flow path. The shape of the reflecting portion 225 is not limited to the shape shown in
Referring to
In
In
In
In the embodiment, transparent Noryl “TPN9221” (made by SABIC Innovative Plastics that was formerly GE Plastics) is used as a material of the transparent member. Transparent Noryl is a transparent material that allows a laser beam to pass therethrough and is highly resistant to corrosion due to ink. Alternatively, transparent Noryl “TN300” (made by SABIC Innovative Plastics), which does not include a coloring material, can be used as the material of the transparent member.
The term “Noryl” is a common name for modified polyphenylene ether or modified polyphenylene oxide. Noryl is a thermoplastic resin made by modifying polyphenylene ether (polyphenylene oxide) so as to provide a strong resistance to acids and alkalis.
As a material of the absorption member, black Noryl “SE1X” (made by SABIC Innovative Plastics), which includes a dye or a pigment that absorbs a laser beam, is used.
In the description above, an example in which the reflecting portion on the first surface is constituted by two flat surfaces is used. However, the structure of the reflecting portion is not limited to the example. To be specific, the reflecting portion may be constituted by one flat surface, three or more flat surfaces, one or more curved surfaces, or a combination of flat surfaces and curved surfaces, as long as the reflected portion is disposed on the first surface so that a laser beam can be reflected.
Next, a first embodiment of the invention is described.
Methods for laser welding and materials for the flow path forming member are not described here because they are similar to those in the first example. The structure of a reflecting portion characterizing the invention disposed in a second flow path forming member 220, which is a transparent member, is described in detail.
As shown in
Referring to
As described above using
With the first embodiment, the laser irradiation apparatus is less likely to be damaged because the laser beam 52 reflected by the reflecting portion 226 is not directed toward the laser irradiation apparatus 51.
As shown in
In the first embodiment, the reflecting portion 226 may be formed in such a manner that the laser beam 52 that has passed through the first surface is reflected by a flat or curved surface of the reflecting portion. An appropriate incident angle theta 2 of the laser beam 52 on the flat surface or the tangent plane of the curved surface, i.e., the inclination angle of the reflecting portion 226 with respect to the principal plane of the second surface 220b, can be determined from the index of refraction of the transparent member and the index of refraction of a material that fills the ink flow path 224.
For example, the index of refraction of the transparent member made of a general transparent resin is approximately 1.5 for a laser beam having a wavelength lambda in the range of 800 to 1000 nm. If the ink flow path 224 is filled with air having an index of refraction of approximately 1.0, the laser beam can be totally reflected by the reflecting portion 226, when the reflecting portion 226 is configured such that the incident angle theta 2 of the laser beam on the flat surface or the tangent plane of the curved surface is greater than approximately 42 degrees, which is the critical angle.
Even if the incident angle theta 2 is smaller than the critical angle, when the reflecting portion is configured as shown in
As described above, in the embodiment, the transparent Noryl “TPN9221” (made by SABIC Innovative Plastics) is used for the second channel forming member. In the embodiment, the laser beam having a wavelength lambda of 808 nm is used as an example, and the index of refraction of the second channel forming member is approximately 1.57 at the wavelength. Thus, in the embodiment, the inclination angle of the reflecting portion 226 with respect to the principal plane of the second surface is set such that the laser beam is incident on the flat surface or the tangent plane of the reflecting portion 226 at the incident angle of theta 2 that is greater than approximately 40 degrees.
Because the flow path portion, which constitutes a portion of a wall of the ink flow path, is thus formed by the reflecting portion, it is not necessary that the reflecting portion be formed on the first surface. Therefore, the first surface of the second flow path forming member can be made flat, so that the probability of interference between components when the ink jet recording head is assembled is decreased.
As described above in regard to the first embodiment, it is sufficient that the reflecting portion, which characterizes the invention, which is disposed on the second surface of the second flow path forming member be configured to be capable of reflecting a laser beam. To be specific, the reflecting portion may be constituted by one or more flat surfaces or a combination of flat surfaces and curved surfaces.
Next, a second example of the invention is described.
In the example, reflecting portions are formed on a first surface 220a and a second surface 220b of a second flow path forming member 220 so as to prevent a corner portion 231 as shown in
To be specific, as shown in
As shown in
Moreover, because no corner portion is present in a lower part of the ink jet recording head in the gravitational direction while the ink jet recording head is being used, ink can smoothly flow through the ink flow path when the ink is forcedly passed through the ink flow path 224, so that bubbles and foreign matter can be easily removed.
Moreover, because the reflecting portion formed on the first surface 220a of the second flow path forming member 220 is smaller as compared with the reflecting portion in the first embodiment, although the reflecting portion has a protruding shape, the probability of interference between the components of the second flow path forming member 220 and a recording element unit 300 is reduced.
Furthermore, although the reflecting portion formed in the first surface 220a has a depressed shape, the thickness of the second flow path forming member 220 corresponding to the ink flow path is not reduced considerably because the reflecting portion is small, so that the formability of the second flow path forming member 220 is not seriously affected.
Other configurations of the second example shown in
As described above, with the second example, the inclined surfaces (reflecting portion) formed in/on the second flow path forming member 220 reflect a laser beam so that the proportion of laser beam that reaches the ink flow path 224 is reduced. Moreover, the periphery (contact surface 223) of a first flow path portion 229, which forms a portion of a wall of the ink flow path, can be irradiated with a laser beam so that the periphery is welded. In other words, in the second example, principal planes of the first and second flow path forming members are perpendicularly irradiated with a laser beam, and an inclined surface for reflecting the laser beam is formed in/on at least one of the first surface 220a and the second surface 220b in a region onto which the ink flow path 224 is projected in the direction of the laser beam.
With this structure, the ink flow path is less likely to be damaged when the ink flow path is formed in the ink jet recording head by laser welding.
Next, a second embodiment of the invention is described.
Regarding the structures similar to those in the first embodiment and the first and second examples, description is omitted and like numerals are attached to corresponding portions. Descriptions of a method of laser welding and materials for flow path forming members and a flow path plate are omitted because they are similar to those in the first embodiment and the first and second examples.
By adopting a structure of the second embodiment instead of that of the first embodiment, damage caused by a laser beam to the first flow path portion is further reduced. Referring to
As shown in
With the second embodiment, the damage caused to the region 229a by the laser beam is reduced with the following structures.
As shown in
The structure of the inclined surface 260 is not limited to the configuration in
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2008-130762, filed May 19, 2008, and No. 2009-107880, filed Apr. 27, 2009, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-130762 | May 2008 | JP | national |
2009-107880 | Apr 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/002115 | 5/14/2009 | WO | 00 | 11/17/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/141978 | 11/26/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7261397 | Morita | Aug 2007 | B2 |
20050068381 | Morita | Mar 2005 | A1 |
20070277927 | Momose | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2451335 | Oct 2001 | CN |
1511709 | Jul 2004 | CN |
1583408 | Feb 2005 | CN |
2006-341557 | Dec 2006 | JP |
2007-283668 | Nov 2007 | JP |
2007005447 | Jan 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110069119 A1 | Mar 2011 | US |