The present application is a continuation of U.S. patent application Ser. No. 16/174,355 filed Oct. 30, 2018 which claims priority from Japanese Patent Application No. 2018-038939 filed on Mar. 5, 2018, the disclosures of which is incorporated herein by reference in its entirety.
The present disclosure relates to a liquid discharge head configured to discharge liquid from nozzles and a method of producing a liquid discharge head.
There is known an ink jet recording head in which a piezoelectric element substrate is formed on the upper surface of a silicon substrate formed with pressure chambers. In the piezoelectric element substrate, piezoelectric elements are coated and protected with SiOx film, and a partition-wall resin layer is stacked on the SiOx film. The partition-wall resin layer is formed therein with an ink supply port in communication with the pressure chambers. Then, according to the ink jet recording head, by supplying ink to the pressure chambers through ink supply pass-through channels formed in the partition-wall resin layer, it is possible to prevent the ink from leaking out into the area of the piezoelectric elements.
Further, there is known that when the ink jet recording head as described above is manufactured, on the silicon substrate, a plurality of films are formed in sequence to constitute the piezoelectric element substrate. On this occasion, the plurality of films are formed to provide space for arranging the partition-wall resin layer. Thereafter, the partition-wall resin layer is patterned. On this occasion, the supply port is formed along.
Here, in the ink jet recording head as described above, in order to prevent the ink from leaking out to the piezoelectric element area, a dedicated partition-wall resin layer is needed. Further, when producing ink jet recording heads having a partition-wall resin layer, at the time of forming the films to constitute the piezoelectric element substrate, after the films are formed to spare space for arranging the partition-wall resin layer, it is necessary to pattern the partition-wall resin layer. Therefore, the ink jet recording heads are subject to a complicated manufacturing process.
An object of the present disclosure is to provide a liquid discharge head which can be simply manufactured or produced and a method of producing the liquid discharge head, without needing any dedicated member for preventing a liquid from penetrating into driving elements.
According to an aspect of the present disclosure, there is provided a liquid discharge head including: a substrate including a pressure chamber; an actuator including a driving element configured to apply pressure to liquid in the pressure chamber; and a channel member. The channel member includes a supply channel configured to supply the liquid to the pressure chamber. The actuator includes: a first film arranged on the substrate to cover the pressure chamber; and a second film arranged on an opposite surface of the first film, the opposite surface being opposite to the substrate. The substrate and the channel member are attached to each other with an adhesive in a state that the first film and the second film are sandwiched between the substrate and the channel member. A first through hole is located in a part of the first film at which the pressure chamber and the supply channel are overlapped in a stacking direction of the first film and the second film. A second through hole is located in a part of the second film at which the the first through hole is overlapped in the stacking direction. An edge of the first through hole is positioned further inward of the second through hole than an edge of the second through hole. The adhesive is applied to a part of the opposite surface of the first film at which the second through hole is overlapped in the stacking direction, so as to cover a boundary part between the first film and the second film.
An embodiment of the present disclosure will be explained below.
As depicted in
A sheet of recording paper 100 which is a recording medium is placed on the upper surface of the platen 2. The carriage 3 is configured to be movable reciprocatingly in a left/right direction (also to be referred to below as a scanning direction) along two guide rails 10 and 11 in an area facing the platen 2. The carriage 3 is linked to an endless belt 14 and, with a carriage drive motor 15 driving the endless belt 14, the carriage 3 moves in the scanning direction.
The ink jet head 4 is fitted on the carriage 3 to move in the scanning direction together with the carriage 3. The ink jet head 4 includes four head units 16 aligning in the scanning direction. Through tubes (not depicted), the four head units 16 are connected respectively with a cartridge holder 7 in which ink cartridges 17 are installed to retain inks of four colors (black, yellow, cyan, and magenta). Each of the head units 16 has a plurality of nozzles 20 (see
The conveyance mechanism 5 has two conveyance rollers 18 and 19 arranged to interpose the platen 2 therebetween in a front/rear direction. The conveyance mechanism 5 conveys the recording paper 100 on the platen 2 in a frontward direction (also to be referred to as a conveyance direction) by means of the two conveyance rollers 18 and 19.
<Ink Jet Head>
Next, an explanation will be made about a detailed configuration of the ink jet head 4. Note that because the four head units 16 of the ink jet head 4 have the same configuration, one of head units 16 will be explained and the other will be omitted in the explanation.
As depicted in
<The Flow Channel Substrate>
The channel substrate 21 is a silicon substrate. The channel substrate 21 is formed with a plurality of pressure chambers 26. The channel substrate 21 is as thick as, for example, 100 μm. The plurality of pressure chambers 26 are arrayed in the conveyance direction to form two arrays of the pressure chambers aligning in the scanning direction. Note that in
Further, the recesses 71 are formed in such parts of the upper surface of the vibration film 30 as overlapping in an up-down direction with inner end portions of the plurality of pressure chambers 26 along the scanning direction. The recesses 71 have a diameter D0 (46 μm or so, for example), and their depth H2 is larger than half of the thickness H1 (1.4 μm, for example) of the vibration film 30, that is, [H1/2]=0.8 μm or so, for example. Further, the edges of the recesses 71 are positioned further inward of the pressure chambers 26 than the edges of the pressure chambers 26. Further, the vibration film 30 is formed with through holes 72 (corresponding to the “first through hole” of the present disclosure) in the parts where the recesses 71 are formed. The through holes 72 have a diameter D1 (42 μm or so, for example) smaller than the diameter D0 of the recesses 71, and the edges of the through holes 72 are positioned further inward of the recesses 71 than the edges of the recesses 71. Further, with that, the edges of the through holes 72 are positioned further inward of the pressure chambers 26 than the edges of the pressure chambers 26.
<Nozzle Plate>
The nozzle plate 23 is arranged on the lower surface of the channel substrate 21. The nozzle plate 23 is formed of a synthetic resin such as polyimide or the like. The nozzle plate 23 is as thick as 30 to 50 μm. The nozzle plate 23 is formed with a plurality of nozzles 20 in respective communication with outer end portions of the plurality of pressure chambers 26 of the channel substrate 21 along the scanning direction. As depicted in
<Piezoelectric Actuator>
The piezoelectric actuator 24 includes the vibration film 30 and a plurality of piezoelectric elements 39 arranged on the upper surface of the vibration film 30. The plurality of piezoelectric elements 39 correspond respectively to the plurality of pressure chambers 26 arrayed in two rows.
Hereinbelow, a configuration of the piezoelectric elements 39 will be explained. On the upper surface of the vibration film 30, a lower electrode 31 is formed to lie over the plurality of pressure chambers 26. The lower electrode 31 is a common electrode for the plurality of piezoelectric elements 39. The lower electrode 31 is not limited to any particular material but, for example, may be formed of platinum (Pt).
On the lower electrode 31, a plurality of piezoelectric bodies 32 are arranged to correspond respectively to the plurality of piezoelectric elements 39. The piezoelectric bodies 32 have a rectangular planar shape elongated in the scanning direction, overlapping with the corresponding pressure chambers 26 in the up-down direction. The piezoelectric bodies 32 are formed of a piezoelectric material whose primary component is, for example, lead zirconate titanate (PZT) which is a mixed crystal of lead titanate and lead zirconate. Alternatively, the piezoelectric bodies 32 may be formed of a non-lead based piezoelectric material.
An upper electrode 33 is formed on the upper surface of each piezoelectric body 32. The upper electrodes 33 are formed of, for example, platinum (Pt), iridium (Ir), or the like.
With the above configuration, one piezoelectric element 39 is formed from such a part of the lower electrode 31 as to face one pressure chamber 26, one piezoelectric body 32, and one upper electrode 33.
As depicted in
As depicted in
The insulating film 41 is formed on the protection film 40. The insulating film 41 is not limited to any particular material but, for example, may be made of silicon dioxide (SiO2). The insulating film 41 is provided for raising the insulation quality between the lower electrode 31 and the traces 42 connected to the upper electrodes 33.
On the insulating film 41, the plurality of traces 42 are formed as drawn out, respectively, from the upper electrodes 33 of the plurality of piezoelectric elements 39. The traces 42 are formed of, for example, aluminum (Al), gold (Au) or the like. As depicted in
As depicted in
Further, the trace-protection film 43 extends up to the area surrounding the recesses 71 and through holes 72 of the vibration film 30. Note that the protection film 40 and the insulating film 41 do not extend up to the area surrounding the recesses 71 and through holes 72 of the vibration film 30. By virtue of this, such parts of the trace-protection film 43 as positioned in the area surrounding the recesses 71 and the through holes 72 are arranged on the upper surface of the vibration film 30. Further, the trace-protection film 43 is formed with through holes 73 (the “second through hole” of the present disclosure). The through holes 73 have such a diameter D2 as almost the same as the diameter D0 of the recesses 71 (46 μm or so, for example), and the edges of the through holes 73 overlap with the edges of the recesses 71 along the up-down direction. By virtue of this, the edges of the through holes 72 are positioned further inward of the through holes 73 than the edges of the through holes 73. Further, the trace-protection film 43 has such a thickness H3 (0.55 μm, for example) as smaller than the thickness H1 of the vibration film 30.
As depicted in
<COF>
As depicted in
Based on a control signal sent in from the undepicted control device, the driver ICs 52 generate a drive signal for driving the piezoelectric actuator 24. Operation of the piezoelectric elements 39 when the drive signal is supplied from the driver ICs 52 will be explained. When the drive signal is not supplied, the upper electrodes 33 are kept at the ground potential which is the same as the lower electrode 31. From this state, if the drive signal is supplied to a certain upper electrode 33, and the drive potential is applied to the upper electrode 33, then due to the potential difference between the upper electrode 33 and the lower electrode 31, an electric field arises parallel to the thickness direction and acts on the piezoelectric body 32 between the two electrodes. On this occasion, the piezoelectric body 32 extends in the thickness direction and contracts in the planar direction due to the inverse piezoelectric effect, such that the vibration film 30 bends to project toward the pressure chamber 26. By virtue of this, the pressure chamber 26 decreases in volume to generate a pressure wave inside the pressure chamber 26, thereby discharging droplets of the ink from the nozzle 20 in communication with the pressure chamber 26.
<Reservoir Forming Member>
As depicted in
A reservoir 46 is formed in the upper half part of the reservoir forming member 25 to extend in an array direction for the pressure chambers 26 (a direction perpendicular to the page of
In the lower half part of the reservoir forming member 25, a plurality of ink supply channels 47 are formed to extend downward from the reservoir 46. The ink supply channels 47 are in respective communication with the plurality of pressure chambers 26 of the channel substrate 21 via the through holes 72 and 73 of the piezoelectric actuator 24. By virtue of this, the inks are supplied to the plurality of pressure chambers 26 from the reservoir 46 through the plurality of ink supply channels 47. Here, the ink supply channels 47 have such a diameter D3 (38 μm or so, for example) as smaller than any of the diameter D1 of the through holes 72 and the diameter D2 of the through holes 73, and the edges of the ink supply channels 47 are positioned further inward of the through holes 72 and 73 than the edges of the through holes 72 and the edges of the through holes 73.
Further, the reservoir forming member 25 is joined to the channel substrate 21 with an adhesive 75. Here, the adhesive 75 is an insulating adhesive such as an adhesive containing epoxy resin, or the like. Further, as depicted
Further, a cover 45 is formed in the lower half part of the reservoir forming member 25. Inside the cover 45, there is a space formed to accommodate the plurality of piezoelectric elements 39 of the piezoelectric actuator 24.
<Method for Producing the Ink Jet Head>
Next, a method for producing the ink jet head 4 will be explained. In order to produce or manufacture the ink jet head 4, first, as depicted in
Then, as depicted in
Then, as depicted in
Then, as depicted in
Then, as depicted in
Then, as depicted in
<Effects of the Embodiment>
In the embodiment explained above, the edges of the through holes 72 are positioned further inward of the through holes 73 than the edges of the through holes 73, and the adhesive 75 is applied to the parts of the upper surface of the vibration film 30 overlapping with the through holes 73 (the surface at the far side from the channel substrate 21). Then, the adhesive 75 renders covering of the boundary part between the vibration film 30 of silicon dioxide (SiO2) and the trace-protection film 43 of silicon nitride (SiNx). By virtue of this, it is possible to prevent the inks form penetrating between the vibration film 30 and the trace-protection film 43.
Further, in this embodiment, the through holes 73 are formed in the trace-protection film 43, then the recesses 71 and the through holes 72 are formed in the vibration film 30, then the substrate 121 is joined with the reservoir forming member 25 by the adhesive 75, and finally the plurality of pressure chambers 26 are formed in the substrate 121 by way of etching. On this occasion, such parts of the adhesive 75 are eliminated through etching as overlapping with the through holes 72 along the up-down direction. At the same time, in this embodiment, as described earlier on, the edges of the through holes 72 are positioned further inward of the through holes 73 than the edges of the through holes 73. Therefore, such parts of the adhesive 75 are not eliminated but remain as covering the junction portion between the vibration film 30 and the trace-protection film 43. In this manner, in this embodiment, with the above positional relation between the edges of the through holes 72 and the edges of the through holes 73, it is possible to form a structure of placing the adhesive 75 to cover the boundary part between the vibration film 30 and the trace-protection film 43 by only attaching the reservoir forming member 25 to the channel substrate 21 across the vibration film 30 and the trace-protection film 43. Therefore, no other members are needed for covering the boundary part between the vibration film 30 and the trace-protection film 43, and neither will the process for manufacturing the liquid discharge head become a complicated one.
Further, in this embodiment, the recesses 71 are formed in the upper surface of the vibration film 30, and the edges of the through holes 72 are positioned further inward of the through holes 73 than the edges of the through holes 73. By virtue of this, compared to a case where the recesses 71 are not formed in the vibration film 30, more quantity of the adhesive 75 will be applied on the upper surface of the vibration film 30 such that it is possible to increase the effect of preventing the liquid from penetrating between the vibration film 30 and the trace-protection film 43.
Further, in this embodiment, the depth H2 of the recesses 71 is larger than [H1/2] half of the thickness H1 of the vibration film 30. By virtue of this, by deepening the recesses 71, it is possible to increase the quantity of the adhesive applied on the upper surface of the vibration film 30.
Further, in this embodiment, because the thickness H1 of the vibration film 30 formed with the recesses 71 is larger than the thickness H3 of the trace-protection film 43, with the recesses 71 being formed in the vibration film 30, there is a high effect for increasing the quantity of the adhesive applied on the upper surface of the vibration film 30.
Further, in this embodiment, the edges of the ink supply channels 47 are positioned further inward of the through holes 72 and 73 than the edges of the through holes 72 and 73. Therefore, such a space can be formed as surrounded by the vibration film 30, the trace-protection film 43, and the reservoir forming member 25, such that it is possible to reliably leave the adhesive 75 in that space when joining the channel substrate 21 and the reservoir forming member 25.
Further, in this embodiment, because the adhesive 75 contains epoxy resin, with the adhesive 75 covering the boundary part between the vibration film 30 and the trace-protection film 43, it is possible to reliably prevent the inks from penetrating between the vibration film 30 and the trace-protection film 43.
Further, in this embodiment, the edges of the through holes 72 are positioned further inward of the pressure chambers 26 than the edges of the pressure chambers 26, and the edges of the through holes 72 are exposed to the pressure chambers 26 throughout the circumference. Therefore, as described earlier on, there is a great significance in the structure of applying the adhesive 75 to cover the boundary part between the vibration film 30 and the trace-protection film 43.
One exemplary embodiment of the present disclosure was explained above. However, the present disclosure is not limited to the above embodiment but various changes and modifications can apply thereto without departing from the true scope and spirit of the appended claims.
In the above embodiment, the diameter D3 of the ink supply channels 47 is smaller than any of the diameters D1 and D2 of the through holes 72 and 73, and the edges of the ink supply channels 47 are positioned further inward of the through holes 72 and 73 than the edges of the through holes 72 and 73. However, without being limited to that, for example, the diameter of the ink supply channels 47 may be larger than any of the diameters of the through holes 72 and 73, and the edges of the through holes 72 and 73 may be positioned further inward of the edges of the ink supply channels 47 than the edges of the ink supply channels 47. Alternatively, the diameter of the ink supply channels 47 may be almost the same as the diameter of the through holes 73, and the edges of the through holes 73 may overlap with the edges of the ink supply channels 47 along the up-down direction.
Further, in this embodiment, the thickness H1 of the vibration film 30 formed with the recesses 71 is larger than the thickness H3 of the trace-protection film 43. However, without being limited to that, the thickness of the vibration film 30 may not be larger than the thickness of the trace-protection film 43.
Further, in this embodiment, the depth H2 of the recesses 71 is larger than half of the thickness H1 of the vibration film 30 [H2>H1/2]. However, without being limited to that, the depth of the recesses 71 may not be larger than half of the thickness H1 of the vibration film 30.
Further, in this embodiment, the diameter D3 of the through holes 73 is almost the same as the diameter D0 of the recesses 71, and the edges of the recesses 71 overlap with the edges of the through holes 73 along the up-down direction. However, without being limited to that, as depicted in
Further, in the above embodiment, the recesses 71 are formed in the upper surface of the vibration film 30. However, without being limited to that, as depicted in
Further, in the above embodiment, the trace-protection film 43 is formed of silicon nitride. However, without being limited to that, the trace-protection film may be formed of another insulating material than silicon nitride (SiNx).
Further, in the above embodiment, the trace-protection film 43 extends up to the area surrounding the recesses 71 and through holes 72 of the vibration film 30. However, without being limited to that, as depicted in
Then, in the third modified embodiment, the adhesive 227 renders covering of the boundary part between the vibration film 30, and a two-layer film (corresponding to the “element protection film” of the present disclosure) protecting piezoelectric elements 39 formed by stacking the projection film 222 and the insulating film 223. By virtue of this, it is possible to prevent the inks from penetrating between the vibration film 30 and the projection film 222, and between the projection film 222 and the insulating film 223.
Further, in the third modified embodiment, the protection film 222 is made of alumina (Al2O3), and the insulating film 223 is made of silicon dioxide (SiO2). However, without being limited to that, the protection film 222 may be made of another material than alumina, for example, an oxide such as silicon oxide (SiOx), tantalum oxide (TaOx) or the like, or a nitride such as silicon nitride (SiNx) or the like. Further, the insulating film 223 may be made of another insulating material than silicon dioxide (SiO2).
Further, both the trace-protection film protecting the traces 42, and the protection film and insulating film protecting the piezoelectric elements 39 may extend up to the area surrounding the recesses 71 and the through holes 72 of the vibration film 30 and, in those three films, through holes may be formed to render communication between the pressure chambers 26 and the ink supply channels 47. Note that in such a case, the combination of the through holes formed in the above three films corresponds to the “second through hole” of the present disclosure.
Further, in the above example, the film made of an insulating material extends up to the area surrounding the recesses 71 and the through holes 72 of the vibration film 30 and, in that film, the through holes are formed to render communication between the pressure chambers 26 and the ink supply channels 47. However, without being limited to that, for example, a film made of a conductive material, such as the film forming the lower electrode, may extend up to the area surrounding the recesses 71 and the through holes 72 of the vibration film 30 and, in that film, the through holes may be formed to render communication between the pressure chambers 26 and the ink supply channels 47.
Further, in the above embodiment, the edges of the through holes 72 are positioned further inward of the pressure chambers 26 than the edges of the pressure chambers 26. However, without being limited to that, for example, as depicted in
Further, in the above embodiment, the adhesive containing epoxy resin is used to join the channel substrate 21 and the reservoir forming member 25. However, without being limited to that, the adhesive for joining the channel substrate 21 and the reservoir forming member 25 may not contain epoxy resin as far as it has a sealing function against the inks.
Further, in the above embodiment, the vibration film 30 is formed of silicon dioxide. However, without being limited to that, the vibration film may be formed of a material other than the silicon dioxide such as silicon nitride or the like. For example, if the vibration film is made of silicon nitride, then it is possible to nitride part of the surface of the silicon channel substrate 21 to form the same.
Further, in the above embodiment, the channel substrate 21 is a silicon substrate. However, without being limited to that, the channel substrate 21 may be made of another material such as a metallic material or the like.
Further, in the above embodiment, the plurality of pressure chambers 26 are formed in the substrate 121 by way of etching. However, without being limited to that, the plurality of pressure chambers 26 may be formed in the substrate 121 by another method such as laser processing or the like.
Further, in the above embodiment, the recesses 71 and the through holes 72 are formed in the vibration film 30 after the through holes 73 are formed in the trace-protection film 43. However, without being limited to that, in a sixth modified embodiment, for example, in the same manner as in the above embodiment, after the traces 42 are formed as depicted in
Further, in the fifth modified embodiment, the recesses 71 and the through holes 72 are formed in the vibration film 30 immediately before the trace-protection film 43 and the film 143 are formed. However, the recesses 71 and the through holes 72 may be formed in the vibration film 30 at an earlier stage than that.
Further, such examples are taken in the above explanation that the present disclosure is applied to a printer carrying out printing by discharging ink from nozzles. However, without being limited to those examples, for example, it is also possible to apply the present disclosure to liquid discharge apparatuses which discharges other liquids than ink such as a material used for producing wiring patterns on wiring substrates, etc.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-038939 | Mar 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8070268 | Okazawa et al. | Dec 2011 | B2 |
20050275316 | Murata | Dec 2005 | A1 |
20080204512 | Okazawa | Aug 2008 | A1 |
20100141712 | Kim et al. | Jun 2010 | A1 |
20110193916 | Hirai et al. | Aug 2011 | A1 |
20170066247 | Mizuno et al. | Mar 2017 | A1 |
20170151784 | Giusti et al. | Jun 2017 | A1 |
20180050540 | Iida | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
H07-254113 | Oct 1995 | JP |
2005-153369 | Jun 2005 | JP |
2006-272913 | Oct 2006 | JP |
2007-165651 | Jun 2007 | JP |
2008-155430 | Jul 2008 | JP |
2008-207443 | Sep 2008 | JP |
2009-214522 | Sep 2009 | JP |
2016-068281 | May 2016 | JP |
2017-052128 | Mar 2017 | JP |
2017-052142 | Mar 2017 | JP |
2018-020509 | Feb 2018 | JP |
Entry |
---|
Apr. 9, 2019—(EP) Extended Search Report—App 18201027.2. |
Feb. 1, 2022—(JP) Notice of Reasons for Refusal—App 2018-038939. |
Number | Date | Country | |
---|---|---|---|
20210086509 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16174355 | Oct 2018 | US |
Child | 17110751 | US |