The present disclosure relates to a liquid discharge head, a manufacturing method therefor, and a recording method.
A liquid discharge head, such as an inkjet printer head, is provided with a supply path and a flow path so that liquid can flow to a substrate made of silicon and the like. Generally, the supply path and the flow path are formed by engraving holes in the substrate, or are formed as holes going through the substrate in some cases. The substrate is provided with a structure such as a flow path forming member and a discharge port forming member. In some cases, the flow path may form the discharge port. The substrate is further provided with an energy-generating element that generates energy for discharging liquid. More specifically, the liquid is provided with energy to be discharged through the discharge port. Japanese Patent Application Laid-Open No. 2006-227544 discusses one example of a method for forming the structure. More specifically, a method for forming a structure made of organic resin on a substrate is discussed. The method includes attaching a photosensitive resin film on a substrate having small recesses, and exposing and developing the film.
When the supply path and the flow path are formed on a silicon substrate, the silicon exposed on an inner wall of the supply path or the flow path may melt depending on the type of liquid to be used such as ink or a use condition. Especially, alkaline ink may pose a significant risk of melting the silicon. Even the slightest melting of the silicon into the liquid may affect a discharge performance and a formed image or collapse the flow path structure when used for a long period of time. Thus, various attempts have been made to protect the silicon exposed on the inner wall of the supply path or the flow path. Japanese Patent Application Laid-Open No. 2002-347247 discusses an example of a method for forming a protective layer including organic resin on a surface which is brought in contact with the liquid. Japanese Patent Application Laid-Open No. 2004-74809 discusses another example of a method for forming an ink-resistance thin film of titanium, a titanium compound, or alumina (Al2O3).
A liquid discharge head according to an aspect of the present disclosure includes a silicon substrate, an insulating layer A formed on a first surface of the silicon substrate, a protective layer A that includes metal oxide and is formed on the insulating layer A, a structure that is formed on the protective layer A by direct contact with the protective layer A, includes organic resin, and forms a part of a flow path for liquid, and an element that is formed on a second surface of the silicon substrate on a side opposite to the first surface, and is configured to generate energy used for discharging the liquid.
A manufacturing method for the aforementioned liquid discharge head according to an aspect of the present disclosure includes forming the insulating layer A on the first surface of the silicon substrate using Atomic Layer Deposition (ALD), forming the protective layer A on the insulating layer A, and forming the structure on the protective layer A.
A recording method according to an aspect of the present disclosure includes performing recording with liquid including pigment discharged through the aforementioned liquid discharge head.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
The protection of the exposed silicon described above in Description of the Related Art, is preferably achieved with a metal oxide film as a protective layer in terms of preventing the melting of the silicon. However, if the metal oxide film is used as the protective layer, adhesion between a structure including organic resin, and the protective layer is weakened when the substrate is immersed in liquid for a long period of time, which may cause the peeling.
The present disclosure is directed to providing a liquid discharge head in which the peeling from the protective layer can be prevented even when liquid immersion continues for a long period of time.
A liquid discharge head according to the present disclosure includes a silicon substrate, an insulating layer A formed on a first surface of the silicon substrate, a protective layer A that includes metal oxide and is formed on the insulating layer A, and a structure that is formed on the protective layer A by direct contact with the protective layer A and includes organic resin. The liquid discharge head further includes an element (hereinafter, also referred to as an energy-generating element) that is configured to generate energy used for discharging liquid and is formed on a second surface of the silicon substrate on an opposite side of the first surface. The structure forms a part of the flow path for the liquid. A configuration including the silicon substrate, the insulating layer A, the protective layer A, and the structure is hereinafter also referred to as a substrate. With the substrate provided in the liquid discharge head, the liquid can flow in the liquid discharge head for a long period of time without causing the peeling of the structure from the protective layer A.
An example of the substrate used for the liquid discharge head is described with reference to
As described above, it is presumed that when the substrate comprising the protective layer A 103 including the metal oxide, and the structure 104 including organic resin, is immersed in liquid for a long period of time, the structure 104 is peeled from the protective layer A 103.
In view of the above, the insulating layer A is provided between the silicon substrate and the protective layer A. It is presumed that a mechanism illustrated in
A function element, driving circuit, a mechanical structure, and the like for a device employing the substrate according to the present disclosure, may be formed on the silicon substrate as appropriate. A driving circuit, a liquid supply path, a liquid flow path, and the like may be formed in advance on the silicon substrate in addition to the energy-generating element.
The insulating layer A has an insulating property and thus can prevent the electrons from being supplied from the silicon substrate. Thus, the recombination of the cations and the electrons at the interface between the structure and the protective layer A can be prevented. The insulating layer is a layer with a volume resistivity of 106 Ωcm or more. In the present exemplary embodiment, the volume resistivity is a value calculated from a minute leakage current measured by a two-terminal method with an electrode formed on an appropriate film. The insulating layer A 102 is preferably made of a silicon compound containing at least one element selected from a group including oxygen, nitrogen, and carbon since the conditions described above can be easily satisfied. The silicon compound is preferably at least one type of compound selected from a group including SiO, SiN, SiOC, SiON, and SiOCN. Not only the silicon compound but also aluminum oxide such as AlO may be used. One type of such compounds may be used or a plurality of types of the compounds may be used.
Since it is thought that the electrical insulation between the silicon substrate and the protective layer A contributes to the prevention of the deterioration of the protective layer A, the insulating layer A is preferably used to prevent the silicon substrate and the protective layer A from being in direct contact with each other. More specifically, as illustrated in
A method for forming the insulating layer A may be selected from deposition methods such as chemical vapor deposition (CVD), sputtering, and atomic layer deposition (ALD) as appropriate in accordance with a configuration of a portion where the insulating layer A is formed. Among these, the ALD which excels in terms of conformality is preferably employed since even when a mechanical structure with a higher aspect ratio such as the liquid flow path and the liquid supply path is formed, the insulating layer A can be formed over the entire wall surface. The thickness of the insulating layer A is not particularly limited as long as the insulation can be guaranteed, and is preferably 1 nm to 1 μm, more preferably 5 nm to 500 nm, even more preferably 10 nm to 300 nm, and is especially preferably 30 nm to 100 nm. The insulating layer A with a thickness of 1 nm or more can achieve a high reliability in terms of insulation. The insulating layer A with a thickness of 1 μm or can achieve a high productivity.
The protective layer A is a layer different from the insulating layer A, includes metal oxide, and has a function of preventing corrosion of the silicon substrate in a usage environment of the device. More specifically, in the liquid discharge head, Si of the silicon substrate is prevented from melting which is caused by discharged liquid. The metal element in the metal oxide is preferably titanium, zirconium, hafnium, vanadium, niobium, or tantalum and is more preferably titanium since high resistance can be achieved against corrosion caused by an alkaline solution. One preferable example of the protective layer A includes a TiO film. One type of the metal oxide may be used, however, two or more types of the metal oxide may be used together. The protective layer A preferably includes the metal oxide of 80% by mass or more, and more preferably includes the metal oxide of 90% by mass or more. It is even more preferable if the protective layer A includes the metal oxide of 100% by mass, that is, the protective layer A may be completely made of the metal oxide.
The deterioration of the protective layer A leads to a lower adhesion to the organic resin. Thus, in the present exemplary embodiment, the protective layer A and the structure are in direct contact with each other. The protective layer A may protect a portion in the surface of the exposed silicon substrate which affects the device performance and reliability when melted. Still, the protective layer A is preferably formed over the entire exposed surface of the silicon substrate in which the supply path and the flow path are formed. A method for forming the protective layer A may be selected from deposition methods such as CVD, sputtering, and ALD as appropriate in accordance with the configuration of the exposed silicon substrate surface. Among these, the ALD which excels in terms of conformality is preferably employed in forming the protective layer A. The thickness of the protective layer A is not particularly limited, and is preferably 5 nm to 500 nm, and is more preferably 10 nm to 300 nm.
The organic resin contained in the structure is preferably at least one type of resin selected from a group including epoxy resin, aromatic polyimide resin, aromatic polyamide resin, and aromatic hydrocarbon resin so that high mechanical strength and resistance against corrosion by the liquid can be achieved. The structure preferably includes the organic resin of 80% by mass or more, and more preferably includes the organic resin of 90% by mass or more. It is even more preferable if the structure includes the organic resin of 100% by mass, that is, the structure may be completely made of the organic resin.
The structure may have a certain mechanical structure such as the liquid flow path. For example, preferably, recesses such as the flow path is formed on the first surface of the silicon substrate 101 and the structure 104 is a lid structure formed on the recess, as illustrated in
Further, as illustrated in
With respect to a characteristic configuration of the liquid discharge head, adhesion reliability between the structure and the substrate, and between the flow path forming member and the substrate is very important. In a general inkjet printer, flow paths for multi-color ink are formed in the liquid discharge head for supplying multi color ink for forming a color image. For example, in a cross-sectional view of the liquid discharge head illustrated in
In particular, a contact area between the substrate and the structure is smaller than that between the flow path forming member and the substrate. Thus, a slightest peeling of the structure from the substrate may lead to the mixing of different colors of ink. More specifically, in the liquid discharge head illustrated in
The liquid in the pressure chamber can circulate between the inside of the pressure chamber 110 and the outside of the pressure chamber 110. More specifically, the liquid in the pressure chamber 110 may be discharged to the outside through any hole, and can return into the pressure chamber 110 through any hole. For example, the liquid in the pressure chamber 110 may circulate to the first surface side of the silicon substrate 101 via the supply paths 109 of the silicon substrate 101. More specifically, for example, in
A manufacturing method for a liquid discharge head according to the present disclosure includes forming the insulating layer A on the first surface of the silicon substrate by ALD, forming the protective layer A on the insulating layer A, and forming the structure on the protective layer A. An example of the manufacturing method for a liquid discharge head is described below with reference to
First of all, the silicon substrate 101 is prepared. The energy-generating element 105 as a heater and the wiring layer 106 including the driving circuit and the wiring for supplying power to the energy-generating element 105 are formed in advance on the second surface of the silicon substrate 101 (
Next, the insulating layer A 102 is formed on the silicon substrate 101. As described above, the insulating layer A 102, which may be formed by a method selected from CVD, sputtering, and ALD, is preferably formed by ALD. Then, an unnecessary portion of the insulating layer A 102 thus formed is removed (
Then, a metal oxide film as the protective layer A 103 is formed on the silicon substrate 101 and on the insulating layer A 102. Then, the unnecessary portion of the protective layer A 103 thus formed is removed (
The insulating layer A 102 and the protective layer A 103 may not be removed if there is not unnecessary portion. Still, the layers A 102 and A 103 are preferably removed with respect to a portion on the energy-generating element 105 to achieve stable discharging and high energy efficiency. The protective layer A 103 for protecting the silicon from liquid corrosion, is not necessarily required on a portion where the substrate 101 and the liquid flow path forming member are adhering to each other and no contact is made between the silicon and the liquid, and thus is preferably removed at the portion. A method for removing the unnecessary portions of the insulating layer A 102 and the protective layer A 103 may be selected from methods such as forming a pattern with a photoresist and the like and performing dry etching or wet etching, or a liftoff method for forming a pattern before the insulating layer A 102 is formed and removing the unnecessary portion together with the pattern after the layer has been formed. The same removing method or different removing methods may be performed on the insulating layer A 102 and the protective layer A 103, and the removing may be omitted if possible when the unnecessary portion does not exist.
Then, the flow path forming member including the pressure chamber 110 extending from the supply path 109 to the discharge port 111 is formed (
Next, the structure 104 as a lid structure in which the opening for communicating with the flow path 108 is formed is manufactured on the first surface of the silicon substrate 101. An example of a method for forming the structure 104 includes a method of laminating, exposing, and developing the photosensitive resin film (
In a recording method according to the present disclosure, recording is performed with liquid including pigment discharged through the liquid discharge head. The recording method according to an exemplary embodiment involves the liquid discharge head according to the exemplary embodiment. Thus, the liquid including pigment can flow in the liquid discharge head without peeling at the interface between the protective layer A and the structure even when the liquid contained within the liquid discharge head has been circulating for a long time.
Example 1 is described below. In Example 1, a substrate was manufactured through a procedure illustrated in
Then, both surfaces of the silicon substrate 101 were coated with photoresist (product name: THMR-iP5700HR, manufactured by TOKYO OHKA KOGYO., LTD.). An area corresponding to half the first surface of the silicon substrate 101 was irradiated with ultraviolet (UV) light for developing, whereby the insulating layer A 102 was partially exposed. Then, the substrate was immersed in semiconductor buffered hydrofluoric acid (product name: BHF-110U manufactured by DAIKIN INDUSTRIES, LTD.) so that exposed insulating layer A 102 was removed (
The photoresist was removed with a peeling solution, and then a TiO film as the protective layer A 103 with a thickness of 85 nm was formed by ALD (
The substrate was divided into pieces at a line drawn at the center of the silicon substrate 101 in
Peeling was found at a portion around the rectangular hole pattern formed on the structure 104, in the substrate according to Comparative Example 1, that is, the substrate with no insulating layer A 102 formed on the first surface of the silicon substrate (
Example 2 is described below. A substrate of this example was manufactured in the same manner as Example 1 except that a SiN film was used as the insulating layer A 102 instead of the SiO film, and was subjected to the ink immersion evaluation. No change in the structure 104 as a result of the immersion in ink was found, and the structure 104 was not peeled from the protective layer A 103.
Example 3 is described below. A substrate of this example was manufactured in the same manner as Example 1 except that a SiOC film was used as the insulating layer A 102 instead of the SiO film, and was subjected to the ink immersion evaluation. No change in the structure 104 as a result of the immersion in ink was found, and the structure 104 was not peeled from the protective layer A 103.
Example 4 is described below. A substrate of this example was manufactured in the same manner as Example 1 except that a SiON film was used as the insulating layer A 102 instead of the SiO film, and was subjected to the ink immersion evaluation. No change in the structure 104 as a result of the immersion in ink was found, and the structure 104 was not peeled from the protective layer A 103.
Example 5 is described below. A substrate of this example was manufactured in the same manner as Example 1 except that an AlO film was used as the insulating layer A 102 instead of the SiO film, and was subjected to the ink immersion evaluation. No change in the structure 104 as a result of the immersion in ink was found, and the structure 104 was not peeled from the protective layer A 103.
A substrate according to this comparative example was manufactured in the same manner as Example 1 except that a Ta film as a conductive material was formed by sputtering instead of the SiO film as the insulating layer A 102, and was subjected to the ink immersion evaluation. Peeling was found around the rectangular hole pattern formed in the structure 104.
A substrate according to this comparative example was manufactured in the same manner as Example 1 except that a TiW film as a conductive film was formed by sputtering instead of the SiO film as the insulating layer A 102, and was subjected to the ink immersion evaluation. Peeling was found around the rectangular hole pattern formed in the structure 104.
Example 6 is described below. As in Example 1 and Comparative Example 1, the insulating layer A 102 and the protective layer A 103 were formed on the silicon substrate 101. Then, aromatic polyamide resin (product name: HIMAL HL-1200CH, manufactured by Hitachi Chemical Company, Ltd.) was applied to be heated and dried. Then, a photoresist (product name: THMR-iP5700 HR, manufactured by TOKYO OHKA KOGYO., LTD.) was further applied, and a pattern was formed using the photomask and the exposure device (a projection analyzer (product name: UX-4258, manufactured by USHIO INC.)). Then, the aromatic polyamide resin was etched by chemical dry etching using oxygen plasma, with the photoresist pattern used as the mask. Then, the photoresist was peeled, whereby the structure 104 with the pattern that is the same as Example 1 and Comparative Example 1 was formed. Then, the substrate was manufactured and the ink immersion evaluation was performed as in Example 1 and Comparative Example 1. A result of the evaluation was the same as Example 1 and Comparative Example 1.
Example 7 is described below. In this example, a liquid discharge head was manufactured through the procedure illustrated in
Next, a SiO film as the insulating layer A 102 with a thickness of 20 nm was formed on the silicon substrate 101 by ALD. ALD was able to form the SiO film at a substantially uniform thickness on the inner walls of the flow path 108 and the supply paths 109. Then, a photoresist film was laminated on the second surface of the silicon substrate 101, and the photoresist pattern was formed only in a portion around the supply paths 109 using the photomask and an exposure device (product name: FPA-5510iV, manufactured by Canon Inc.). Then, the insulating layer A 102 on the second surface of the silicon substrate 101 was etched using the photoresist pattern as the mask. Buffered hydrofluoric acid (product name: BHF-110U manufactured by DAIKIN INDUSTRIES, LTD.) obtained by mixing semiconductor buffered hydrofluoric acid (product name: BHF-110U manufactured by DAIKIN INDUSTRIES, LTD.) and pure water at a ratio of 1:40 (volume ratio) was used as an etching solution. In this example, spin etching was employed by dropping the etching solution onto the rotated silicon substrate 101. Thus, only the unnecessary portion of the insulating layer A 102 was removed with no etching liquid spreading to the first surface of the silicon substrate 101. Then, the pattern used as the mask was removed (
Next, a TiO film as the protective layer A 103 with a thickness of about 77 nm was formed by ALD. ALD was able to form the TiO film at a substantially uniform thickness on the inner walls of the flow path 108 and the supply paths 109 as in the case of the insulating layer A 102. Next, the photoresist pattern was formed, and an unnecessary portion of the protective layer A 103 on the second surface of the silicon substrate 101 was etched using the photoresist pattern as the mask as in the case of the insulating layer A 102. Buffered hydrofluoric acid (product name: Pure Etch ZE250, manufactured by Hayashi Pure Chemical Ind., Ltd.) was used as an etching solution. Also in this example, the spin etching was employed by dropping the etching solution on the rotated silicon substrate 101. Thus, only the unnecessary portion of the protective layer A 103 was removed with no etching liquid spreading to the first surface of the silicon substrate 101. Then, the pattern used as the mask was removed (
Next, processes of laminating, exposing, and developing a photosensitive epoxy resin film (product name: TMMF, manufactured by TOKYO OHKA KOGYO., LTD.) were repeated twice. Thus, the flow path forming member including the liquid discharge port 111 and the pressure chamber 110 between the discharge port 111 and the supply path 109 was formed on the second surface side of the silicon substrate 101 (
Next, a photosensitive epoxy resin film was laminated on the first surface of the silicon substrate 101, exposed, and developed to form the structure 104 as the lid structure. In the structure 104, the opening for communicating with the flow path 108 was formed. The photosensitive epoxy resin film was manufactured by applying and drying an epoxy resin solution (product name: SU-8 2000, manufactured by Nippon Kayaku Co., Ltd.) on an optical film. Then, the liquid discharge head was obtained with the epoxy resin sufficiently cured through heating at 200° C. (
Next, the liquid discharge head was divided into pieces with a dicing saw. Then, the liquid discharge head was immersed in pigment black ink (cartridge name: PFI-106 BK) for a large-format inkjet printer (product name: image PROGRAF series) manufactured by Canon Inc. for two weeks while being heated at 70° C. The liquid discharge head was taken out from the ink, washed by pure water, and then was observed by an electron microscope. The structure 104 had not changed at all, and was not peeled from the protective layer A 103.
A liquid discharge head was manufactured in a manner that is the same as Example 7 except that the insulating layer A 102 was not formed, and was subjected to the ink immersing evaluation. In this comparative example, the structure 104 was peeled at a portion around the flow path 108 which was in contact with the protective layer A 103.
Example 8 is described below. In this example, a liquid discharge head was manufactured through a procedure illustrated in
Next, the member 1111 was prepared (
The member 1111 was formed with the insulating layer B 1102 as the SiO2 film and the protective layer B 1103 as the TiO film which were formed on the silicon substrate 1101 with a thickness of 625 μm. The liquid supply paths 1107 were formed as through holes in the silicon substrate 1101.
Next, the surface of the silicon substrate 101 on which the structure 1104 was formed was joined with the member 1111 (
Next, the liquid discharge head was divided into pieces with a dicing saw. Then, the liquid discharge head was immersed in pigment black ink (cartridge name: PFI-106 BK) for a large-format inkjet printer (product name: imagePROGRAF series) manufactured by Canon Inc. for two weeks while being heated at 70° C. The liquid discharge head was taken out from the ink, washed by pure water, and then was observed by an electron microscope. The structure 104 had not changed at all, and the structure 104 was not peeled from the protective layer A 103.
A liquid discharge head was manufactured in the same manner as Example 8 except that the insulating layer A 102 was not formed, and was subjected to the ink immersion evaluation. In this Comparative Example, peeling occurred when force was applied to each of the joined substrates. Ink immersion was found by observing the interface between the silicon substrate 101 and the structure 1104 that has been peeled, with an electron microscope.
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2016-106234, filed May 27, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2016-106234 | May 2016 | JP | national |