The present invention relates to a liquid discharge head substrate, a liquid discharge head and a method of manufacturing the liquid discharge head substrate.
A liquid discharge head substrate includes an element that applies energy to a liquid to discharge the liquid. Japanese Patent Laid-Open No. 2016-137705 discloses a liquid discharge head substrate using a heat generating resistive element that applies energy to a liquid.
In a structure disclosed in Japanese Patent Laid-Open No. 2016-137705, when forming an electrode plug, a metal for forming the electrode plug is sometimes unsatisfactorily buried and the surface of the formed electrode plug becomes uneven. The unevenness is readily generated near an end in the long-side direction in the case of a shape described in the fourth embodiment of Japanese Patent Laid-Open No. 2016-137705. The uneven surface of the electrode plug may hinder a protective layer formed on a heat generating resistive element arranged on the electrode plug from uniformly covering the heat generating resistive element. If part of the heat generating resistive element is not covered with the protective layer, a liquid such as ink reaches the heat generating resistive element to generate a potential difference between the electrode plug at a positive potential and the liquid at the ground potential via the heat generating resistive element during the operation of the heat generating resistive element. Owing to the potential difference, the protective layer is dissolved by an electrolysis operation and the durability of the liquid discharge head substrate may decrease.
Embodiments of the present invention provide a technique advantageous in improving the durability of a liquid discharge head substrate.
According to some embodiment, a liquid discharge head substrate comprising: a substrate; an insulating layer arranged above a surface of the substrate; conductive patterns arranged in the insulating layer; a heat generating resistive element arranged above the insulating layer and configured to generate heat energy for discharging a liquid; a protective layer covering the heat generating resistive element; and electrode plugs electrically connecting the heat generating resistive element and the conductive patterns, wherein the heat generating resistive element and the electrode plugs are arranged in contact with each other and are arranged such that an orthogonal projection of the heat generating resistive element onto the surface of the substrate overlaps with orthogonal projections of the electrode plugs onto the surface of the substrate, a current flows through the heat generating resistive element in a first direction parallel to the surface of the substrate, a length of the electrode plug in the first direction is smaller than a length of the heat generating resistive element in the first direction, and in a second direction parallel to the surface of the substrate and crossing the first direction, a length of the electrode plug in the second direction is larger than a length of the heat generating resistive element in the second direction, is provided.
According to some other embodiment, a liquid discharge head substrate comprising: a substrate; an insulating layer arranged above a surface of the substrate; a heat generating resistive element arranged above the insulating layer and configured to generate heat energy for discharging a liquid; a protective layer covering the heat generating resistive element; a first conductive pattern and a second conductive pattern arranged in the insulating layer; a first electrode plug configured to electrically connect the heat generating resistive element and the first conductive pattern; and a second electrode plug configured to electrically connect the heat generating resistive element and the second conductive pattern, wherein the first electrode plug and the second electrode plug are arranged in contact with the heat generating resistive element and are arranged such that an orthogonal projection of the heat generating resistive element onto the surface of the substrate overlaps with each orthogonal projection of the first and second electrode plugs onto the surface of the substrate, the first electrode plug and the second electrode plug are aligned in a first direction parallel to the surface of the substrate, and in a second direction parallel to the surface of the substrate and crossing the first direction, a length of each of the first electrode plug and the second electrode plug in the second direction is larger than a length of the heat generating resistive element in the second direction, is provided.
According to still other embodiment, a method of manufacturing a liquid discharge head substrate, comprising: forming, on a surface of a substrate, an insulating layer in which conductive patterns are buried; forming, in the insulating layer, grooves through which the conductive patterns are exposed at bottoms of openings; forming electrode plugs by filling the grooves with a conductive material; forming a heat generating resistive element that is electrically connected to the electrode plugs and generates heat energy for discharging a liquid; and forming a protective layer to cover the heat generating resistive element, wherein the heat generating resistive element and the electrode plugs are arranged in contact with each other and are arranged such that an orthogonal projection of the heat generating resistive element onto the surface of the substrate overlaps with orthogonal projections of the electrode plugs onto the surface of the substrate, a current flows through the heat generating resistive element in a first direction parallel to the surface of the substrate, a length of the electrode plug in the first direction is smaller than a length of the heat generating resistive element in the first direction, and in a second direction parallel to the surface of the substrate and crossing the first direction, a length of the electrode plug in the second direction is larger than a length of the heat generating resistive element in the second direction, is provided.
According to some still other embodiment, a method of manufacturing a liquid discharge head substrate, comprising: forming, on a surface of a substrate, an insulating layer in which a first conductive pattern and a second conductive pattern are buried; forming, in the insulating layer at an interval in a first direction parallel to the surface of the substrate, a first groove through which the first conductive pattern is exposed at a bottom of an opening and a second groove through which the second conductive pattern is exposed at a bottom of an opening; forming a first electrode plug and a second electrode plug by filling the first groove and the second groove with a conductive material, respectively; forming a heat generating resistive element that electrically connects the first electrode plug and the second electrode plug and generates heat energy for discharging a liquid; and forming a protective layer to cover the heat generating resistive element, wherein in a second direction parallel to the surface of the substrate and crossing the first direction, a length of each of the first electrode plug and the second electrode plug in the second direction is larger than a length of the heat generating resistive element in the second direction, is provided.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Embodiments of a liquid discharge head substrate according to the present invention will now be described in detail with reference to the accompanying drawings. In the following description and drawings, common signs denote common arrangements throughout a plurality of drawings. Common arrangements will be described by mutually referring to a plurality of drawings, and a description of arrangements denoted by common signs will be omitted appropriately.
The structure and manufacturing method of a liquid discharge head substrate according to an embodiment of the present invention will be described with reference to
The liquid discharge head substrate 100 includes a substrate 101, insulating layers 102 and 103, conductive patterns 111, a heat generating resistive element 113, a protective layer 105, and electrode plugs 112. For example, a semiconductor substrate of silicon or the like is used for the substrate 101. The insulating layers 102 and 103 have insulating properties and are arranged on the surface of the substrate 101. For example, silicon oxide or the like is used for the insulating layers 102 and 103. The conductive patterns 111 are arranged in the insulating layers 102 and 103. For example, a material containing aluminum, copper, or the like is used for the conductive patterns 111. The conductive patterns 111 supply power to the heat generating resistive element 113.
The liquid discharge head substrate 100 may further include a metal layer 106 on the protective layer 105. The metal layer 106 on the protective layer 105 functions as an anti-cavitation layer and can improve the liquid discharge performance of the liquid discharge head substrate 100. For example, tantalum, iridium, or the like is used for the metal layer 106.
The liquid discharge head substrate 100 further includes, on the protective layer 105, a flow path member 107 arranged to surround the heat generating resistive element 113 in order to form the flow path of the liquid 121 such as ink. When the metal layer 106 is arranged, the flow path member 107 is arranged on the metal layer 106. The liquid discharge head substrate 100 further includes, above the protective layer 105, an orifice member 108 having an orifice 109 for discharging the liquid 121. The orifice 109 is arranged above the heat generating resistive element 113.
Next, the positional relationship between the heat generating resistive element 113 and the electrode plug 112 will be described. The heat generating resistive element 113 and the electrode plug 112 are arranged in contact with each other so that they overlap each other in a projection orthogonal to the surface of the substrate 101, as shown in
As shown in
If the electrode plug 112 has a rectangular shape as shown in
As shown in
As shown in
Next, a method of manufacturing the liquid discharge head substrate 100 according to this embodiment will be explained with reference to
First, as shown in
After forming the conductive material 211, a mask pattern is formed to cover a predetermined region of the conductive material 211 using photolithography. A portion of the conductive material 211 that is not covered with the mask pattern is etched using dry etching or the like until the insulating layer 102 is exposed, thereby forming conductive patterns 111 shown in
As shown in
After forming the insulating layer 103, a mask pattern is formed to cover a predetermined region of the insulating layer 103 using photolithography. A portion of the insulating layer 103 that is not covered with the mask pattern is etched using dry etching or the like until the conductive patterns 111 are exposed. As a result, two grooves 212 extending in the x direction through which the respective conductive patterns 111 are exposed at the bottoms of the openings are formed at an interval in the y direction, as shown in
After forming the grooves 212, the grooves 212 formed in the insulating layer 103 are filled with a conductive material containing tungsten or the like using CVD or sputtering. The conductive material is planarized using CMP or the like, forming electrode plugs 112, as shown in
As shown in
After forming the heat generating resistive element material 213, a mask pattern is formed to cover a predetermined region of the heat generating resistive element material 213 using photolithography. A portion of the heat generating resistive element material 213 that is not covered with the mask pattern is etched using dry etching or the like until the insulating layer 103 and the electrode plugs 112 are exposed, thereby forming a heat generating resistive element 113 shown in
As shown in
After forming the metal layer 106, a flow path member 107 and an orifice member 108 are formed, thus forming a liquid discharge head substrate 100 shown in
As described above, according to this embodiment, the length of the electrode plug 112 of the liquid discharge head substrate 100 in the x direction is designed to be larger than the length of the heat generating resistive element 113 in the x direction. This suppresses the contact between the electrode plug 112 or the heat generating resistive element 113, and the liquid 121 and can improve the durability of the liquid discharge head substrate 100.
The structure and manufacturing method of a liquid discharge head substrate according to an embodiment of the present invention will be described with reference to
Next, the manufacturing method of the liquid discharge head substrate 100′ according to this embodiment will be described with reference to
Steps shown in
After forming the grooves 214, the grooves 214 formed in the insulating layer 503 are filled with a conductive material containing tungsten or the like using CVD or sputtering. The conductive material is planarized using CMP or the like, forming a plurality of connecting members 114, as shown in
As shown in
After forming the insulating layer 103, a mask pattern is formed to cover a predetermined region of the insulating layer 103 using photolithography. A portion of the insulating layer 103 that is not covered with the mask pattern is etched using dry etching or the like until the connecting members 114 are exposed. As shown in
After forming the grooves 212, the grooves 212 formed in the insulating layer 103 are filled with a conductive material containing tungsten or the like using CVD or sputtering. The conductive material is planarized using CMP or the like, forming electrode plugs 112, as shown in
Steps shown in
Even in this embodiment, as in the above-described first embodiment, the length of the electrode plug 112 in the x direction is larger than the length of the heat generating resistive element 113 in the x direction in a projection orthogonal to the surface of the substrate 101. That is, the outer edge of the electrode plug 112 is arranged outside the outer edge of the heat generating resistive element 113 in the x direction. Even if the end of the electrode plug 112 becomes uneven, a liquid 121 rarely contacts the end of the electrode plug 112. As a result, the durability of the liquid discharge head substrate 100′ can be improved.
A liquid discharge apparatus using the above-described liquid discharge head substrate 100 or 100′ will be explained.
The medium P is pressed by a paper press plate 1605 in the carriage moving direction and fixed to a platen 1606. The liquid discharge apparatus 1600 performs liquid discharge (in this example, printing) to the medium P conveyed on the platen 1606 by a conveyance unit (not shown) by reciprocating the liquid discharge head 1510.
The liquid discharge apparatus 1600 confirms the position of a lever 1609 provided on the carriage 1620 via photocouplers 1607 and 1608, and switches the rotational direction of the driving motor 1601. A support member 1610 supports a cap member 1611 for covering the nozzle (liquid orifice or simply orifice) of the liquid discharge head 1510. A suction portion 1612 performs recovery processing of the liquid discharge head 1510 by sucking the interior of the cap member 1611 via an intra-cap opening 1613. A lever 1617 is provided to start recovery processing by suction, and moves along with movement of a cam 1618 engaged with the carriage 1620. A driving force from the driving motor 1601 is controlled by a well-known transmission mechanism such as a clutch switch.
A main body support plate 1616 supports a moving member 1615 and a cleaning blade 1614. The moving member 1615 moves the cleaning blade 1614 to perform recovery processing of the liquid discharge head 1510 by wiping. The liquid discharge apparatus 1600 includes a controller (not shown) and the controller controls driving of each mechanism described above.
A liquid from the liquid supply path 1503 is stored in a common liquid chamber 1504 and supplied to each nozzle 1500 via the corresponding flow path 1505. The liquid supplied to each nozzle 1500 is discharged from the nozzle 1500 in response to driving of the heater 1506 corresponding to the nozzle 1500.
The liquid discharge apparatus 1600 further includes a head driver 1705, motor drivers 1706 and 1707, a conveyance motor 1709, and a carrier motor 1710. The carrier motor 1710 conveys a liquid discharge head 1708. The conveyance motor 1709 conveys the medium P. The head driver 1705 drives the liquid discharge head 1708. The motor drivers 1706 and 1707 drive the conveyance motor 1709 and the carrier motor 1710, respectively.
When a driving signal is input to the interface 1700, it can be converted into data for liquid discharge between the gate array 1704 and the MPU 1701. Each mechanism performs a desired operation in accordance with this data. In this manner, the liquid discharge head 1708 is driven.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2018-077142, filed Apr. 12, 2018, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2018-077142 | Apr 2018 | JP | national |