1. Field of the Invention
The present invention relates to a liquid discharge head and a liquid discharge device.
2. Description of the Related Art
A liquid discharge head for use in inkjet recording has a plurality of discharge ports and a plurality of energy generating elements for generating thermal energy to be utilized for discharging ink from the discharge ports. Such an energy generating element contains a heat generation resistant layer and an electrode for supplying electric power to the resistant layer. By covering the energy generating element with an insulating layer containing an insulating material, insulation between the ink and the energy generating element is secured. The ink is sharply heated by thermal energy generated by driving such energy generating elements, whereby the ink undergoes film boiling, so that bubbles are formed. Then, the ink is discharged to a recording medium by pressure accompanied with these bubbles, and thus recording is performed.
A heat acting portion in which the heat generated by the energy generating elements is transmitted to the ink is subjected to high temperature due to heating of the heat generation resistant layer and also subjected in a complex manner to a physical action, such as impact of cavitation accompanied with expansion and contraction of bubbles and a chemical action by the ink. Therefore, in order to protect the energy generating element and the insulating layer, a protective layer is provided at a position corresponding to the energy generating element. Usable as a material of such a protective film are tantalum and a platinum group (iridium, ruthenium, and the like) resistant to the impact caused by cavitation and the chemical action caused by ink. In particular, a film of the platinum group, such as iridium and ruthenium, is a very stable film and the film has resistance to ink and has strong resistance to the impact caused by cavitation. Therefore, the materials are useful from the viewpoint of reliability and extension of life-span of the head.
However, it is known that such materials are hardly chipped even when cavitation arises, and therefore a hardly-soluble substance (kogation) generated due to thermal decomposition of a substance in ink is likely to adhere to the surface of the protective layer, and is gradually deposited. When such kogation adheres to the heat acting portion, the energy generated by the energy generating element is not sufficiently transmitted to ink, resulting in unstable discharge.
Japanese Patent Laid-Open No. 2008-105364 discloses applying a voltage to the protective layer to cause an electrochemical reaction between the ink and the protective layer to elute about several nanometers of the surface of the protective layer to thereby remove the kogation deposited on the protective layer.
However, as is understood from
When a kogation removal operation is performed using such a liquid discharge head, an electrochemical reaction rapidly proceeds in the protective layer of the portions corresponding to the boundary portions, so that the protective layer of the portions is very rapidly eluted. Therefore, when the kogation removal operation is repeated, the film thickness of the protective layer at the portions corresponding to the boundary portions is further reduced as compared with the film thickness of the flat portion. Therefore, a crack and the like arise due to cavitation in the protective layer with the tapered portions as the starting point, which causes a problem such that the energy generating element cannot be sufficiently protected.
The present invention provides a high-reliable liquid discharge head in which an energy generating element can be protected even when a kogation removal operation is repeated.
According to an aspect of the present invention, a liquid discharge head, contains: an energy generating element which generates thermal energy and contains a heat generation resistant layer containing a material which generates heat by energization and a pair of electrode layers which are used for energizing the heat generation resistant layer and whose end surfaces are separated from each other; an insulating layer covering the pair of electrode layers and the heat generation resistant layer and containing an insulating material; a protective layer provided above the insulating layer at least at a position corresponding to the energy generating element and containing a metal material containing iridium or ruthenium; and a covering layer provided at a position covering at least portions of the protective layer corresponding to the end surfaces of the pair of electrode layers in such a manner that a part of the protective layer is exposed and containing a metal material containing tantalum or niobium.
By providing the constituent elements as described above, even when the kogation removal operation is repeated, portions corresponding to the boundary portions of the protective layer are not eluted. Thus, a destruction of the energy generating element due to cavitation with the tapered portions of the protective layer as the starting point can be prevented.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
A liquid discharge head can be mounted on devices, such as a printer, a copying machine, a facsimile having a communication system, and a word processor having a printer portion, and also an industrial recording device combined with various processing units in a complex manner. The use of the liquid discharge head allows recording on various recording media, such as paper, thread, fiber, fabric, leather, metal, plastic, glass, wood, and ceramics.
The term “record” as used in this description refers not only to giving images having meanings, such as characters and figures, to a recording medium but to giving images not having meanings, such as patterns, thereto.
The term “liquid” should be widely interpreted and refers to liquid which is given onto a recording medium to be used for the formation of images, designs, patterns, and the like, processing of a recording medium, or treatment of ink or a recording medium. Herein, the treatment of ink or a recording medium refers to treatment for improving fixability by solidifying or insolubilizing a coloring material in ink to be given to a recording medium, improving recording quality and color development properties, and improving image durability, for example. The “liquid” for use in the liquid discharge device of the invention generally has a large amount of electrolytes and has conductivity.
Hereinafter, embodiments of the invention are described with reference to the drawings. In the following description, components having the same function are designated by the same reference numerals throughout the drawings.
Liquid Discharge Device
Head Unit
The invention relates to a liquid discharge head which can be mounted on such a head unit. The invention aims at providing a high-reliable liquid discharge head capable of preventing a breakage of an energy generating element caused by tapered portions corresponding to a level difference of the boundary portions of an electrode layer and a heat generation resistant layer of a protective layer to be used for removing kogation generated when discharging liquid.
Such a liquid discharge head is described below in detail.
When the recording operation is continued for a long period of time by driving such energy generating elements 108, substances, such as a coloring material and an additive, in ink, are heated at a high temperature to be decomposed, changed to a hardly-soluble substance, and then adhere to the heat acting portion on the surface of the energy generating element 108. Such an attached substance is referred to as kogation. When there is such kogation, heat generated by the energy generating elements 108 is not sufficiently transmitted to ink, resulting in a possibility of poor foaming. Therefore, as illustrated in
As illustrated in
The heat generation resistant layer 104 and the pair of electrode layers 105 are covered with an insulating layer 106 containing an insulating material, such as a silicon compound, e.g., SiN, in order to achieve insulation with liquid to be discharged, such as ink. Furthermore, a protective layer 107 which is used as a cavitation resistant layer and can perform the kogation removal operation is provided on the insulating layer 106 corresponding to the portion of the energy generating element 108 using a sputtering method or the like. Thus, the energy generating element 108 can be protected from physical impact, such as cavitation due to expansion and contraction of bubbles when discharging, and chemical impact accompanied with heat generation, and further kogation can be removed. Used as a material of such a protective layer 107 is a metal material which causes an electrochemical reaction by applying a potential to set the same as the anode, and then is eluted in ink. Specifically, a platinum group metal material, such as iridium (Ir) and ruthenium (Ru), is mentioned.
The surface of the insulating layer 106 has a convexo-concave shape due to the influence of structures formed under the layer, and particularly portions of the insulating layer corresponding to the level difference of the boundary portions of the heat generation resistant layer 104 and the electrode layer 105 are sharply tapered. The level difference of the boundary portions of the heat generation resistant layer 104 and the electrode layer 105 is formed by a portion, where the electrode layers 105 are not provided, on the heat generation resistant layer 104. Therefore, portions of the insulating layer 106 corresponding to end surfaces 105a (
The tapered portions 107a are provided in such a manner as to be covered with a covering layer 110 using a material which is resistant to physical impact, such as cavitation, and chemical impact and does not melt even when energized by applying a voltage or a material which is hard to melt when energized by applying a voltage as compared with the material forming the protective layer 107. By using a metal material, such as tantalum (Ta) and niobium (Nb), as the material of the covering layer 110, the covering layer 110 can also be used as an electrode for applying a voltage. The use of the covering layer 110 also as an electrode eliminates the necessity of providing the electrode layer between the insulating layer and the protective layer as illustrated in
As a specific configuration, as illustrated in
When the kogation removal operation is repeatedly performed, the elution of the protective layer 107 proceeds not only in a direction perpendicular to the substrate but also in a direction horizontal thereto. More specifically, in order not to elute the tapered portions 107a of the protective layer 107, it is suitable to provide the covering layer 110 in such a manner that the end portions of the covering layer 110 extend in the inner direction receding from the tapered portions with a distance substantially equivalent to the film thickness of the protective layer from at least the tapered portion. The film thickness of the protective layer 107 refers to the thickness of a portion provided at the position corresponding to the energy generating element 108 of the protective layer 107 and is not covered with the covering layer 110. The same applies in the following description. By also covering the end portions of the protective layer 107 with the covering layer 110, the end portions of the protective layer 107 can also be prevented from separation. By also covering the tapered portions of the insulating layer 106 at the side opposite to the energy generating element 108 of the pair of electrode layers 105, insulation properties can be further increased.
By forming the counter electrode 111 with a material which is not oxidized when applying a voltage in such a manner as to set the same as the anode, e.g., a platinum group, such as iridium and ruthenium, the counter electrode 111 and the protective layer 107 can be alternately set to the anode. When an electrochemical reaction is continued while fixing the counter electrode 111 as the cathode and fixing the protective layer 107 as the anode, there is a case where ink components adhere to the surface of the protective layer 107 serving as the anode depending on the ink to be used, and the elution of the protective layer 107 is hindered, so that kogation cannot be removed. In such a case, by reversing the polarity of the voltage to be applied as appropriate, the kogation removal operation can be performed while removing or dispersing the ink components adhering to the protective layer 107.
By covering the end portions of the counter electrode 111 with a metal material containing tantalum, niobium, or the like, of the covering layer, the elution of the end portions of the counter electrode 111 can be prevented even when the kogation removal operation is performed while reversing the polarity of the voltage to be applied. Thus, even when the kogation removal operation is performed while reversing the polarity of a voltage, a change in the size of the counter electrode 111 can be prevented, and therefore a stable kogation removal operation is achieved.
Manufacturing Method
Next, an example of a method for manufacturing such a liquid discharge head is described.
On the base substance 101 containing silicon on which drive elements, such as a transistor, are provided, the thermally oxidized layer 102 is provided by thermally oxidizing a part of the base substance 101, and the thermal storage layer 103 containing a silicon compound, such as SiO2, is further provided using a sputtering method or a CVD method (
Next, on the thermal storage layer 103, the heat generation resistant layer 104 containing a material (e.g., TaSiN and WSiN) which generate heat by energization is provided with a thickness of about 50 nm by a reactive sputtering method. A conductive material layer of Al, Al—Si, Al—Cu, or the like serving as the pair of electrode layers 105 is formed with a thickness of about 300 nm by a sputtering method. Then, the heat generation resistant layer 104 and the electrode layers 105 are patterned using a photolithographic method and simultaneously using a dry etching method. In this embodiment, a reactive ion etching (RIE) method is used as the dry etching. At this time, it is suitable to sufficiently remove the same using a dry etching method until the surface of the thermal storage layer 103 is over-etched in such a manner that the energy generating elements 108 adjacent to each other are certainly electrically independent.
Next, in order to form the energy generating element 108 illustrated in
Next, as illustrated in
Next, a platinum group metal material, such as iridium and ruthenium, which causes an electrochemical reaction by applying a voltage in such a manner as to set the same as the anode and is eluted in ink is formed with a thickness of about 200 nm on the insulating layer 106 by a sputtering method. Thereafter, in order to achieve the shape illustrated in
Next, on the protective layer 107, a metal material containing tantalum, niobium, or the like which has resistance to physical impact, such as cavitation, and chemical impact and does not melt even when energized by applying a voltage is formed into a film using a sputtering method in such a manner that the thickness is about 250 nm. Thereafter, patterning the metal material containing tantalum, niobium, or the like is carried out using a dry etching method or the like in such a manner as to achieve the covering layer 110 which covers the tapered portions 107a of the protective layer 107 and the end portions of the protective layer 107 as illustrated in
The patterning is suitably performed in such a manner that the covering layer 110 covers portions at the inner side relative to the tapered portions 107a with a length almost equivalent to the film thickness of the protective layer 107 as illustrated in
Next, the flow path formation member 112 serving as the plane of the discharge ports 113 for discharging liquid and the flow paths 114 communicating with the discharge ports 113 with a cured substance of thermosetting resin, such as epoxy resin, is provided on the substrate 100 for the liquid discharge head as illustrated in
When a discharge operation was performed by 1.0×107 times using such a liquid discharge head 41, stable discharge was not performed depending on the discharge port, e.g., the ink is not discharged in a straight manner and the amount of ink droplets becomes small. When the heat acting portion of the energy generating element 108 corresponding to such a discharge port was observed under an optical microscope, it was confirmed that kogation adheres thereto. When a DC potential difference of 10 V was applied to such a liquid discharge head 41 for 30 sec using the power supply 121 in such a manner that the protective layer 107 serves as the anode, kogation deposited on the protective layer 107 was removed, and a state where stable recording can be performed was restored. Furthermore, when the kogation attaching operation and the kogation removal operation were repeatedly performed by about 30 times, the liquid discharge head 41 was decomposed, and then the liquid discharge head 41 was observed, it was confirmed that the tapered portions 107a are protected by the covering layer 110, and are not eluted.
In the first embodiment, although the configuration in which the insulating layer 106 and the protective layer 107 are provided in such a manner as to directly contact is described. However, in this embodiment, a configuration in which an adhesion layer 109 for increasing adhesiveness is provided between the insulating layer 106 and the protective layer 107 is described as illustrated in
By providing the constituent elements as described above, even when the kogation removal operation is repeatedly performed, the protective layer 107 disposed above the energy generating element 108 and exposed into the flow path is eluted but the tapered portions 107a are not eluted. Thus, a breakage of the energy generating element 108 due to cavitation with the tapered portions as the starting point can be prevented. Furthermore, by providing the adhesion layer 109, the protective layer 107 on the insulating layer 106 can be prevented from separation.
By covering the end portions of the protective layer 107 and the adhesion layer 109 with the covering layer 110, the protective layer 107 can also be prevented from separating from the end portions.
Manufacturing Method
Next, an example of a manufacturing method of such a liquid discharge head is described.
Since processes until the insulating layer 106 of
On the insulating layer 106, a material layer serving as the adhesion layer 109 containing a metal material, such as tantalum, chromium, titanium, and niobium, or an alloy thereof and a material layer serving as the protective layer 107 containing a platinum group metal material, such as iridium and ruthenium, are continuously formed into films by a sputtering method. At this time, the material layer serving as the adhesion layer 109 and the material layer serving as the protective layer 107 are continuously formed in such a manner as to achieve a thickness of about 20 nm and about 200 nm, respectively.
Dry etching is carried out in such a manner as to achieve the shape illustrated in
Next, on the protective layer 107, a metal material containing tantalum, niobium, or the like which has resistance to physical impact, such as cavitation, and chemical impact and does not melt even when energized by applying a voltage is formed into a film using a sputtering method in such a manner that the thickness is about 250 nm. Thereafter, patterning the metal material containing tantalum, niobium, or the like is carried out using a dry etching method or the like in such a manner as to achieve the covering layer 110 which covers the tapered portions 107a of the protective layer 107 and the end portions of the protective layer 107 as illustrated in
Next, the flow path formation member 112 serving as the plane of the discharge ports 113 for discharging liquid and the flow paths 114 communicating with the discharge ports 113 with a cured substance of thermosetting resin, such as epoxy resin, is provided on the substrate 100 for the liquid discharge head as illustrated in
By manufacturing as described above, the liquid discharge head 41 capable of performing the kogation removal operation can be provided.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2011-267153 filed Dec. 6, 2011, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2011-267153 | Dec 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5455612 | Ikeda et al. | Oct 1995 | A |
Number | Date | Country |
---|---|---|
2008-105364 | May 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20130141494 A1 | Jun 2013 | US |