The present disclosure relates to liquid discharge heads configured to jet a liquid such as an ink or the like onto a medium.
There is known an ink jet recording apparatus having an ink jet recording head and an ink tank. The ink jet recording head and the ink tank are connected by a supply tube and a circulation tube. The ink sent from the ink tank to the ink jet recording head via the supply tube is sent back from the ink jet recording head to the ink tank via the circulation tube. In this manner, by circulating the ink, the ink is prevented from drying. Inside the ink jet recording head, there are provided a supply manifold to supply the ink to a plurality of pressure chambers, and a feedback manifold to retrieve the ink which is not jetted from the nozzles among the ink supplied to the pressure chambers. The supply manifold is in communication with the supply tube, while the feedback manifold is in communication with the circulation tube. Note that in the ink jet recording apparatus as described above, a double-layer structure is adopted to arrange a the supply manifold and the feedback manifold to overlap with each other in an up-down direction.
In this context, in the ink jet recording apparatus as described above, in order to supply a sufficient quantity of ink, it is necessary to secure an ink flow quantity or rate flowing in the supply manifold. For this purpose, it is desired to suppress the resistance (flow channel resistance) of the entire flow channels including the supply manifold, the feedback manifold, and a plurality of individual flow channels passing through the pressure chambers from the supply manifold to the feedback manifold.
Further, when the ink is circulated, some air bubbles may come into the supply manifold. If the air bubbles flowing in the supply manifold intrude into the pressure chambers, then the jet characteristic of the ink from the nozzles is liable to vary when the recording head is driven. Therefore, it is desired to adopt a flow channel structure where the air bubbles having come into the supply manifold are less likely to intrude into the pressure chambers.
An object of the present invention is to provide a liquid discharge head having such a flow channel structure that: a liquid is circulated, and a supply manifold and a feedback manifold are arranged to overlap with each other in an up-down direction; it is possible to suppress to a low level the flow channel resistance of all flow channels including the supply manifold, the feedback manifold, and individual flow channels; and air bubbles having come into the supply manifold are less likely to intrude into pressure chambers.
According to an aspect of the present disclosure, there is provided a liquid discharge head including: a supply manifold extending in a first direction; a feedback manifold extending in the first direction; and a plurality of individual flow channels having a plurality of pressure chambers and a plurality of nozzles. Each of the individual flow channels includes: a supply portion connecting the supply manifold and one of the plurality of pressure chambers; a descender portion extending in a second direction orthogonal to the first direction and connecting the one of the plurality of pressure chambers and one of the plurality of nozzles; and a feedback portion branching from the descender portion and connected to the feedback manifold. The supply manifold has a plurality of supply ports connected to the supply portions of the plurality of individual flow channels, and the feedback manifold has a plurality of feedback ports connected with the feedback portions of the plurality of individual flow channels. At least part of the supply manifold overlaps with the feedback manifold in the second direction. The plurality of pressure chambers have a plurality of first pressure chambers forming a first pressure chamber array aligned in the first direction, and a plurality of second pressure chambers forming a second pressure chamber array aligned in the first direction. The first pressure chamber array is arranged at one side, of the supply manifold, in a third direction orthogonal to the first direction and to the second direction, and the second pressure chamber array is arranged at the other side, of the supply manifold, in the third direction. The plurality of first pressure chambers forming the first pressure chamber array and the plurality of second pressure chambers forming the second pressure chamber array are connected to the supply manifold.
According to the above configuration, at one side of the supply manifold in the first direction, the plurality of first pressure chambers are arranged to form the first pressure chamber array, whereas at the other side of the supply manifold in the first direction, the plurality of second pressure chambers are arranged to form the second pressure chamber array. As compared with a case where the first pressure chambers and the second pressure chambers are all arranged biasedly at one side of the supply manifold in the first direction, it is possible to suppress to a low level the flow channel resistance of all flow channels from the supply manifold, through the individual flow channels, to the feedback manifold. Further, as a liquid is supplied from the supply manifold to the first pressure chambers and the second pressure chambers, accordingly a flow occurs slightly with the liquid flowing in the supply manifold to head for the supply ports from the supply manifold. If the first pressure chambers and the second pressure chambers are all arranged biasedly at one side of the supply manifold in the first direction, then the liquid flowing in the supply manifold has a larger component or share of the liquid flow toward the one side in the first direction, at which the supply ports are arranged. Thereby, air bubbles flowing through the liquid are liable to be drawn or pulled to the one side in the first direction at which the supply ports are arranged. To deal with this problem, in the above configuration, the first pressure chambers and the second pressure chambers are arranged on both sides of the supply manifold in the first direction, respectively. By virtue of this, because it is possible to disperse the orientations of the flow occurring slightly from the supply manifold toward the supply ports, as compared with a case where the supply ports are arranged biasedly at one side of the supply manifold in the first direction, it is possible to reduce the possibility of drawing or pulling the air bubbles flowing through the liquid to the supply ports.
<Overall Configuration of a Printer>
As depicted in
Hereinbelow, as depicted in
The ink jet head 2 is a so-called line-type ink jet head, having the eight head units 3. As depicted in
The platen 4 is arranged to face the lower surface of the ink jet head 2. The platen 4 extends across the entire length of the recording paper P in the left-right direction. The platen 4 supports the recording paper P from below. The conveyance rollers 5 and 6 are arranged at the upstream side and the downstream side of the ink jet head 2 in the conveyance direction, respectively, to convey the recording paper P in the conveyance direction.
In the ink jet printer 1, the controller 7 controls an unsown motor provided for the conveyance rollers 5 and 6 to cause the conveyance rollers 5 and 6 to convey the recording paper P through a predetermined distance in the conveyance direction. Each time the recording paper P is conveyed, the controller 7 causes the ink to be jetted from the plurality of nozzles 45 of the ink jet head 2. By virtue of this, the ink jet printer 1 carries out printing on the recording paper P.
<The Head Units 3>
Next, an explanation will be made on the head units 3. As depicted in
<The Flow Channel Unit 21>
As depicted in
At the right side of each supply manifold 46, a pressure chamber array 140L is arranged to extend in the conveyance direction whereas at the left side of each supply manifold 46, a pressure chamber array 240L is arranged to extend in the conveyance direction. The pressure chamber array 140L has a plurality of pressure chambers 140 aligned in a row in the conveyance direction while the pressure chamber array 240L has a plurality of pressure chambers 240 aligned in a row in the conveyance direction. Further, as depicted in
<The Individual Flow Channels 130>
As depicted in
As depicted in
The plurality of descender portions 142 are formed of through holes which are overlapped in the up-down direction and formed in the plates 102 and 108. Each descender portion 142 is a flow channel connecting one pressure chamber 140 to a nozzle 145, and extends downward from the right end of the pressure chamber 140. The nozzle 145 is arranged in the lower end of the descender portion 142.
The plurality of feedback portions 143 are formed through the plate 108. Each feedback portion 143 is a flow channel linking one descender portion 142 to a feedback manifold 47. The feedback portion 143 extends leftward from the connection part with the descender portion 142 formed in the plate 108. Further, the feedback portion 143 is connected to the feedback manifold 47 via a feedback port 143a (an example of the feedback port in communication with the first pressure chamber of the present disclosure) formed in the plate 108. Note that the feedback port 143a is larger in opening area than the supply port 141a.
The plurality of nozzles 145 are formed in the plate 109. Each nozzle 145 is arranged in the lower end of one descender portion 142. One individual flow channel 130 is formed from a nozzle 145, a descender portion 142 connected to the nozzle 145, a feedback portion 143 and a pressure chamber 140 connected to the descender portion 142, and a supply portion 141 connected to the pressure chamber 140.
<The Individual Flow Channels 230>
As depicted in
As depicted in
The plurality of descender portions 242 are formed of through holes which are overlapped in the up-down direction and formed in the plates 102 and 108. Each descender portion 242 is a flow channel connecting one pressure chamber 240 to a nozzle 245, and extends downward from the left end of the pressure chamber 240. The nozzle 245 is arranged in the lower end of the descender portion 242.
The plurality of feedback portions 243 are formed through the plate 108. Each feedback portion 243 is a flow channel linking one descender portion 242 to a feedback manifold 47. The feedback portion 243 extends rightward from the connection part with the descender portion 242 formed in the plate 108. Further, the feedback portion 243 is connected to the feedback manifold 47 via a feedback port 243a (an example of the feedback port in communication with the second pressure chamber of the present disclosure) formed in the plate 108. Note that the feedback port 243a is larger in opening area than the supply port 241a.
The plurality of nozzles 245 are formed in the plate 109. Each nozzle 245 is arranged in the lower end of one descender portion 142. One individual flow channel 230 is formed from a nozzle 245, a descender portion 242 connected to the nozzle 245, a feedback portion 243 and a pressure chamber 240 connected to the descender portion 242, and a supply portion 241 connected to the pressure chamber 240.
As depicted in
As depicted in
Further, as depicted in
In this embodiment, an undepicted pump is provided in midstream of the flow channel between the ink feeding port 128 and the ink tank, or provided in midstream of the flow channel between the ink discharge port 129 and the ink tank. Due to the ink flow caused by the undepicted pump being driven, the ink circulates between the ink jet head 2 and the undepicted ink tank. Note that, in this embodiment, the pressure on the ink flowing in the supply manifold 46 is rendered larger than the pressure on the ink flowing in the feedback manifold 47.
Further, in the flow channel unit 21, a thinned part 130 is formed in the plate 105 of such a part being thinner than the other part (in terms of the thickness in the up-down direction) as to overlap with the supply manifold 46 and the feedback manifold 47 in the up-down direction. In other words, a partition wall (the thinned part 130) is formed in the plate 105 to separate the supply manifold 46, being thinner than the other part of the plate 105 in thickness (in the length according to the up-down direction).
<Piezoelectric Actuator>
As depicted in
The common electrode 43 is arranged between the piezoelectric layer 41 and the piezoelectric layer 42 to extend continuously through the entire area of the piezoelectric layers 41 and 42. The common electrode 43 is maintained at the ground potential. The plurality of individual electrodes 44 are provided individually for the plurality of pressure chambers 140 and 240. The individual electrodes 44 each have an approximately rectangular planar shape and are arranged to overlap with a central portion of the corresponding one of the pressure chambers 140 and 240 in the up-down direction. Connection terminals 44a of the plurality of individual electrodes 44 are connected to the driver IC 8 (see
Hereinafter, an explanation will be made on a method for driving the piezoelectric actuator 22 to jet the ink from the nozzles 145 and 245. In this embodiment, as will be explained below, the ink is jetted by way of so-called “retreat shooting”. The following control is carried out by the controller 7 (see
In order to jet the ink from the certain nozzle 145, the potential of the individual electrode 44 corresponding to that nozzle 145 is switched to the ground potential. By virtue of this, the parts of the piezoelectric layers 41 and 42 overlapping with the pressure chamber 140 in the up-down direction are recovered from the deformation such that the pressure chamber 140 increases in volume. Thereafter, by switching the potential of the individual electrode 44 back to the drive potential, the parts of the piezoelectric layers 41 and 42 overlapping with the pressure chamber 140 in the up-down direction deform again to project toward the pressure chamber 140. By virtue of this, the pressure of the ink in the pressure chamber 140 increases so as to be jetted from the nozzle 145 in communication with the pressure chamber 140. After the ink is jetted from the nozzle 145, the individual electrode 44 is still kept at the drive potential. Much the same is true with the above explanation on a case where the ink is jetted from a certain nozzle 245.
<Functions and Effects of this Embodiment>
In the ink jet head 2 as explained in the above, air bubbles may be mixed into the ink supplied to the supply manifolds 46 from the ink tank. The ink mixed with the air bubbles flows on the ink flow course in the supply manifolds 46, but some of the air bubbles may flow into the supply portions 141 and 241 from the supply manifolds 46. For example, if the air bubbles flow into the supply portions 141, then they will move to the pressure chambers 140 and the descender portions 142. Therefore, then the ink from the nozzles 145 is liable to vary in jet characteristic. Much the same is true on a case where air bubbles flow into the supply portions 241.
The ink flow is not completely uniform in the supply manifolds 46 of this embodiment. For example, as described above, when the ink is jetted from a certain nozzle 145 or 245, the ink flows from the supply manifold 46 toward the pressure chamber 140 or 240 corresponding to the nozzle 145 or 245. Because of this, a flow occurs slightly with the ink flowing in the supply manifold 46 to head for the supply port 141a or 241a. Suppose that the supply ports 141a and 241a are arranged biasedly at one side of the supply manifold 46 in the left-right direction. Then, the ink flowing in the supply manifold 46 has a larger component or share of the ink flow toward the one side in the left-right direction, at which the supply ports 141a and 241a are arranged. Thereby, the air bubbles flowing through the ink are liable to be drawn to the one side in the left-right direction at which the supply ports 141a and 241a are arranged. To address this problem, in this embodiment, the pressure chambers 140 and the pressure chambers 240 are arranged respectively on both sides of the supply manifold 46 in the left-right direction. In accordance with this, the supply port 141a, which is the connection port of the supply manifold 46 and the supply portion 141 in communication with the pressure chamber 140, and the supply port 241a, which is the connection port of the supply manifold 46 and the supply portion 241 in communication with the pressure chamber 240, are arranged respectively on both sides of the supply manifold 46 in the left-right direction. In particular, as depicted in
Further, in this embodiment, because the pressure chambers 140 and the pressure chambers 240 are arranged respectively on both sides of one supply manifold 46 in the left-right direction, as compared with a case where the pressure chambers are arranged biasedly at one side of the supply manifold 46 in the left-right direction, it is possible to suppress to a low level the flow channel resistance of all flow channels: from the supply manifolds 46, through the supply portions 141 and 241, the pressure chambers 140 and 240, the descender portions 142 and 242, and the feedback portions 143 and 243, to the feedback manifolds 47.
In this embodiment, the supply manifolds 46 and the feedback manifolds 47 are arranged to overlap with each other in the up-down direction. By virtue of this, as compared with a case where the supply manifolds 46 and the feedback manifolds 47 are arranged to align in the left-right direction without overlapping in the up-down direction, it is possible to keep a small width of the flow channel unit 21 in the left-right direction so as to make the flow channel unit 21 compact. Note that it is also possible to keep a small width of the flow channel unit 21 in the left-right direction and make the flow channel unit 21 compact by arranging at least some of the supply manifolds 46 to overlap with the feedback manifolds 47 in the up-down direction. In this embodiment, however, the supply manifolds 46 and the feedback manifolds 47 accord to each other in their centers in the left-right direction, and the supply manifolds 46 and the feedback manifolds 47 have the same width in the left-right direction. That is, the supply manifolds 46 and the feedback manifolds 47 overlap completely in the up-down direction. By virtue of this, as compared with a case where only some of the supply manifolds 46 overlap with the feedback manifolds 47 in the up-down direction, it is possible to keep a small width of the flow channel unit 21 in the left-right direction so as to make the flow channel unit 21 compact.
In this embodiment, as depicted in
Because the viscosity of an ink changes according to the temperature of the ink, in order to suppress the variation of the jet characteristic of the ink from each nozzle, it is desirable to keep a constant temperature of the ink supplied to the pressure chambers 140 and 240. In this embodiment, therefore, the ink adjusted with temperature is supplied to the supply manifolds 46. Nevertheless, the ink flowing from the supply manifolds 46 toward the pressure chambers 140 via the supply ports 141a is heated by the piezoelectric actuator 22 covering the pressure chambers 140. Hence, the ink returning from the feedback ports 143a to the feedback manifolds 47 via the pressure chambers 140 may have a higher temperature than the ink flowing in the supply manifolds 46. In this case, if a supply port 141a is positioned at the same level as the corresponding feedback port 143a in the left-right direction, then with the ink having returned from the feedback port 143a to the feedback manifold 47, it is possible for the ink warmed in some parts to enter the supply port 141a. Because of this, it is possible to give rise to variation of the jet characteristic of the ink from the nozzles 145. Similar phenomena are also liable to occur if a supply port 241a is positioned at the same level as the corresponding feedback port 243a in the left-right direction. In this embodiment, therefore, as depicted in
Further, in this embodiment, in the supply manifold 46 and the feedback manifold 47 divided equally into four areas in the left-right direction, the supply port 141a is arranged in the leftmost area, the feedback port 243a is arranged in the second area from the left, the feedback port 143a is arranged in the third area from the left, and the supply port 241a is arranged in the rightmost area. In this manner, two supply ports 141a and 241a and two feedback port 143a and 243a are arranged dispersedly in the four areas of the supply manifold 46 and the feedback manifold 47 equally divided in the left-right direction, respectively. Therefore, it is possible to reduce the partial variation of the temperature of the ink flowing in the supply manifold 46 and the feedback manifold 47. By virtue of this, it is possible to suppress the variation of the temperature of the ink from the supply ports 141a and 241a toward the pressure chambers 140 and 240. Therefore, it is possible to suppress the variation of the jet characteristic of the ink jetted from the nozzles 145 and 245. Further, in this embodiment, a distance D3 between the supply port 141a and the feedback port 143a in the left-right direction is equal to a distance D4 between the supply port 241a and the feedback port 243a in the left-right direction. Therefore, it is possible to further reduce the partial variation of the temperature of the ink flowing in the supply manifold 46 and the feedback manifold 47. By virtue of this, it is possible to suppress the variation of the temperature of the ink from the supply ports 141a and 241a toward the pressure chambers 140 and 240. Therefore, it is possible to suppress the variation of the jet characteristic of the ink jetted from the nozzles 145 and 245.
In this embodiment, the supply ports 141a and the pressure chambers 140 are arranged at the opposite sides of the center C of the supply manifold 46, according to the left-right direction. Likewise, the supply ports 241a and the pressure chambers 240 are arranged at the opposite sides of the center C of the supply manifold 46, according to the left-right direction. Along with this, the supply portions 141 extend rightward from the supply ports 141a arranged at the left side of the supply manifold 46 in the left-right direction to and beyond the center C of the supply manifold 46 in the left-right direction, whereas the supply portions 241 extend leftward from the supply ports 241a arranged at the right side of the supply manifold 46 in the left-right direction to and beyond the center C of the supply manifold 46 in the left-right direction. In other words, the supply portions 141 and the supply portions 241 extend in the left-right direction to overlap partially with each other as viewed from the conveyance direction. In this case, as compared with a case where the supply ports and the pressure chambers are arranged at the same side of the center C of the supply manifold 46 in the left-right direction, it is possible to elongate the supply portions 141 and the supply portions 241. Here, the two plates 101 and 102 are arranged above the supply portions 141 and the supply portions 241. In this context, the active portions of the piezoelectric actuator 22 are arranged on the pressure chambers 140 and 240, and heat due to the driving of the ink jet head 2. The heat also transmits to the ink flowing in the supply portions 141 and the supply portions 241 via the ink inside the pressure chambers 140 and 240. As described earlier on, in this embodiment, because the two plates 101 and 102 are arranged above the supply portions 141 and the supply portions 241, it is possible to remove the heat from the ink flowing in the supply portions 141 and the supply portions 241 via those plates 101 and 102. By virtue of this, it is possible to lower the temperature of the ink flowing into the pressure chambers 140 and 240, thereby allowing for suppression of the heating of the piezoelectric actuator 22 along with the driving of the ink jet head 2. By virtue of this, it is possible to restrain the ink from worsening its jet characteristic due to the heating of the piezoelectric actuator 22.
In this embodiment, each partition wall is formed by the one plate 105 to separate the supply manifold 46 from the feedback manifold 47. As compared with a case where the partition wall is formed by a plurality of plates, it is possible to raise the thermal conduction between the supply manifold 46 and the feedback manifold 47. By virtue of this, it is possible to approximate a uniform temperature of the ink flowing in the supply manifold 46, thereby allowing for suppression of the variation of the jet characteristic of the ink jetted from the nozzles 145 and 245. Note that in this embodiment, by making the partition walls of the plate 105 be thinner than the other parts, the thinned part 130 is formed in each partition wall. By virtue of this, it is possible to further raise the thermal conduction between the supply manifold 46 and the feedback manifold 47, thereby allowing for further approximation to a uniform temperature of the ink flowing in the supply manifold 46. If there are a uniform temperature of the ink flowing in the supply manifold 46 and a uniform temperature of the ink flowing in the feedback manifold 47, then it is possible to reduce the variation of the ink temperature inside the pressure chambers 140 and 240. By virtue of this, it is possible to suppress the variation of the jet characteristic for each of the pressure chambers 140 and 240. Further, consider a case of adjusting the temperature of the ink circulating in the supply manifold 46 and the feedback manifold 47 by using a temperature adjusting mechanism such as a heater or the like. In this case, if there are a uniform temperature of the ink flowing in the supply manifold 46 and a uniform temperature of the ink flowing in the feedback manifold 47, then there is a small gradient of temperature between the ink flowing in the supply manifold 46 and the ink flowing in the feedback manifold 47. Therefore, it is possible to raise the precision in adjusting the temperature.
In the above embodiment, the supply ports 141a and 241a and the descender portions 142 and 242 are arranged on the opposite sides to each other with respect to the center C of the supply manifold 46 in the left-right direction. Along with that, the supply portions 141 and 241 extend from one side to the other side of the supply manifold 46 in the left-right direction beyond the center C in the left-right direction. However, the present disclosure is not limited to such an aspect. As depicted in
Further, as depicted in
Further, as depicted in
The embodiment and the modified embodiments explained above are merely exemplifications in each and every aspect, and therefore may be changed appropriately. For example, it is possible to set up the number, arrangement, shape, pitch and the like for the pressure chambers 140 and 240 in an arbitrary manner and, in accordance with that, to adjust the number, arrangement, shape, pitch and the like for the individual electrodes 44. Further, in the embodiment and the modified embodiments described above, the supply manifolds 46 and the feedback manifolds 47 are arranged to overlap completely in the up-down direction, but the present disclosure is not limited to that. The supply manifolds 46 and the feedback manifolds 47 may be arranged to overlap at least in part in the up-down direction. Further, the piezoelectric layers 41 and 42 are arranged in the upper part of the flow channel unit 21 to cover all pressure chambers 140 and 240. However, the piezoelectric layers 41 and 42 may be divided into a plurality of blocks, for example, for the piezoelectric blocks to cover the plurality of pressure chambers 140 and 240, respectively.
While the ink jet head 2 is a so-called line-type ink jet head, the present disclosure is not limited to that but may also apply to so-called serial-type ink jet heads. Further, the present disclosure is not limited to ink jet heads jetting an ink. The present disclosure may also apply to liquid jet apparatuses used for various purposes other than printing images and the like. For example, it is also possible to apply the present disclosure to liquid jet apparatuses for forming an electrically conductive pattern on a substrate surface by jetting an electrically conductive liquid onto the substrate.
Number | Date | Country | Kind |
---|---|---|---|
2019-069629 | Apr 2019 | JP | national |
The present application is a continuation of U.S. patent application Ser. No. 16/819,931 filed Mar. 16, 2020, which claims priority from Japanese Patent Application No. 2019-069629, filed on Apr. 1, 2019, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16819931 | Mar 2020 | US |
Child | 17494382 | US |