The present disclosure relates to liquid discharge heads.
Examples of a liquid discharge apparatus that discharges liquid onto a recording medium, such as paper, include an ink-jet printer. The ink-jet printer includes a liquid discharge head, which is a portion that discharges the liquid. The liquid discharge head is equipped with discharge ports for discharging the liquid, pressure generation elements that generate pressure for discharging the liquid from the discharge ports, a pressure chamber on which the pressure generated by the pressure generation element is exerted, and the like.
The viscosity of the liquid desirably falls within a desired range during an operation of discharging the liquid from the discharge ports, and the discharge performance may decrease if the viscosity of the liquid falls outside the desired range. Japanese Patent Application Laid-Open No. 2017-213871 discusses a liquid discharge head in which a heating element that controls the viscosity of the liquid by heating the liquid is provided near the pressure chamber. This method is intended to adjust the temperature of the liquid to control the viscosity thereof by driving the heating element to heat the liquid only to a degree of not causing bubbling. Further, the liquid discharge head discussed in Japanese Patent Application Laid-Open No. 2017-213871 includes a collection flow path for collecting the liquid from the pressure chamber and has a flow path configuration capable of circulating the liquid in the flow path on the upstream side and the downstream side of the pressure chamber in order to prevent an increase in the viscosity of the liquid resulting from evaporation of the liquid from the discharge ports.
In the case where the heating element for controlling the viscosity of the liquid is provided near the pressure chamber as discussed in Japanese Patent Application Laid-Open No. 2017-213871, the liquid warmed by the heating element is supposed to flow into the collection flow path, which is on the downstream side of the pressure chamber. Thus, the liquid flowing in the collection flow path has a higher temperature than the temperature of the liquid flowing in a supply flow path for supplying the liquid to the pressure chamber, which is on the upstream side of the pressure chamber. As a result, a flow path member including the collection flow path and the supply flow path has a higher temperature around the collection flow path than the temperature around the supply flow path, so that unevenness in the temperature (a temperature gradient) occurs in the flow path member. Such a temperature gradient also occurs in a case where heating elements for causing film boiling in the liquid is provided to the pressure chamber as the pressure generation elements even without the heating elements for controlling the viscosity of the liquid. Thus, with the collection flow path and the supply flow path arranged side by side in a conveyance direction of the recording medium, the flow path member may be deformed to protrude in the conveyance direction of the recording medium due to the temperature gradient in the flow path member, ending up affecting the recording quality.
In view of the above-described issues, the present disclosure includes embodiments providing a liquid discharge head capable of controlling deformation of a flow path member to protrude in a conveyance direction of a recording medium.
According to an aspect of the present disclosure, a liquid discharge head includes an element substrate including a plurality of discharge ports configured to discharge liquid in a discharge direction onto a recording medium, and a heating element configured to heat the liquid, and a flow path member including a supply flow path configured to supply the liquid to the element substrate and a collection flow path configured to collect the liquid from the element substrate. The supply flow path and the collection flow path extend in a longitudinal direction of the flow path member and at least a part of the supply flow path and at least a part of the collection flow path overlap each other when viewed in a direction parallel to the discharge direction from one side to which the discharge ports are opened.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
In the following description, examples of embodiments of the present disclosure will be described with reference to the drawings. A deformation of a flow path member tends to increase as the length of the flow path member increases. Thus, the present disclosure is effectively applicable in particular to a page wide-type head that includes a longer flow path member than a flow path member of a serial-type liquid discharge head and corresponds to the recording width of a recording medium, such as paper. The page wide-type head refers to a head including a plurality of discharge ports arrayed from a portion corresponding to one end of a recording medium to a portion corresponding to the other end of a recording medium in a direction intersecting a conveyance direction of the recording medium. In the following description, the page wide-type head will be described as an example.
(Recording Apparatus)
A recording apparatus will be described with reference to
While
(Route of Liquid)
The route of the liquid will be described with reference to
Desirably, the flow path (liquid in the flow path) on the downstream side of the negative pressure control units 230 is pressurized by the second circulation pump 1004 via liquid supply units 220. Such an arrangement enables control of the influence of a water head pressure of a buffer tank 1003 on the liquid discharge head 3, thus expanding a range of selection for the layout of the buffer tank 1003 in the recording apparatus 1000. For example, instead of the second circulation pump 1004, a water head tank disposed with a predetermined water head difference from the negative pressure control units 230 is also applicable.
The negative pressure control units 230 include the two pressure adjustment mechanisms for each of which a different control pressure is set. The high-pressure setting side (labeled H in
The negative pressure control units 230 are disposed on the downstream side of the liquid discharge head 3, thus reducing a risk that dust and a foreign object generated from the negative pressure control units 230 flow into the head. Such an arrangement reduces also a maximum value of a required flow amount supplied from the buffer tank 1003 to the liquid discharge head 3. The reason therefor is as follows. Suppose that A represents the sum of the flow amounts in the common supply flow path 211 and the common collection flow path 212 when the liquid is circulated while the recording apparatus 1000 is on standby for recording. The value of A is defined to be a minimum flow amount required to keep the temperature difference in the liquid discharge unit 300 within a desired range when the temperature in the liquid discharge head 3 is adjusted while the recording apparatus 1000 is on standby for recording. Further, F is defined as a discharge flow amount when the ink is discharged from all the discharge ports (not illustrated) of the liquid discharge unit 300 (such a case is also referred to as “when all the ports are discharging”). In this case, the amount of the liquid supplied to the liquid discharge head 3 when the recording apparatus 1000 is on standby for recording is the flow amount A. The amount of the supply to the liquid discharge head 3 required when the ink is discharged from all the ports is the flow amount F. This means that the sum of the setting flow amounts of the first circulation pump (the high-pressure side) 1001 and the first circulation pump (the low-pressure side) 1002, i.e., the maximum value of the required supply flow amount is the value of larger one of A and F. Thus, the maximum value of the required supply amount (A or F) decreases as long as the liquid discharge unit 300 having the same configuration is used. This leads to an increase in the flexibility of an employable circulation pump, thus producing an advantageous effect of, for example, allowing the use of a simply-configured low-cost circulation pump and reducing the load on a cooler (not illustrated) provided in the route on the main body side, resulting in a reduction in the cost of the main body of the recording apparatus 1000. This advantageous effect increases for a line head in which the value of A or F relatively increases, and becomes more beneficial for a line head having a longer longitudinal length among line heads.
For example, in a case where a failure has occurred in the function of the first circulation pump 1001 or 1002, an excessive flow amount or pressure may be applied to the liquid discharge head 3. This may result in a leak of the liquid from a discharge port of the liquid discharge head 3 or a fracture at any of joint portions in the liquid discharge head 3. However, in a case where bypass valves are added to the first circulation pumps 1001 and 1002, such troubles can be avoided because the liquid route is opened to the upstream side of each circulation pump by the bypass valve 1010 being opened, even when an excessive pressure occurs.
When the circulation driving is stopped, all the bypass valves 1010 are quickly opened based on a control signal from the main body after the first circulation pumps 1001 and 1002 and the second circulation pump 1004 are stopped. As a result, the high negative pressure (e.g., several kPa to several dozen kPa) in a downstream section of the liquid discharge head 3 (i.e., between the negative pressure control units 230 to the second circulation pump 1004) can be released in a short time. In a case where a displacement pump, such as a diaphragm pump, is used as the circulation pump, normally, a check valve is built in the pump. However, the pressure in the downstream section of the liquid discharge head 3 can also be released from the buffer tank 1003 side on the downstream side by opening the bypass valve 1010. The pressure in the downstream section of the liquid discharge head 3 can be released even from the upstream side alone, but a pressure loss occurs in the flow path on the upstream side of the liquid discharge head 3 and the flow path in the liquid discharge head 3. Therefore, the pressure release may take a long time, and the pressure in the common flow path in the liquid discharge head 3 may transitionally excessively reduce and the meniscus at the discharge ports may be broken. Opening the bypass valve 1010 on the downstream side of the liquid discharge head 3 facilitates the pressure release on the downstream side of the liquid discharge head 3, thus reducing the risk of breaking the meniscus at the discharge ports.
(Liquid Discharge Head)
The liquid discharge head 3 will be described with reference to
The liquid discharge head 3 includes element substrates 10, which discharge the liquid from discharge ports 13, and a flow path member 210, which has flow paths for supplying and collecting the liquid to and from the element substrates 10. The liquid discharge head 3 is a page wide-type head including 36 element substrates 10 arrayed linearly (in line) in the longitudinal direction of the liquid discharge head 3. Pressure generation elements 5 (
The liquid discharge head 3 ensures the rigidity of the liquid discharge head 3 by a second flow path member 60 forming the flow path member 210. Liquid discharge unit support units 81 are connected to both ends of the second flow path member 60, and this liquid discharge unit 300 positions the liquid discharge head 3 by being mechanically coupled with a carriage of the recording apparatus 1000. The liquid supply units 220 including the negative pressure control units 230, and an electric wiring board 90 are coupled with the liquid discharge unit support units 81. A filter (not illustrated) is built in each of the two liquid supply units 220. The two negative pressure control units 230 are each set so as to control the pressure with relatively high and low negative pressures different from each other.
Next, details of the flow path member 210 of the liquid discharge unit 300 will be described. The flow path member 210 is formed by stacking a first flow path member 50 and the second flow path member 60, and distributes the liquid supplied from the liquid supply units 220 to each of discharge modules 200. Further, the flow path member 210 functions as a flow path member for returning the liquid flowing back from respective element substrates 10 to the liquid supply units 220. The second flow path member 60 of the flow path member 210 serves as a flow path member including the common supply flow path 211 and the common collection flow path 212 formed therein, and also has a function of playing a main role in maintaining the rigidity of the liquid discharge head 3. Thus, desirably, the second flow path member 60 is made from a material sufficiently corrosive-resistant against the liquid and highly mechanically strong. More specifically, stainless steel (steel use stainless (SUS)), titanium (Ti), alumina, or the like can be desirably used.
The first flow path member 50 is formed by arraying a plurality of members corresponding to the respective element substrates 10 adjacent to each other. This configuration enables the plurality of element substrates 10 to be disposed on the first flow path member 50, thus enabling the length of the liquid discharge head 3 to correspond to the width of the recording medium 2. This can be applied especially effectively to, for example, a relatively long scale liquid discharge head corresponding to the B2 size or a longer size. The individual supply flow path 213a and the individual collection flow path 213b of the first flow path member 50 are in fluid communication with the element substrates 10.
A flow path in communication with respective discharge ports 13 is formed on the respective element substrates 10, allowing the supplied liquid to partially or entirely flow back by passing through the discharge ports 13 that stop the discharge operation. The common supply flow path 211 is connected to the negative pressure control unit 230 (the high-pressure side) and the common collection flow path 212 is connected to the negative pressure control unit 230 (the low-pressure side), via the liquid supply units 220. Thus, the differential pressure therebetween causes the ink to flow from the common supply flow path 211 to the common collection flow path 212 by passing through the discharge ports 13 of the respective element substrates 10.
The pair of common supply flow path 212 and common collection flow path 212 extending in the longitudinal direction of the liquid discharge head 3 is provided in the second flow path member 60 having a long length. The flow direction of the liquid flowing in the common supply flow path 211 is opposite to the flow direction of the liquid flowing in the common collection flow path 212, and a filter 221 is provided on the upstream side of each of the flow paths and catches a foreign object entering from a liquid connection portion 111 or the like. It is desirable to cause the liquid to flow in the common supply flow path 211 and the common collection flow path 212 in the opposite directions in this manner because this facilitates a thermal exchange between the common supply flow path 211 and the common collection flow path 212, thus reducing a temperature gradient in the longitudinal direction in the liquid discharge head 3. Note that
The respective negative pressure control units 230 are connected to the corresponding one of the downstream sides of the common supply flow path 211 and the common collection flow path 212. Branch portions leading to the plurality of individual supply flow paths 213a are included along the common supply flow path 211, and branch portions leading to the plurality of individual collection flow paths 213b are included along the common collection flow path 212. The individual supply flow paths 213a and the individual collection flow paths 213b are formed in the plurality of first flow path members 50.
The negative pressure control units 230 labeled H and L in
A first exemplary embodiment of the present disclosure will be described with reference to
As described above, in the liquid discharge head 3 according to the present exemplary embodiment, the common supply flow path 211 and the common collection flow path 212 extend throughout the second flow path member 60 in the longitudinal direction. In other words, the common supply flow path 211 and the common collection flow path 212 are formed along the longitudinal direction of the flow path member 60. The liquid heated to a predetermined temperature by the heating elements flows into the common collection flow path 212 through the individual collection flow path 213b. As a result, the temperature of the liquid in the common collection flow path 212 exceeds the temperature of the liquid in the common supply flow path 211, and the second flow path member 60 has a relatively high temperature on the common collection flow path side and a relatively low temperature on the common supply flow path side. Due to this temperature gradient, as illustrated in
In view of this, in the present disclosure, the flow paths are configured as illustrated in
More desirably, as illustrated in
Employing the configuration according to the present exemplary embodiment leads to the occurrence of a temperature gradient in the discharge direction of the liquid in the second flow path member 60. As a result, the second flow path member 60 may be warped in the liquid discharge direction. However, when the second flow path member 60 is warped in the liquid discharge direction, a variation occurs in the distance to paper depending on the discharge ports 13 but the position of the discharge ports 13 in the conveyance direction of the recording medium 2 can be prevented from varying and therefore the recording quality can be less affected thereby.
As illustrated in
A second exemplary embodiment will be described with reference to
As described in the first exemplary embodiment, when the common supply flow path 211 and the common collection flow path 212 are arranged in the discharge direction of the liquid in such a manner that the common supply flow path 211 and the common collection flow path 212 overlap each other, a temperature gradient occurs in the discharge direction of the liquid. Therefore, the second flow path member 60 may be warped in the discharge direction of the liquid. Thus, it is further desirable that the common supply flow path 211 and the common collection flow path 212 are arranged in such a manner that the common collection flow path 212, the common supply flow path 211, and the element substrates 10 are placed in this order in the discharge direction of the liquid as illustrated in
The positions of the common supply flow path 211 and the common collection flow path 212 are determined based on the position of the center of gravity of the cross section of the flow path. More specifically, disposing the common collection flow path 212 on the other end side of the above-described second flow path member 60 refers to the following layout. The layout intended thereby is that the common collection flow path 212 is disposed at such a position that the average value of the positions in the liquid discharge direction at which the centers of gravity of the cross sections of the common collection flow path 212 are located is closer to the other end side than the average value of the positions in the liquid discharge direction at which the centers of gravity of the cross sections of the common supply flow path 211 are located. The average value of the positions in the liquid discharge direction at which the centers of gravity of the cross sections of the common collection flow path 212 are located refers to a value obtained by determining each of the positions in the liquid discharge direction at which the centers of gravity of cross sections at randomly selected 10 locations of the common collection flow path 212 are located and calculating the average value of them. Similarly, the average value of the positions in the liquid discharge direction at which the centers of gravity of the cross sections of the common supply flow path 211 are located refers to a value obtained by determining each of the positions in the liquid discharge direction at which the centers of gravity of cross sections at randomly selected 10 locations of the common supply flow path 211 are located and calculating the average value of them.
Next, a method of forming the second flow path member 60 according to the above-described first exemplary embodiment and second exemplary embodiment will be described.
The second flow path member 60 is formed by joining a plurality of members using an adhesive, sintering, or the like. Dash-dotted lines in
According to the present disclosure, it is possible to provide the liquid discharge head capable of controlling deformation of the flow path member in the conveyance direction of the recording medium.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of priority from Japanese Patent Application No. 2020-156221, filed Sep. 17, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-156221 | Sep 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20200307199 | Koide | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2017213871 | Dec 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20220080731 A1 | Mar 2022 | US |