This application is a 371 U.S. National Stage filing of PCT/JP2004/015207, filed Oct. 7, 2004, which claims priority to Japanese Patent Application Number 2003-348709, filed Oct. 7, 2003, both of which are incorporated herein by reference.
The present invention relates to a channel structure for liquid in a liquid discharge device for discharging liquid within a liquid chamber from nozzles, and more particularly relates to a technique for reducing the effects of pressure fluctuation at the time of discharging liquid droplets by providing multiple common channels with differing channel resistances.
A known example of a conventional ink channel structure in an ink jet printer which is a liquid discharge device is that disclosed in FIG. 4 of Japanese Unexamined Patent Application Publication No. 2003-136737.
Specifically, the above Japanese Unexamined Patent Application Publication No. 2003-136737 discloses an arrangement wherein an ink channel is formed of a channel plate such so as to communicate with an ink pressurization chamber.
With the above configuration, the entrance portion of the ink pressurization chamber is formed such that each ink pressurization chamber has its own channel. Also, the ink channel forms a common channel for supplying ink to each of the individual channels for all of the ink pressurization chambers.
Further, provided within the ink liquid chamber a is a heating element d, for discharging ink within the ink liquid chamber. In the event that the heating element d is provided on the base of the ink liquid chamber a, normally, a nozzle e is situated on the upper face of the ink liquid chamber a, but in
First, in the “(1) stationary” state in the drawing, the ink liquid chamber a is filled with ink.
At the time of discharging ink, i.e., in the “(2) expansion” state, the heating element d is rapidly heated, generating a bubble within the ink liquid chamber a. Generating this bubble gives the ink within the ink liquid chamber a flying power, and a part of the ink within the ink liquid chamber a is discharged from the nozzle e as an ink droplet due to the flying power.
Immediately following the above “(2) expansion” state, heating of the heating element d ends. Also, the bubble within the ink liquid chamber a dissipates upon the ink droplet being discharged, so transition is made to the next “(3) contraction”, where the inside of the ink liquid chamber a is depressurized. Further, in the following “(4) replenishing” state, ink of an amount equivalent to that of the discharged ink droplet is replenished to the ink liquid chamber a via the common channel c and the individual channel b.
As described above, the actions of a stationary state, and then expansion, contraction, and replenishing, are repeated when discharging ink.
Now, while gasoline engines, for example, use intake and exhaust valves synchronized with the rotations of the engine, with internal combustion occurring in a state wherein both valves are completely closed, the ink jet printer head shown in
Accordingly, in order to cause the energy applied to the heating element d to efficiently discharge ink droplets, there is need for expansion of ink to occur in the direction of the nozzle e (toward the right in
However, with the above-described related art, there is the problem that at the time of expansion by heating the heating element d, a shock wave due to the pressurization is propagated from within the ink liquid chamber a to the individual channel b, and further on to the common channel c side. Also, there is the problem that at the time of contraction, a shock wave due to depressurization is generated through the individual channel b.
As shown in
As shown in
In the event that the pressure within the ink liquid chamber a changes, the amount of ink within the ink liquid chamber a changes accordingly, so the amount of the ink droplet discharge changes. That is to say, in the event that the pressure within the ink liquid chamber a is low, the amount of the ink droplet discharge is smaller, as shown in the left-side column (A-1) in the drawing. On the other hand, in the event that the pressure within the ink liquid chamber a is high, the amount of the ink droplet discharge is greater, as shown in the right-side column (A-3) in the drawing.
Changes in the amount of the ink droplet discharged changes in this way are manifested in the results of the ink droplets landing as change in ink density (density irregularities).
Also, the upper part of
The data shown in
It can be understood from this diagram that, regardless of averaging over a long period, the property of each nozzle e does not stay around the density of 160 but rather fluctuates widely, i.e., that standing waves are present. Further, the fact that such visible fluctuations remain even for average values can be thought to mean that even greater fluctuations occur on an instantaneous level.
An example of a conceivable method to suppress manifestation of density irregularities due to the effects of shock waves occurring at the time of discharging ink droplets and the air bubble contracting as described above, is to, firstly, make the individual flow channel b narrower (make the cross-sectional area of the channel smaller), or secondly, not make the individual flow channel b narrower but longer.
These methods can reduce interference among the ink liquid chambers due to discharge, thereby reducing irregularities in the amount of ink droplets discharged therefrom.
However, the above methods have problems in that the time for replenishing (refilling) the ink liquid chamber a with ink following discharge of the ink droplet takes longer due to increased channel resistance of the individual channel b. Also, making the individual channel b narrower means that undesired matter, dust, and the like, can become stuck therein just that much more readily, incapacitating ink discharge. Further, the above second method (method of forming the individual channel b longer) has the problem that the head increases in size.
Accordingly, the problems to be solved by the present invention is to reduce the effects of shock waves and to reduce the difference in density among the discharged ink droplets, without extending the refill time, without increasing the risk of faulty discharge due to undesired matter and dust and the like, and without increasing the size of the head.
The present invention solves the above problems with the following solving means.
The present invention is a liquid discharge device having a liquid discharge head in which a plurality of liquid discharge portions including a liquid chamber for storing a liquid to be discharged, flying force supplying means disposed within the liquid chamber, for providing the liquid within the liquid chamber with flying force, and a nozzle formation member forming a nozzle for discharging the liquid stored in the liquid chamber by actions of the flying force supplying means, are arrayed on a substrate, the liquid discharge device comprising: individual channels provided for each of the liquid discharge portions so as to communicate with the liquid chamber and supply liquid to within the liquid chamber; and a common channel which is provided to the plurality of individual channels so as to communicate with each of the plurality of individual channels, for supplying liquid to the plurality of individual channels; the common channel including a first common channel provided on a liquid supply source side, and a second common channel provided adjacent to the individual channels, and having liquid channel resistance greater than that of the first common channel.
With the present invention, at the time of ink being supplied from the liquid supply source, the ink is supplied from the first common channel to the individual channels through the second common channel having greater channel resistance. Also, of the shock waves generated in the liquid chamber at the time of discharging liquid, the shock waves passing through the individual channels need to pass through the second common channel.
Moreover, in the event that shock waves head toward other liquid discharge portions, these must pass through the second common channel to enter into individual channels.
Thus, a second common channel with great channel resistance exists between the first common channel and the individual channels, so sudden movement of liquid is incapacitated since it is accompanied by great resistance. Also, shock waves generated in the liquid chamber of one liquid discharge portion arrive at the liquid chambers of other liquid discharge portions after having been damped by the second common channel.
According to the present invention, supply of liquid to the liquid chambers can be performed in a stable manner, and also interference between liquid discharge portions due to discharging of liquid droplets can be reduced. Accordingly, the droplet amount discharged can be made constant, thereby reducing fluctuation in density of the droplets which have landed.
The following is a description of one embodiment of the present invention, with reference to the drawings and so forth.
Note that a later-described common channel 30 is omitted from
In the head 11, a substrate member 14 has a semiconductor substrate 15 formed of silicon or the like, and heating elements (a heat-emitting resistor formed of resistance in the present embodiment in particular, equivalent to flying force supplying means in the present invention) 13 formed by deposition on one face of the semiconductor substrate 15. The heating elements 13 are electrically connected with a later-described circuit, via conducting portions (not shown) formed on the semiconductor substrate 15.
Also, the barrier layer 16 is formed of light-hardening dry film resist for example, and is formed by deposition on the entire face of the semiconductor substrate 15 where the heating elements 13 have been formed, following which unnecessary portions are removed by a photolithography process.
Also, the nozzle sheet 17 has nozzles 18 formed by, for example, electroforming with nickel. The nozzle sheet 17 is adhered onto the barrier layer 16 such that the positions of the nozzles 18 match the positions of the heating elements 13, i.e., so that the nozzles 18 face the heating elements 13.
Ink liquid chambers 12 are formed of the substrate member 14, the barrier layer 16, and the nozzle sheet 17 so as to surround the heating elements 13. That is to say, in the drawing, the substrate member 14 makes up the base wall of the ink liquid chambers 12, the barrier layer 16 makes up the side walls of the ink liquid chambers 12, and the nozzle sheet 17 makes up the base wall of the ink liquid chambers 12.
A single head 11 described above normally has multiple heading elements 13 in increments of 100, and ink liquid chambers 12 having the heating elements 13, and uniquely selecting each of the heating elements 13 by commands from a printer control unit allows ink within the ink liquid chamber 12 corresponding to the heating element 13 to be discharged from the nozzles 18 facing the ink liquid chamber 12.
That is to say, the ink liquid chambers 12 are filled with ink from an ink tank (not shown) connected to the head 11, via the common channel 30 and further the individual channels 20. Pulsed electric current is applied to the heating elements 13 for short periods, e.g., 1 to 3 μsec, whereby the heating elements 13 are rapidly heated, and as a result a gaseous phase ink bubble is generated at the portion in contact with the heating element 13, such that ink of a certain volume is pushed away by the expansion of the ink bubble (the ink boils). Accordingly, ink of approximately the same volume as the ink pushed away at a portion in contact with the nozzle 18 is discharged from the nozzle 18 as a liquid droplet, and lands on printing paper (object of liquid discharging).
Note that in the present Specification, a portion configured of one ink liquid chamber 12, the heating element 13 disposed within this one ink liquid chamber 12, and the nozzle sheet 17 including the nozzle 18 disposed thereabove, will be called a “liquid discharge portion”. That is to say, the head 11 is an array of multiple liquid discharge portions.
Also, in
As described above, individual channels 20 are provided for each of the ink liquid chambers 12, with the single common channel 30 being provided as a channel communicating with all individual channels 20. Further, with the present invention, the common channel 30 is configured of a first common channel 31 and a second common channel 32. The first common channel 31 is provided on the side of an ink tank (not shown), i.e., on the ink supply side, and is communicable with the ink tank, and has a large channel area as with conventional arrangements, for uniform supply of ink.
Also, the second common channel 32 is situated between the first common channel 31 and the individual channels 20, communicating with both. The second common channel 32 is for damping of interference and disturbance, and is provided independently from the first common channel 31. Note that the second common channel 32 is literally part of the common channel 30, and accordingly communicates with all individual channels 20.
Further, with the present invention, the second common channel 32 is adjacent to the individual channels 20, and is formed such that the channel resistance (the force working against the flow of liquid when liquid flows) is greater than that of the first common channel 31. On the other hand, the first common channel 31 is designed with a cross-sectional channel area far greater than that of the second common channel 32. Due to this difference in cross-sectional channel area, the channel resistance of the second common channel 32 is made greater than that of the first common channel 31.
Also, the plan view in
First, at the time of the bubble being generated (expansion), pressurizing shock waves are generated, a pressurizing shock wave heading toward the discharge face side of the nozzle 18 and a pressurizing shock wave heading toward the common channel 30 side from the individual channel 20 side from the ink chamber 12.
While the pressurizing shock wave heads from the individual channel 20 toward the second common channel 32, the channel resistance of the second common channel 32 is great, so the pressurizing shock wave is considerably damped by the time of reaching the first common channel 31 side, due to having passed through this second common channel 32. Accordingly, the pressurizing shock wave is decidedly smaller than its original magnitude by the time of entering the first common channel 31. This pressurizing shock wave affects the adjacent liquid discharge portion, but needs to pass through the second channel 32 again (and the individual channel 20 of that liquid discharge portion) to reach the inside of the ink liquid chamber 12 of the adjacent liquid discharge portion. Accordingly, the pressurizing shock wave is damped by passing through the second channel 32 again (and the individual channel 20 of the liquid discharge portion).
Thus, the pressurizing shock wave generated by generating the bubble passes through the second common channel 32 having a great channel resistance twice before reaching an ink liquid chamber 12 of another liquid discharge portion, so the pressurizing shock wave is damped through these passages to a level wherein effects on the ink liquid chamber 12 is practically negligible at the time of reaching an ink liquid chamber 12 of another liquid discharge portion.
Also, a depressurizing shock wave is generated by the bubble dissipating (contraction) as well but in the same way as with the above case of pressurizing shock wave, must pass through the second common channel 32 a great channel resistance twice before reaching the ink liquid chamber 12 of another liquid discharge portion, so the pressurizing shock wave is considerably damped, and is damped to a level wherein effects on the ink liquid chamber 12 is practically negligible at the time of reaching an ink liquid chamber 12 of another liquid discharge portion.
That is to say, the channel resistance of the second common channel 32 is great, so sudden movement of ink through the second common channel 32 is incapacitated due to the great resistance (channel resistance is inversely proportionate to the width thereof, and is inversely proportionate to the speed squared).
As described above, the second channel 32 functions as a so-called damping zone.
Also, in the event that fluctuation in pressure occurs at the first common channel 31 side due to reason other than discharge of the liquid, e.g., in cases wherein there is fluctuation in the amount of ink supplied externally to the first common channel 31 or in the event that the supply speed increases such that the internal ink flow becomes turbulent, this can be alleviated (effects on the ink liquid chamber 12 can be reduced).
Accordingly, the liquid discharge portions can discharge a constantly-stable ink droplet amount, and consequently, highly fine printing is enabled. Also, suitably selecting the channel resistance for the second common channel 32 allows interference occurring under pressure fluctuation at the time of the individual liquid discharge portions discharging ink droplets to be markedly reduced.
Further, the common channel 30 as with the present invention can also be applied to a head (unit) formed by arraying multiple heads 11, besides the serial method formed of a single head 11.
The dial inline type head shown in
On the other hand, the line head which is an example shown in
Next, the form of the second common channel 32 will be described in more detail. First, the channel resistance of the second common channel 32 is preferably formed such that the channel resistance as to the movement direction of ink toward all individual channels 20 is generally constant. For example, an example would be to make the channel cross-sectional area of the second common channel 32 in the direction of ink movement toward the individual channels 20 to be generally the same.
Also, in the event of using multiple heads 11, the second common channels 32 of all heads 11 are preferably formed so as to have the same channel resistance. Note that as shown in
Moreover yet, the direction of movement of ink in the second common channel 32 (channel direction) may be the same direction as that of the individual channels 20 (meaning that the direction is the same when viewed in the side view in
Particularly, providing the second common channel 32 on the same face with the individual channels 20 enables a second common channel 32 having uniform damping properties to be formed at low costs. In the following description, the second common channel 32 disposed such that the direction of movement of ink is parallel with that of the individual channels 20 as described above will be called a “horizontal common channel 32c”.
Further, the direction of movement of ink of the individual channels 20 and the direction of movement of ink of the second common channel 32 may be set perpendicularly. For example, the second common channel 32 can be formed using a face adjacent to the face where the individual channels 20 are formed, and perpendicularly to the face where the individual channels 20 are formed (e.g., the side face indicated by hatching to the front right side of the substrate member 14 in
In the following description, the second common channel 32 disposed such that the direction of movement of ink is perpendicular to that of the individual channels 20 as described above will be called a “perpendicular common channel 32d”.
Also, in the event of forming the second common channel 32 using dummy heads 40 or other heads 11, the second common channel 32 can be easily formed. Particularly, in the event of forming the second common channel 32 with other heads 11, the second common channel 32 can be formed which can be shared with multiple heads 11 and with the same properties.
Moreover, the second common channel 32 can be formed from a communicating arrangement of a horizontal common channel 32c and perpendicular common channel 32d. That is to say, a horizontal common channel 32c provided such that the direction of movement of ink is parallel with that of the individual channels 20, and a perpendicular common channel 32d provided such that the direction of movement of ink is perpendicular to that of the individual channels 20, can be provided at the same time. Accordingly, synergistic results of the properties of the horizontal common channel 32c and the perpendicular common channel 32d can be obtained. Also, great damping of disturbance can be effected.
Also, in the event of forming the horizontal common channel 32c in the same face as with the individual channels 20, this is performed at the very end of the pre-processing stage of the semiconductor. On the other hand, in the event that the perpendicular common channel 32d is formed using a face perpendicular to the face where the individual channels 20 are formed, this is performed in the post processing. Accordingly, changing of the properties of the second common channel 32 as necessary can be performed relatively easily, which is advantageous in that the second common channel 32 can be formed to mach properties of different liquids (inks), or even in the event of using the same head 11, the second common channel 32 can be formed according to the purpose thereof.
Note that the second common channel 32 may be formed on the substrate member 14, or on a same structure which is integral with the head 11 though not on the substrate 14, or on a structure which is different form the head 11.
Also, while separate and independent members from the liquid discharge portions and individual channels 20 may be used for members forming the second common channel 32, but in the event that a part of the members of the liquid discharge portions and individual channels 20 can be used, using these members is preferable.
In the event of providing a horizontal common channel 32c in a head 11 with such a form, an arrangement is conceivable wherein, first, the substrate member 14 is extended toward the individual channel 20 side as indicated in the center drawing (b) in
Also, the method of forming multiple pillars 32a allows the area of the substrate member 14 serving as the base wall of the horizontal common channel 32c to be reduced, so the yield from one semiconductor wafer (how many substrate members 14 can be obtained from a single semiconductor waver) can be improved, which is advantageous cost-wise. Further, the channel resistance value in the direction of array of the liquid discharge portions (nozzles 18) can also be increased, so shock waves can be damped more efficiently.
Also, the lower drawing (c) in
Also,
As described above, in the event of forming the perpendicular common channel 32d using a face adjacent to the face where the individual channels 20 are formed, the width of the perpendicular common channel 32d (the distance between the head 11 and dummy tip 40 or between the heads 11) can be selected in the assembly processes relatively freely, and the channel resistance of the perpendicular common channel 32d can be adjusted according to the object even following formation of the head 11.
In
The perpendicular common channel 32d is disposed generally perpendicular to the discharge face of the nozzles 18, and is configured using the viscous resistance due to a part of the head 11 coming into contact with ink. Such a configuration provides an extremely great channel resistance in the array direction of the nozzles 18. Also, there is little interference in the sideways direction, and the ink moves in a direction perpendicular to the ink movement direction of the individual channels 20 as compared to the horizontal common channel 32c, so there is the advantage that the perpendicular common channel 32d can be shared with other heads 11 as shown in the right side drawing (B) in
Also as shown in the right side drawing (B) in
Next, an embodiment of the present invention (including experimentation results) will be described.
The present embodiment has both the horizontal common channel 32c (disposed on the same face as the individual channels 20) and the perpendicular common channel 32d. A total of four prototypes, three types wherein the horizontal common channels 32c are the same and the perpendicular common channels 32d differ, and one wherein the perpendicular common channel 32d is the same and the horizontal common channel 32c is different (prototype Nos. “SS207”, “SS941”, “SS1062”, and “SS1083”), were fabricated, and properties were compared.
Further,
Note that in
Now description will be made regarding what was used as an index, and how measurement was performed.
Generally, as means for measuring the amount of ink droplets discharged from liquid discharge portions in a relatively correct manner, a method of measuring the recording contents with an image reader (image scanner, etc.) and reading as change in density is easy and practical. However, with this method, the properties of the measurement system are not accurately known, so while qualitative items can be known, quantitative measurement is difficult, and there are cases wherein phenomena cannot be correctly measured depending on the properties of the system (an example is deterioration of frequency characteristic (F characteristic) of the image reading device itself).
Accordingly, at least F-characteristic correction should be performed for the measurement system such that the F-characteristic limit of the measurement system is higher than the cut-off limit (fco) of the (two-dimensional) spatial frequency observed upon ink droplets being arrayed. This facilitates observation (observation is still possible even in the event that the F-characteristic is narrower than fco, but fluctuations occurring in a range of high frequencies die out and are less readily recognizable).
The F-characteristic (=F(ω)) of a filter having such coefficients can be basically expressed by
F(ω)=C+2A Cos(2ω)+2B Cos(ω) (Expression 1)
F(ω)=0.5−2A+2A Cos(2ω)+Cos(ω) (Expression 2)
wherein ω=2π/T. T is the delay time per stage in
In the case of Expression 2, conditions for an even better filter, i.e., a condition wherein “decay at Nyquist frequency is maximized” and the condition wherein gain is set to 1 at low frequencies, are satisfied, and in this case, determining one coefficient (e.g., A) is sufficient.
Also,
The following is a comparison of recording results of the embodiment shown in
Also, as with
Moreover,
Also, while the horizontal common channel 32c used with the present embodiment has relatively small channel resistance, it can be clearly understood from
While an embodiment of the present invention has been described, the present invention is not restricted to the above embodiment, and various modifications can be realized as follows.
(1) While heating elements 13 have been given as an example of thermal flying force supplying means, this is not restricted to heating elements 13, and other flying force supplying means may be used. Examples include electrostatic discharge means and piezoelectric flying force supplying means.
Electrostatic flying force supplying means are configured of a diaphragm and two electrodes disposed beneath the diaphragm with an air layer introduced therebetween. Voltage is applied between the electrodes, the diaphragm is flexed downwards, and subsequently the voltage is changed to 0 V so as to release electrostatic force. The elastic force of the diaphragm returning to the original state is used to discharge an ink droplet.
Also, with the piezoelectric flying force supplying means, a laminate of a piezo device having electrodes on both faces and a diaphragm is provided. Applying voltage to the electrodes on both faces of the piezo device generates bending moment due to piezoelectric effect, such that the diaphragm flexes and deforms. This deformation is used to discharge an ink droplet.
Thus, the present invention is not restricted to thermal methods, and can also be applied to piezo methods, electrostatic discharge methods, and the like. Also, as described above, the present invention can be applied regardless of serial or line printers. However, the present invention is for preventing shock of ink droplet discharge from affecting liquid discharge portions one another, so the stronger the pressure at the time of discharging ink droplets is, and the shorter the period is from one discharge to the next discharge (i.e., the faster the operating speed is), the greater the degree of effects is. Accordingly, thermal printers wherein the discharge force is strong (discharge speed is fast) and line printers wherein the period from one discharge to the next discharge is short (ink must be equally supplied to a great number of heads at high speed) benefit more from applying the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2003-348709 | Oct 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2004/015207 | 10/7/2004 | WO | 00 | 1/16/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/035254 | 4/21/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5697144 | Mitani et al. | Dec 1997 | A |
6170931 | Anderson et al. | Jan 2001 | B1 |
20020152607 | Komplin et al. | Oct 2002 | A1 |
20020167568 | Sakuma | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
0 500 068 | Aug 1992 | EP |
1 312 478 | May 2003 | EP |
63-019263 | Jan 1988 | JP |
64-090754 | Apr 1989 | JP |
03-234628 | Oct 1991 | JP |
6-312506 | Nov 1994 | JP |
11-078015 | Mar 1999 | JP |
2000-158657 | Jun 2000 | JP |
2001-353875 | Dec 2001 | JP |
2002-326354 | Nov 2002 | JP |
2003-025579 | Jan 2003 | JP |
2003-127363 | May 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20070211106 A1 | Sep 2007 | US |