A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This invention relates to technology for dispensing liquid from a bottle, for example, in the form of uniform droplets.
Certain alcoholic beverages require a small and precise amount of flavoring or coloring liquids. For example, a martini requires a small amount of vermouth no more than about one fluid ounce. Dry martinis measure vermouth by the drop or dash, and extra dry martinis require just a single drop. Similarly, Manhattans call for small volumes of vermouth and a dash of bitters; and numerous other beverages require mere drops and dashes of flavoring or coloring liquids.
A difficulty emerges when those liquids such as vermouth and bitters are stored in bottles with relatively wide mouths. Even with conventional pourers, experienced bartenders find it difficult to consistently deliver a precise amount of a flavoring liquid to a cocktail shaker or a glass. That is a problem, because sophisticated consumers can taste the difference between, for example, a properly-made martini and its dry and extra dry editions. Moreover, conventional technology prolongs the making of these beverages. One unfortunate result of the difficulty and delay associated with making beverages requiring precise amounts of flavoring or coloring liquids is that their popularity is declining. Bars and restaurants, however, desire to sell such beverages, since they command a premium price over beer and wine. A better technology for dispensing small and precise amounts of flavoring or coloring liquids is required.
Unexpectedly, and after considerable research, Applicant has invented a technology for dispensing small and precise volumes of liquids. With this technology, drops of a flavoring or coloring liquid such as vermouth or bitters can be added to a cocktail shaker or a glass. Similarly, whenever a small volume of a liquid must be dispensed from a vessel such as a bottle containing a large volume of that liquid, Applicant's technology can be employed.
Accordingly, some embodiments of the present invention provide liquid dispensers for a bottle, one such dispenser comprising a dispensing chamber having a receiving end opposite a dispensing end, the receiving end comprising a receiving portal, and the dispensing end comprising a dispensing portal.
Other embodiments relate to methods of making a liquid dispenser for a bottle, one such method comprising:
constructing a dispensing chamber comprising a receiving end opposite a dispensing end;
establishing a receiving portal in the receiving end; and
establishing a dispensing portal in the dispensing end.
Still other embodiments relate to methods of dispensing a liquid from a bottle, one such method comprising:
obtaining a liquid dispenser comprising a dispensing chamber having a receiving end opposite a dispensing end,
While the disclosure provides certain specific embodiments, the invention is not limited to those embodiments. A person of ordinary skill will appreciate from the description herein that modifications can be made to the described embodiments and therefore that the specification is broader in scope than the described embodiments. All examples are therefore non-limiting.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various forms. The figures are not necessarily to scale, and some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
Where ever the phrase “for example,” “such as,” “including” and the like are used herein, the phrase “and without limitation” is understood to follow unless explicitly stated otherwise. Similarly “an example,” “exemplary” and the like are understood to be non-limiting.
The term “substantially” allows for deviations from the descriptor that don't negatively impact the intended purpose. Descriptive terms are understood to be modified by the term “substantially” even if the word “substantially” is not explicitly recited.
The term “about” when used in connection with a numerical value refers to the actual given value, and to the approximation to such given value that would reasonably be inferred by one of ordinary skill in the art, including approximations due to the experimental and or measurement conditions for such given value.
The terms “comprising” and “including” and “having” and “involving” (and similarly “comprises”, “includes,” “has,” and “involves”) and the like are used interchangeably and have the same meaning. Specifically, each of the terms is defined consistent with the common United States patent law definition of “comprising” and is therefore interpreted to be an open term meaning “at least the following,” and is also interpreted not to exclude additional features, limitations, aspects, etc. Thus, for example, “a device having components a, b, and c” means that the device includes at least components a, b and c. Similarly, the phrase: “a method involving steps a, b, and c” means that the method includes at least steps a, b, and c.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.
Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
As stated herein, certain embodiments of the present invention relate to a liquid dispenser for a bottle, comprising a dispensing chamber having a receiving end opposite a dispensing end, the receiving end comprising a receiving portal, and the dispensing end comprising a dispensing portal. In some cases, the dispensing chamber can be thought of as a closed, hollow chamber of any suitable shape and dimensions. Certain instances provide a dispensing chamber that is tubular, such as, for example, cylindrical. Other instances provide a cylindrical dispensing chamber that has an arcuate cylindrical shape. As illustrated in the figures, an arcuate cylindrical shape can be described as a curved tube. The dispensing chamber can have any suitable cross sectional shape, such as, for example, circular, oval, triangle, square, rectangular, polygonal, or any irregular, decorative shape. Any suitable volume can be employed for the dispensing chamber, such as, for example, less than 1 mL, less than 2 mL, less than 3 mL, less than 4 mL, less than 5 mL, or less than 10 mL. For another example, the dispensing chamber can have a volume of at least 1 mL, at least 2 mL, at least 3 mm, at least 4 mm, at least 5 mL, or at least 10 mL.
The liquid dispenser has a receiving end opposite a dispensing end, and a receiving portal and a dispensing portal that together control the flow of liquid to be dispensed from the dispensing chamber. In operation, the liquid dispenser is positioned in the neck of a bottle of a liquid to be dispensed, for example, and the bottle is tilted so that the liquid moves into the neck of the bottle. The liquid encounters the dispensing chamber, and gravity causes the liquid to flow through the receiving portal into the dispensing chamber. Gravity further draws the liquid through the dispensing portal, where the liquid is dispensed in the form of drops, in some cases.
The dispensing portal in many cases has a small dimension to control drop formation as gravity draws liquid from the dispensing chamber. The exact dimensions of the dispensing portal are not critical; any suitable dimensions can be used. Also, the receiving portal also can have a small dimension to control gas and liquid exchange at the receiving end as gravity draws liquid from the dispensing chamber at the dispensing end. The exact dimensions of the receiving portal are not critical; any suitable dimensions can be used. In some cases, the dispensing portal is smaller in at least one dimension, relative to the receiving portal. The dispensing portal and the receiving portal can have any independently-selected shapes, such as, for example, circular, triangular, square, rectangular, polygonal, or irregular. Some instances provide a dispensing portal that is circular. Other instances provide a receiving portal is circular.
Any suitable dimensions can be employed for the dispensing portal. In certain embodiments, the dimensions of the dispensing portal are chosen so that the desired liquid form drops as it emerges under the force of gravity from the dispensing portal. For example, a circular dispensing portal can have a diameter of at least 0.1 mm, at least 0.2 mm, at least 0.3 mm, at least 0.4 mm, at least 0.5 mm, at least 0.6 mm, at least 0.7 mm, at least 0.8 mm, at least 0.9 mm, or at least 1.0 mm. For another example, a circular dispensing portal can have a diameter of no more than 1.0 mm, no more than 1.5 mm, no more than 2.0 mm, no more than 2.5 mm, no more than 3.0 mm, no more than 3.5 mm, no more than 4.0 mm, no more than 4.5 mm, or no more than 5.0 mm. In yet another example, a dispensing portal can have a diameter of about 0.6 mm. If the dispensing portal has a shape other than circular, similar dimensions can be used.
Any suitable dimensions can be employed for the receiving portal. Some embodiments allow for the dimensions of the receiving portal to be chosen so that the liquid emerges from the dispensing portal in the form of drops. For example, a circular receiving portal can have a diameter of at least 0.15 mm, at least 0.2 mm, at least 0.3 mm, at least 0.4 mm, at least 0.5 mm, at least 0.6 mm, at least 0.7 mm, at least 0.8 mm, at least 0.9 mm, at least 1.0 mm, at least 1.1 mm, at least 1.2 mm, at least 1.3 mm, at least 1.4 mm, or at least 1.5 mm. In another example, a circular receiving portal can have a diameter of no more than 1.0 mm, no more than 1.5 mm, no more than 2.0 mm, no more than 2.5 mm, no more than 3.0 mm, no more than 3.5 mm, no more than 4.0 mm, no more than 4.5 mm, or no more than 5.0 mm. In yet another example, the receiving portal has a diameter of about 1.2 mm. If the receiving portal has a shape other than circular, similar dimensions can be used.
The dispensing end and the receiving end independently can have any suitable shapes. For example, the dispensing end can have a thickness that is the same as, greater than, or less than the dimension such as diameter of the dispensing portal. The dispensing portal can be straight, as in a right cylinder, or a rectangle, or it can have a conical profile oriented either outwardly (see
Any suitable means can be used to position the dispensing chamber in the neck of a vessel such as a bottle. In some cases, a liquid dispenser of the present invention comprises a bottle cap portion supporting the dispensing chamber, the bottle cap portion adapted to maintain the liquid dispenser in the neck of the bottle. Optionally, one or more supporting fins reinforce and stabilize the dispensing chamber relative to the bottle cap portion. The supporting fin or supporting fins, and indeed any portion of the liquid dispenser, can further comprise a letter, a logo, an image, or any decorative feature that may be desired. In other cases, one or more merely-decorative fins or other pieces of rigid or semi-rigid material can extend from the dispensing chamber, the bottle cap portion, or both, as desired.
The liquid dispenser can be designed or adapted to control the flow of liquid from inside the vessel such as a bottle by any suitable means. With the liquid dispenser positioned in the neck of a bottle, for example, the bottle is tilted so the liquid contacts the receiving end of the dispensing chamber, and enters through the receiving portal. Care must be taken so that the liquid in the bottle does not escape around the liquid dispenser, spilling the liquid. The neck of the bottle can be sealed by any suitable means so that the liquid leaves the bottle only through the dispensing chamber. For example, the dispensing chamber can be adapted to engage a proxy cork that can sealingly engage a neck of the bottle. In other words, a proxy cork comprising flexible discs can fit around the dispensing chamber near the receiving end, thereby sealing the neck of the bottle except for the receiving port. In one alternative, the liquid dispenser further comprises a proxy cork portion proximal to the receiving end, wherein the proxy cork portion is adapted to sealingly engage a neck of the bottle. In that alternative, the proxy cork portion forms part of the liquid dispenser.
In certain instances of the present invention, the dispensing end has one or more structural features that reduce unwanted drips from the dispensing portal. Any suitable structural features can appear as a drip catcher on the dispensing end proximal to the dispensing portal. For example, a lip or ring on the exterior of the dispensing end proximal to the dispensing portal can catch unwanted drips before they roll or fall off of the dispensing end after the liquid is dispensed. For another example, structure can appear inside the dispensing end that limits the formation of unwanted drips from the dispensing portal.
Any suitable material or materials can be a used alone or in combination to form the liquid dispensers of the present invention. In certain instances, a liquid dispenser has a dispensing chamber that comprises polyethylene, polypropylene, polyurethane, polyetheretherketone (PEEK), polystyrene, polytetrafluoroethylene, glass, stainless steel, aluminum, or a combination thereof. The bottle cap portion also can comprise one or more of those materials, independently of what the dispensing chamber comprises. Where present, the proxy cork can comprise any suitable material, such as, for example, polyethylene, polypropylene, polyurethane, polyetheretherketone (PEEK), polystyrene, polytetrafluoroethylene, glass, stainless steel, or aluminum, in addition to natural or synthetic rubbers. Each of those materials can be used in the proxy cork alone or in combination.
Further embodiments of the present invention relate to methods of making a liquid dispenser for a bottle, such as any of those described herein, one such method comprising:
constructing a dispensing chamber comprising a receiving end opposite a dispensing end;
establishing a receiving portal in the receiving end; and
establishing a dispensing portal in the dispensing end.
Any suitable processes can be used to construct a dispensing chamber. For example, when the dispensing chamber comprises one or more polymers, the constructing may comprise blow molding, injection molding, extrusion molding, or a combination thereof. If class is used, glassblowing and molding techniques can be used. Casting, milling, and welding can be used alone or in combination when the dispensing chamber comprises a metal such as stainless steel or aluminum.
The receiving portal and the dispensing portal can be formed in any suitable manner. In some cases, the mold or molds used to form the dispensing chamber account for the formation of those portals. In other cases, the receiving portal and/or the dispensing portal can be cut or drilled from the receiving end and the dispensing end, respectively.
Of course, applicant has also invented methods of dispensing liquids, in particular, when a relatively small and precise volume of liquid is needed to be dispensed from a vessel such as a bottle containing a relatively large volume of liquid. Accordingly, yet additional embodiments of the present invention relate to methods of dispensing a liquid from a bottle, one such method comprising:
obtaining a liquid dispenser comprising a dispensing chamber having a receiving end opposite a dispensing end,
wherein the receiving end comprises a receiving portal, and
the dispensing end comprises a dispensing portal;
introducing the liquid to be dispensed into the dispensing chamber through the receiving portal; and
dispensing the liquid from the dispensing chamber through the dispensing portal,
wherein the liquid emerging from the dispensing portal is in the form of drops.
Any suitable liquid dispenser can be used in such methods, such as, for example the liquid dispensers as described herein. In addition, any suitable liquid can be dispensed with a liquid dispenser of the present invention. Vermouth, bitters, grenadine, falernum, lemon juice, lime juice, hot sauces, pickle juice, olive brine, and the like may be mentioned.
Further embodiments of the present invention can be described by reference to the accompanying drawings.
A liquid dispenser similar in appearance to liquid dispenser 10 as shown in
A commercially-available proxy cork similar in appearance to proxy cork 60 in
The liquid dispenser with the proxy cork as assembled in Example 2 are affixed in the neck of a bottle of vermouth. When the bottle is tilted, the proxy cork holds the liquid dispenser in the neck of the bottle, and no liquid leaks out around the proxy cork. Vermouth enters the receiving portal and at least partially fills the dispensing chamber. Vermouth emerges from the dispensing portal one drop at a time. Six drops of vermouth are added to a cocktail shaker, and a precisely-made dry martini emerges.
A liquid dispenser for a bottle, comprising: a dispensing chamber having a receiving end opposite a dispensing end, the receiving end comprising a receiving portal, and the dispensing end comprising a dispensing portal.
The liquid dispenser of embodiment 1, wherein the dispensing portal is smaller in at least one dimension, relative to the receiving portal.
The liquid dispenser of any one of embodiments 1-2, wherein the dispensing portal is circular.
The liquid dispenser of any one of embodiments 1-3, wherein the receiving portal is circular.
The liquid dispenser of any one of embodiments 3-4, wherein the dispensing portal has a diameter of at least 0.1 mm, at least 0.2 mm, at least 0.3 mm, at least 0.4 mm, at least 0.5 mm, at least 0.6 mm, at least 0.7 mm, at least 0.8 mm, at least 0.9 mm, or at least 1.0 mm.
The liquid dispenser of any one of embodiments 3-4, wherein the dispensing portal has a diameter of no more than 1.0 mm, no more than 1.5 mm, no more than 2.0 mm, no more than 2.5 mm, no more than 3.0 mm, no more than 3.5 mm, no more than 4.0 mm, no more than 4.5 mm, or no more than 5.0 mm.
The liquid dispenser of any one of embodiments 3-6, wherein the receiving portal has a diameter of at least 0.15 mm, at least 0.2 mm, at least 0.3 mm, at least 0.4 mm, at least 0.5 mm, at least 0.6 mm, at least 0.7 mm, at least 0.8 mm, at least 0.9 mm, at least 1.0 mm, at least 1.1 mm, at least 1.2 mm, at least 1.3 mm, at least 1.4 mm, or at least 1.5 mm.
The liquid dispenser of any one of embodiments 3-6, wherein the receiving portal has a diameter of no more than 1.0 mm, no more than 1.5 mm, no more than 2.0 mm, no more than 2.5 mm, no more than 3.0 mm, no more than 3.5 mm, no more than 4.0 mm, no more than 4.5 mm, or no more than 5.0 mm.
The liquid dispenser of any one of embodiments 1-8, wherein the dispensing chamber comprises an arcuate cylindrical shape.
The liquid dispenser of any one of embodiments 1-9, further comprising a bottle cap portion supporting the dispensing chamber, the bottle cap portion adapted to maintain the liquid dispenser in a neck of the bottle.
The liquid dispenser of any one of embodiments 1-10, wherein the receiving end is adapted to engage a proxy cork that can sealingly engage a neck of the bottle.
The liquid dispenser of any one of embodiments 1-10, further comprising a proxy cork portion proximal to the receiving end, wherein the proxy cork portion is adapted to sealingly engage a neck of the bottle.
The liquid dispenser of any one of embodiments 1-12, further comprising a drip catcher on the dispensing end proximal to the dispensing portal.
The liquid dispenser of any one of embodiments 1-13, wherein the dispensing chamber comprises polyethylene, polypropylene, polyurethane, polyetheretherketone (PEEK), polystyrene, polytetrafluoroethylene, glass, stainless steel, aluminum, or a combination thereof.
The liquid dispenser of any one of embodiments 1-14, wherein the dispensing chamber further comprises a supporting fin.
The liquid dispenser of any one of embodiments 1-15, wherein the ratio of the thickness of the dispensing end to a width of the dispensing portal ranges from 0.1 to 10.
The liquid dispenser of embodiment 16, wherein the ratio is chosen from 0.1, 0.5, 1, 2, 3, 4, 5, and 10.
The liquid dispenser of any one of embodiments 1-17, wherein the dispensing portal has the geometry of a right cylinder, a rectangle, a pyramid, or a cone.
The liquid dispenser of any one of embodiments 1-18, wherein the dispensing end comprises a flat surface, a concave surface, a convex surface, or a combination thereof.
The liquid dispenser of any one of embodiments 1-19, wherein the dispensing chamber further comprises a ridge adapted to accommodate a proxy cork.
A method of making a liquid dispenser for a bottle, comprising:
constructing a dispensing chamber comprising a receiving end opposite a dispensing end;
establishing a receiving portal in the receiving end; and
establishing a dispensing portal in the dispensing end.
The method of embodiment 21, wherein the constructing comprises blow molding, injection molding, extrusion molding, or a combination thereof.
The method of any one of embodiments 21-22, wherein the establishing a receiving portal comprises drilling the receiving end.
The method of any one of embodiments 21-23, wherein the establishing a dispensing portal comprises drilling the dispensing end.
The method of any one of embodiments 21-24, wherein the liquid dispenser is the liquid dispenser of any one of embodiments 1-20.
A method of dispensing a liquid from a bottle, comprising:
obtaining a liquid dispenser comprising a dispensing chamber having a receiving end opposite a dispensing end,
The method of embodiment 26, wherein the liquid dispenser is the liquid dispenser of any one of embodiments 1-20.
As previously stated, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various forms. It will be appreciated that many modifications and other variations stand within the intended scope of this invention as claimed below. Furthermore, the foregoing description of various embodiments does not necessarily imply exclusion. For example, “some” embodiments may include all or part of “other” and “further” embodiments within the scope of this invention. In addition, “a” does not mean “one and only one;” “a” can mean “one and more than one.”
The present application claims benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/471,381, entitled, “LIQUID DISPENSER FOR A BOTTLE,” filed Mar. 15, 2017; the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2744661 | Davis | May 1956 | A |
3007608 | Cox, Jr. | Nov 1961 | A |
3305144 | Beres | Feb 1967 | A |
3321113 | Conry | May 1967 | A |
3352463 | Berler | Nov 1967 | A |
3863817 | Speaker | Feb 1975 | A |
4002168 | Petterson | Jan 1977 | A |
4165814 | Seel | Aug 1979 | A |
4174743 | Beny | Nov 1979 | A |
5328058 | Leoncavallo | Jul 1994 | A |
6076709 | Wilner | Jun 2000 | A |
6736802 | Recanati | May 2004 | B1 |
8770448 | Wochele | Jul 2014 | B2 |
9394089 | Silvers et al. | Jul 2016 | B2 |
9428374 | Houck | Aug 2016 | B2 |
9884706 | Skillin | Feb 2018 | B1 |
20060037972 | Leiner | Feb 2006 | A1 |
20070262096 | Gaynes | Nov 2007 | A1 |
20100016814 | Gokhale | Jan 2010 | A1 |
20100252585 | Yui | Oct 2010 | A1 |
20110036451 | Maas | Feb 2011 | A1 |
20150038925 | Parunak | Feb 2015 | A1 |
20160176593 | Stolle | Jun 2016 | A1 |
20160236834 | Erlhofer | Aug 2016 | A1 |
20160354733 | Chung | Dec 2016 | A1 |
20180042766 | Nagao | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2000025778 | Jan 2000 | JP |
WO2014192737 | Dec 2014 | WO |
Number | Date | Country | |
---|---|---|---|
62471381 | Mar 2017 | US |