Various types of dispensers exist for delivering a measured volume of a liquid into an aerosolizing apparatus, such as the inhaler apparatus described in co-pending U.S. application Ser. No. 13/830,511, entitled “METHODS AND SYSTEMS FOR SUPPLYING AEROSOLIZATION DEVICES WITH LIQUID MEDICAMENTS” incorporated herein by reference. One aspect of such dispensers is the desire to maximize the amount of liquid medicament that can be dispensed. Due to the large costs associated with many types of medicaments, there is a strong desire to not waste any of the liquid. Additionally, it is important to provide an accurate dose of medicament to a user. Improvements in delivering the entire supply of liquid medicament while providing accurate doses to inhalers for subsequent aerosolizing are desired.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should not be understood to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the entire specification of this patent, all drawings and each claim.
One particular embodiment provides a dispenser for supplying a metered volume of a liquid medicament to an aerosolizing device. The dispenser may include a container having a proximal end and a distal end, wherein the container is configured to store a volume of liquid medicament. The dispenser may also include a dispensing mechanism coupled to the distal end of the container. The dispensing mechanism may have a distal end terminating in a tip through which the liquid medicament is dispensed. The dispensing mechanism operates to dispense a metered volume of the liquid medicament from the tip each time the dispensing mechanism is operated. The distal end of the dispensing mechanism includes an interface that interacts with a housing of an inhaler to limit an insertion depth of the tip into an opening the housing.
In some embodiments, the dispensing mechanism includes housing cap having a bottom surface that is sloped toward an aperture to aid in the draining of liquid medicament from the container into the dispensing mechanism. In some embodiments, the interface comprises a seat. In other embodiments, the interface comprises a shoulder, wherein the shoulder and the tip each have a diameter. The diameter of the shoulder is larger than the diameter of the tip. In some embodiments, the container also includes an indicator line positioned near the proximal end that indicates to a user when there is insufficient liquid for a proper dispensing, i.e., when the container should no longer be used. A bottom surface of the proximal end may be sloped such that the indicator line is raised a distance from the proximal end.
In another aspect, the present invention provides a method for manufacturing a dispenser for supplying a metered volume of a liquid medicament to an aerosolizing device. The method can include providing a container having a proximal end and a distal end. The container is configured to store a volume of liquid medicament. The method may also include providing a dispensing mechanism that operates to dispense a metered volume of the liquid medicament from a tip of a distal end of the dispensing mechanism each time the dispenser is operated. The distal end of the dispensing mechanism includes an interface that interacts with a housing of an inhaler to limit an insertion depth of the tip into an opening of the housing. In some embodiments, the interface includes a shoulder, and the shoulder and the tip each have a diameter. The diameter of the shoulder is larger than the diameter of the tip.
In some embodiments, the dispensing mechanism includes a housing cap having a bottom surface that is sloped towards an aperture to aid in the draining of liquid medicament from the container into the dispensing mechanism. The dispenser may be compressible such that the dispenser delivers a metered volume of liquid medicament upon application of a compressive force. In one embodiment, the container further includes an indicator line positioned near the proximal end that indicates to a user when there is insufficient liquid for dispensing a unit dose. A bottom surface of the proximal end may be sloped such that the indicator line is raised a distance from the proximal end.
In another aspect, the present invention provides a method for supplying a metered volume of liquid medicament to an aerosolizing device. The method can include providing a dispenser having a container having a proximal end and a distal end. The container may include a volume of liquid medicament. The dispenser may have a dispensing mechanism coupled to the distal end of the container. The dispenser mechanism may have a distal end having an interface and terminating in a tip. The method may include providing an inhaler having a housing with a mouthpiece. The inhaler may also include an opening in the housing configured to receive the tip of the dispenser and a vibratable mesh spaced a distance from the opening that is configured to aerosolize the metered volume of liquid medicament. The method may include inserting the tip into the opening of the inhaler until the interface of the distal end contacts the housing outside of the opening to limit an insertion depth of the tip to maintain the tip a distance from the vibratable mesh. The method may also include compressing the dispenser to deliver a metered volume of the liquid medicament from the tip to the vibratable mesh.
In some embodiments, compressing the dispenser is performed by applying a compressive force to both the inhaler and the dispenser. The method may optionally include placing the inhaler on a support surface and compressing the dispenser by applying a compressive force to the dispenser. In some embodiments, the inhaler further includes a cover that seals the opening and the vibratable mesh. The method may also include moving the cover to expose the opening and the vibratable mesh. In some embodiments, the dispensing mechanism includes a housing cap that includes a bottom surface that is sloped toward the aperture such that when the dispenser is inverted the liquid medicament is directed into the aperture. The container may include an indicator line positioned near the proximal end that indicates to a user when there is insufficient liquid for recommended dispensing. In some embodiments, the interface contacts the housing such that the tip is maintained at a distance from the mesh such that the tip is not in contact with the dispensed metered volume of the liquid medicament.
In another aspect, the present invention provides a dispenser for supplying a metered volume of a liquid medicament to an aerosolizing device. The dispenser can include a container having a proximal end and a distal end. The container may be configured to store a volume of liquid medicament. The container may also include an indicator mark positioned near the proximal end that indicates to a user when there is insufficient liquid for supplying a unit dose to the aerosolizing device. In this way, the user knows when the container should be replaced with new container. The dispenser may include a dispensing mechanism coupled to the distal end of the container. The dispensing mechanism may include a distal end terminating in a tip through which the liquid medicament is dispensed. The dispensing mechanism may operate to dispense a metered volume of the liquid medicament from the tip each time the dispensing mechanism is operated. The distal end of the dispensing mechanism may include an interface that interacts with a housing of an inhaler to limit an insertion depth of the tip into an opening of the housing.
In some embodiments, the indicator mark may be fashioned as a top portion with a top shape and a bottom portion with a certain shape. The top portion and the bottom portion are separated by a certain displace so that a transparent portion or region is visible between the top portion and the bottom portion. When a level of the liquid medicament falls below the transparent portion there may be insufficient liquid for recommended dispensing. In some embodiments, the top portion and the bottom portion may be in the shape of half circles and the transparent portion may include a clear line. In some embodiments, the top portion and the bottom portion may be in the shape of rectangles and the transparent portion may include a clear line between the two rectangles. In some embodiments, the indicator mark may be shaped such that when a level of the liquid medicament falls below a bottom edge of the indicator mark there is insufficient liquid for a recommended dispensing, indicating that the container needs to be replaced. In some embodiments, the indicator mark may be in the form of a horizontal line extending along at least a portion of one or more sides of the container. In some embodiments, the bottom surface of the proximal end of the container may be sloped such that the indicator line may be raised a distance from the proximal end.
Illustrative embodiments of the present invention are described in detail below with reference to the following drawing figures:
Certain aspects of the invention relate to techniques for dispensing a liquid medicament into an aerosolizing apparatus, also referred to as an inhaler or an aerosolizer. Although useful with a wide variety of aerosolizing devices, in some cases the liquid will be dispensed into an aerosolizing apparatus comprising a housing defining a dispensing outlet or mouthpiece, a vibratable membrane or mesh having a front face exposed at the outlet and a rear face for receiving a liquid to be dispensed, and a vibrating mechanism connected to the housing and operable to vibrate the membrane to dispense aerosol of the liquid through the membrane.
A variety of containers or dispensers may be used to store the liquid medicament, then to deliver a metered volume of the liquid into a reservoir or directly onto the vibratable membrane where it will contact the rear face of the membrane. In this way, a metered volume of liquid is dispensable at the outlet or mouthpiece by operating the vibrating mechanism for an operating period sufficient to completely aerosolize the metered volume at the rear face. The containers or dispensers will typically have a sealed region where the liquid is stored and a mechanism for dispensing a metered volume of liquid each time the mechanism is operated. For example, the container may be compressed or pumped to eject a droplet of a known volume.
Referring now to
Distal end 6 can be configured to mate with dispensing mechanism 10, which tapers off, forming a tip 12. Dispensing mechanism 10 is configured to dispense a metered volume of liquid medicament when operated. Dispensing may be achieved by pumping or compressing a portion of dispensing mechanism 10. Dispensing mechanism 10 can include an interface 14, such as shoulder 14 or other seat or seating mechanism positioned between tip 12 and a flange 16. Shoulder 14 can have a larger diameter than tip 12. In some embodiments, shoulder 14 may be a shaped step, such as an annular step, that serves as a stop to limit a maximum depth of insertion of tip 12 into an aerosol device. Shoulder 14 is inset by a distance that is sufficient so that it not only serves as a stop but also permits tip 12 to seat within an opening an aerosol device in a stable position that is generally vertical to a top surface of an aerosol device. The tip 12 is seated within the opening when a surface of the shoulder 14 is flush in contact with a surface of a housing of the aerosol device that defines the opening of the device and the tip extends through the opening. In such a seated position, any liquid medicament within the dispenser will be drawn downward to the tip 12. Although shown with shoulder 14, other seating mechanisms could be used, such as a taper that matches with the taper of an opening in an aerosol device, protruding tabs or wings, detents, and the like. As another option, the seating mechanism may be keyed such that tip 12 can only be received by the opening in the aerosol device at a certain orientation. The shoulder 14 can set the insertion depth of the tip by contacting a surface outside of the opening in the aerosol device such that the tip 12 cannot be inserted further into the device.
Flange 16 can be used by a patient to apply force to actuate dispensing mechanism 10. Actuation of dispensing mechanism 10 allows tip 12 to be moved relative to proximal end 4, thus compressing dispenser 2. In so doing, each time dispenser 2 is compressed (or “pumped”) a metered volume of liquid is ejected from tip 12. For example,
Referring to
Referring to
Some embodiments contain only a single hole 28 positioned on bottom surface 26. This arrangement can help keep air out of dispensing mechanism 10 upon tilting dispenser 2 in a way that would otherwise result in a second hole being exposed to air while the first hole 28 was submerged in liquid medicament. By keeping excess air out of dispensing mechanism 10, more reliable dosages can be achieved throughout the life of dispenser 2.
One exemplary technique for operating dispenser 2 is illustrated in
As best shown in
By holding dispenser 2 in the manner shown, this pumping action may easily occur. This is in contrast to a nasal spray dispenser, which is typically actuated in an upright manner by carefully and simultaneously compressing the distal end with the middle and index finger (with the tip extending between the fingers) to the proximal end of the dispenser container, which is held under equal pressure by the thumb. With this type of nasal sprayer, the spray occurs when sufficient pressure is applied equally to both ends. In contrast, dispenser 2 can be easily actuated by applying pressure solely to the proximal end 4 of the dispenser 2 when the tip 12 is engaged with inhaler 300. Inhaler 300 and mating features are constructed so that a metered volume of medicament is consistently delivered from dispenser 2 into inhaler 300. The user may compress the dispenser 2 with unregulated pressure, provided the force is greater than or equal to that required to compress dispenser 2 throughout its full range. If inhaler 300 is loaded while placed on a table or any other freely supported surface, the apparent force required to compress dispenser 2 into inhaler 300 to the point of actuation is reduced by 50% when compared to the amount of force required to disperse a volume of liquid when holding both inhaler 300 and dispenser 2 (without the aid of a support surface). After dispersing the desired volume of liquid medicament, dispenser 2 may be removed from opening 304 and stored for future use. The cover 302 may be returned to a closed position to seal the opening 304, mesh 306, and reservoir 308. The cover 302 may be left open for some period of time to ensure that inner components of the inhaler 300, such as the mesh 306, are exposed to air to sufficiently dry before cover 302 is closed. Exemplary unit volumes that may be dispensed with each pump may be in the range from about 20 to about 100 microliters.
A wide variety of inhalers or aerosolizers may be used to aerosolize the dispensed liquid. Exemplary aerosol generators that may be used in such inhalers are also described in U.S. Pat. Nos. 6,629,646; 6,926,208; 7,108,197; 5,938,117; 6,540,153; 6,540,154; 7,040,549; 6,921,020; 7,083,112; 7,628,339; 5,586,550; 5,758,637; 6,085,740; 6,467,476; 6,640,804; 7,174,888; 6,014,970; 6,205,999; 6,755,189; 6,427,682; 6,814,071; 7,066,398; 6,978,941; 7,100,600; 7,032,590; 7,195,011, and in U.S. Patent Publication Nos. 2011/0168172 and 2001/0168170, all incorporated herein by reference. These references describe exemplary aerosol generators, ways to manufacture such aerosol generators, and ways to supply liquid for aerosol generators. Each is incorporated by reference for at least these features.
While it is preferable to utilize all of the liquid medicament in a given container due to the large cost associated with some medicaments, the effectiveness of delivering the proper dosage can begin to fall off as the volume of medicament falls below a certain threshold. In other words, when the level of liquid gets too low, the dispenser is unable to deliver the full unit dosage amount to the aerosolizer. In several trials this threshold was approximately 37 actuations for a 3 mL fill volume dispensing a metered volume of 50 μL. After this point, the user runs the risk of air mixing with the liquid medicament inside a dispensing mechanism, providing an incorrect dosage.
The containers described herein may optionally include one or more indicator marks that signal to a user when the container needs to be replaced. The containers may be constructed of a clear or transparent material so that the level of liquid in the container may be visualized. By comparing the line formed by the level or liquid with the indicator mark, the user can determine whether the level of liquid within the container has fallen below an acceptable level. If so, the user knows that the container should be replaced. The comparison is most easily accomplished by placing the proximal end of the container on a level surface and then peering through the container to ascertain whether the level of liquid has fallen below the indicator mark. While the container may still include some liquid, if the level is below the indicator mark, the level is too low for an acceptable dosing amount, and the container should be replaced.
As shown in
In
In some embodiments, a housing cap may also include a dip tube seat, which may aid in orienting the housing cap on the assembly line. The dip tube seat may optionally be configured to extend into a container or to be the same height as the housing cap. In some embodiments, the dip tube seat is formed to be shorter than housing cap. The housing cap's bottom surface may be configured to slope towards a base of the dip tube seat. One or more holes can be positioned at a base of the dip tube to allow the liquid medicament to access the delivery mechanism. In some embodiments, a slit that runs the entire longitudinal length of the dip tube seat may be used in place of or in conjunction with the holes for the liquid to pass through. By having the slit run the entire length of the dip tube seat, an efficient draining process can be achieved. Further, this configuration can ease the difficulties associated with manufacturing holes or slits in a dip tube seat.
The dip tube seat may be configured to have any shape of cross-section, for example, a circular cross-section. In some embodiments, the dip tube seat may be sealed or blocked at a top end, leaving only the hole or holes as a means for fluid communication between the container and dispensing mechanism. The dip tube seat may optionally have the sealing or blocking mechanism set beneath a top edge of the dip tube seat, which can aid in orienting the part on an assembly line during the manufacturing process.
The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and subcombinations are useful and may be employed without reference to other features and subcombinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.
This nonprovisional application claims priority from U.S. Provisional Application No. 61/812,547, filed on Apr. 16, 2013, the complete disclosure of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4227615 | Flick | Oct 1980 | A |
4294407 | Reichl | Oct 1981 | A |
4637528 | Wachinski et al. | Jan 1987 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5758637 | Ivri et al. | Jun 1998 | A |
5938117 | Ivri | Aug 1999 | A |
6014970 | Ivri et al. | Jan 2000 | A |
6085740 | Ivri | Jul 2000 | A |
6205999 | Ivri et al. | Mar 2001 | B1 |
6250209 | Fuchs | Jun 2001 | B1 |
6260549 | Sosiak | Jul 2001 | B1 |
6302101 | Py | Oct 2001 | B1 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6467476 | Ivri et al. | Oct 2002 | B1 |
6540153 | Ivri | Apr 2003 | B1 |
6540154 | Ivri et al. | Apr 2003 | B1 |
6629646 | Ivri | Oct 2003 | B1 |
6640804 | Ivri et al. | Nov 2003 | B2 |
6755189 | Ivri et al. | Jul 2004 | B2 |
6814071 | Klimowicz et al. | Nov 2004 | B2 |
6921020 | Ivri | Jul 2005 | B2 |
6926208 | Ivri | Aug 2005 | B2 |
7108197 | Ivri | Sep 2005 | B2 |
6978941 | Litherland et al. | Dec 2005 | B2 |
6981618 | Reisinger | Jan 2006 | B2 |
7032590 | Loeffler | Apr 2006 | B2 |
7040549 | Ivri et al. | May 2006 | B2 |
7066398 | Borland et al. | Jul 2006 | B2 |
7083112 | Ivri | Aug 2006 | B2 |
7100600 | Loeffler et al. | Sep 2006 | B2 |
7174888 | Ivri et al. | Feb 2007 | B2 |
7195011 | Loeffler et al. | Mar 2007 | B2 |
7628339 | Ivri et al. | Dec 2009 | B2 |
7845346 | Langford | Dec 2010 | B2 |
20020043262 | Langford et al. | Apr 2002 | A1 |
20050121024 | Langford et al. | Jun 2005 | A1 |
20060255072 | Hagin et al. | Nov 2006 | A1 |
20070102451 | Pruvot et al. | May 2007 | A1 |
20110168170 | Patton et al. | Jul 2011 | A1 |
20110168172 | Patton | Jul 2011 | A1 |
20160354795 | Taberlet et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
1387447 | Dec 2002 | CN |
102740915 | Oct 2012 | CN |
0 446 513 | Sep 1991 | EP |
0 571 280 | Nov 1993 | EP |
10-2012-0085767 | Aug 2012 | KR |
2669930 | Oct 2018 | RU |
2004028607 | Apr 2004 | WO |
2008097645 | Aug 2008 | WO |
2009086009 | Jul 2009 | WO |
WO2009086009 | Jul 2009 | WO |
2011077123 | Jun 2011 | WO |
2013158353 | Oct 2013 | WO |
Entry |
---|
International Preliminary Report on Patentability for International I Patent Application No. PCT/US2014/034356, dated Oct. 29, 2015, 11 pages. |
International Search Report and Written Opinion of PCT/US2014/034356 dated Sep. 11, 2014, 13 pages. |
European Patent Application No. 14 78 5659.5, “Extended European Search Report” dated Oct. 17, 2016, all pages. |
Office Action dated May 16, 2017 in Chinese Application 201480034163.X, all pages. |
AU application No. 2014253997 received a First Examination Report dated Feb. 6, 2017, 6 pages. |
EP 14785659.5 received an Office Action, dated Sep. 22, 2017, all pages. |
CN201480034163.X received an Office Action dated Oct. 29, 2018, 9 pages. |
AU2014253997 received a Second Examination Report dated Sep. 17, 2018, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20140318533 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61812547 | Apr 2013 | US |