This invention concerns the technical field of liquid dispensing. In particular, but not exclusively, it concerns the field of dispensing liquid in drop or spray form, such as ophthalmic, nasal, buccal or auricular liquid.
A liquid dispensing device comprising a container and a dispensing nozzle provided with a removable cap has already been proposed in document WO2013/140069. The cap described in this document comprises two casings mounted so as to be able to move relative to each other in order to create an air passage allowing the residual liquid present in the dispensing opening to evaporate. This cap is opened by simply unscrewing it, so that the liquid product contained in the container becomes easy to access via the dispensing nozzle. This is dangerous for a young child who, when handling the device, could manage to open the cap and access the liquid product, which could cause an intoxication.
The main objective of the invention is to overcome these disadvantages by providing a nozzle and a liquid dispensing device offering improved safety.
The invention therefore relates to a liquid dispensing nozzle comprising:
Thus, a nozzle is proposed in which the outer casing and the inner casing may advantageously take a configuration allowing air to pass between them, while offering improved safety. In fact, a sufficiently large pressing force must be applied to the outer casing to unscrew the cap. Unscrewing remains simple and intuitive for an adult whereas a child, who is not capable of turning while pressing or pressing hard enough on the outer casing, will only remain in the safety configuration of the cap and will not be able to unscrew it. Preferably, but not exclusively, said pressing force applied to the cap is an axial pressing force. Furthermore, when the cap is in the unscrewing configuration, the outer casing is driven in rotation in the first direction, which is preferably the anticlockwise direction, corresponding to the traditional unscrewing direction. Under the pressing force applied to the outer casing, the inner casing is also driven by friction to turn in the same direction, allowing the cap to be unscrewed. We understand that the arrangement of the sealing surfaces provides a hermetic nozzle prior to its first use. Thus, evaporation of the liquid contained in the nozzle during storage of the nozzle can be limited. After opening the cap for the first time, in other words when the cap is in a configuration other than the storage configuration, the sealing surfaces are no longer in hermetic contact. Consequently, air is advantageously able to pass between the two surfaces and allow the liquid to evaporate when an evaporation path is created between the inside and the outside of the cap. This prevents liquid from stagnating at the nozzle dispensing opening and therefore the development of bacteria. Note that the sealing surfaces are no longer in hermetic contact in the safety configuration and also preferably in the unscrewing configuration.
We understand that the arrangement of the sealing surfaces advantageously creates a residual liquid evaporation path, but that this path is not systematically provided on the nozzle. Although the sealing surfaces may be in hermetic contact with each other, they may also be separated from each other so as to allow air to pass between them, the existence of a residual liquid evaporation path may be an optional feature present on the nozzle. A cap of standard shape is therefore provided, which may or may not have this feature, for example depending on whether or not the casings have air passage openings, so as to optimize the method for manufacturing the cap. Preferably, the storage configuration is a configuration in which the outer casing is in a low position relative to the inner casing.
“The outer casing is configured to freewheel relative to the inner casing in the first direction” means that the outer casing can turn freely relative to the inner casing in this direction, without having to rotate with the inner casing. Thus, when the cap is in safety configuration, the outer casing is configured to be driven in rotation by the user in the first direction while the inner casing remains stationary on the dispensing nozzle. In other words, a rotation in the first direction of the outer casing does not cause the inner casing to rotate in the first direction. “Axial direction of the nozzle” is preferably understood to mean the direction defined by a geometrical axis of the nozzle.
The invention may further comprise one or more of the following characteristics, taken alone or in combination.
We understand that the friction corresponds advantageously to a friction force created between the actuation projection and the guide surface when a pressing force applied to the cap is greater than the predetermined threshold, this friction being large enough for the outer casing to drive in rotation the inner casing in the first direction. This friction provides better protection for the nozzle since a sufficiently large pressing force must be applied to the outer casing, in a predetermined direction (in this case, the axial direction of the nozzle). The outer casing must be pressed and rotated simultaneously to unscrew, which represents an obstacle for a child, preventing the child from opening the cap easily.
The guide surface comprises a discontinuous camway, so as to generate a tactile or audible indication when the actuation projection crosses the camway discontinuity in the safety configuration. For example, the inner casing comprises a first skirt of substantially cylindrical shape, the guide surface comprising at least two guide slopes extending from said first skirt in the axial direction and being separated by notches. The user then observes/feels a back and forth movement of the outer casing in the axial direction, indicating that the cap is in the safety configuration and that the outer casing must be pressed to unscrew, for example axially.
The guide surface is carried by a guide slope and the inner casing comprises a flat area substantially normal to the axial direction extending from one end of the guide slope, the end of the flat area opposite the guide slope being provided with a lug forming a hard point. This hard point formed by the lug prevents the outer casing from dropping into the storage configuration, more precisely into the low position relative to the inner casing.
The actuation projection is provided with a screwing stop, cooperating with a complementary screwing stop carried by the inner casing, so that the inner casing and the outer casing are connected in a rotational movement in a second direction opposite to the first direction, in order to screw the cap on the nozzle. Thus, according to this arrangement, the screwing and unscrewing of the cap are activated by the same element of the outer casing, namely the actuation projection, thereby simplifying the manufacturing process and providing a more compact nozzle.
The cap comprises a residual liquid absorption pad, arranged near the liquid dispensing opening. This pad is advantageously arranged downstream from the dispensing opening and is used to drain a large proportion of the residual liquid out of the dispensing opening.
The cap comprises a protuberance intended to be in the immediate vicinity and opposite the opening when the cap is mounted on the nozzle, this protuberance having a residual liquid expulsion shape, configured to evacuate the residual liquid to the outside when the cap is mounted on the nozzle. Due to the presence of the residual liquid expulsion shape created on the removable cap, when the cap is mounted on the nozzle, the expulsion shape located in the immediate vicinity and opposite the liquid dispensing opening expels most of the residual liquid present downstream from the dispensing opening, in particular towards the residual liquid absorption pad, if any, arranged nearby, in other words the residual liquid is evacuated to the outside of the nozzle. Most of the residual liquid is therefore drained out of the dispensing opening.
A residual liquid evaporation path is arranged between the opening and the outside of the nozzle, the residual liquid evaporation path being blocked in the storage configuration and open in the safety configuration. Advantageously, it is also open in the unscrewing configuration. We understand that the residual liquid evaporation path is opened when the respective sealing surfaces of the outer casing and the inner casing are separated from each other so as to allow air to pass between them. Thus, the residual liquid is in contact with the air outside the cap and can evaporate via the evaporation path once the cap is no longer in the storage configuration.
The outer casing is provided with a bottom in which a sealing skirt projects from the inner surface, this sealing skirt carrying the sealing surface of the outer casing and being configured so that, in the storage configuration, the sealing skirt is pressed hermetically against the sealing surface of the inner casing, and so that in the safety configuration, and preferably in the unscrewing configuration, the sealing skirt is separated from the sealing surface of the inner casing. Thus, the sealing skirt of the outer casing and the sealing surface of the inner casing are assembled by insertion to improve the sealing of the cap.
The outer casing can take at least three different axial positions relative to the inner casing, defining a minimum distance in the storage configuration and corresponding to a low position of the outer casing relative to the inner casing, an intermediate distance in the unscrewing configuration and a maximum distance in the safety configuration. The minimum distance corresponds to a distance allowing hermetic contact of the sealing surfaces and the intermediate distance generally corresponds to a distance at which the outer casing is moved away from the inner casing after opening the cap for the first time to create an evaporation path. At this intermediate distance, the outer casing can no longer return to the storage configuration. The maximum distance corresponds in particular to a position in which the outer casing reaches the upper end of the guide surface in the safety configuration. Thus, in the safety configuration, the outer casing moves between the intermediate distance and the safety distance making a back and forth movement in the axial direction of the nozzle, thereby giving a tactile and/or audible indication to the user.
On the outside of the outer casing, the cap is provided with raised or visual means indicating to the user how to move from the safety configuration to the unscrewing configuration. For example, the means may comprise a series of symbols such as arrows, digits, text indicating the order of the actions to be carried out.
The cap comprises means for indicating that the cap is in a configuration other than the storage configuration.
The invention further relates to a liquid dispensing nozzle, comprising:
This nozzle may be provided with one or more of the characteristics described above, taken alone or in combination.
Lastly, the invention relates to a liquid dispensing device comprising a liquid dispensing nozzle as described above mounted on a container.
The invention will be better understood on reading the following description, given solely by way of example and by referring to the drawings wherein:
A device, as shown on
The cap 16 comprises an outer casing 42 and an inner casing 44. These outer and inner casings 42, 44 are coaxial and mounted so as to be able to move relative to each other in an axial direction (A) of the nozzle 10. The axial direction A of the nozzle 10 is defined in this case by the geometrical axis of the container 12. The outer and inner casings 42, 44 can move along this geometrical axis, either by moving away from each other or by moving towards each other. Since they can move, the outer and inner casings 42, 44 can define in particular three different configurations of the nozzle 10, namely a configuration prior to first use, referred to as the storage configuration, a configuration for unscrewing the cap 16 and a safety configuration, which will all be described in detail below.
As shown on
The inner casing 44, as shown on
The inner casing 44 further comprises a peripheral and circular groove 73 arranged between the complementary locking means 72, 75 and the distal end (D) of the inner casing 44. This groove 73 is intended to receive the means 88 for locking in the safety configuration and in the unscrewing configuration, so that these locking means 88 can rotate freely in the groove 73. In addition, a camway 71 is arranged between the retaining housing 77 and the groove 73. The camway 71 is separated from the groove 73 by an edge 81. In addition, the inner casing 44 carries on the proximal end (P) a frangible ring 74 of the nozzle 10, acting as first opening indicator, to ensure that the nozzle 10 has not been used prior to its first use.
Lastly, the inner casing 44 comprises four guide slopes 67 extending from the first skirt 58 in the axial direction (A), each guide slope 67 having a guide surface 68 and a screwing stop 66, complementary to the screwing stop 86 carried by the outer casing 42. The guide slopes 67 are separated from each other by an area in which a notch 64 extends from the first skirt 58, forming a step between the complementary screwing stop 66 and the first skirt 58. The notch 64 extends along a plane substantially transverse to the axial direction (A).
We will now describe the mounting and operation of the nozzle 10.
The outer casing 42 is first mounted on the inner casing 44 by positioning the actuation projections 84 in the area located between a notch 64 and a guide slope 67, as shown on
The configuration prior to first use, referred to as the storage configuration of the nozzle 10, is shown on
On first use, the user unscrews the cap 16. The user holds the outer casing 42 in one hand and the container 12 in the other hand. The user turns the outer casing 42 relative to the inner casing 44 in a first direction 1 which corresponds to the anticlockwise direction, shown on
At the same time, the pressing force applied by the user enables each gadroon 88 (shown on
In the example shown, the two outer and inner casings 42, 44 are respectively provided with air passage openings 82, 62 so as to create a residual liquid evaporation path between the opening 22 and the outside of the nozzle 10. The residual liquid evaporation path is blocked in the storage configuration and open in the safety and unscrewing configurations. We could nevertheless have a cap 16 provided with air passage openings only on the inner casing 44 or the outer casing 42, without the possibility of creating an evaporation path.
Once the cap 16 is no longer in the storage configuration, the user, for example an adult, can open the cap 16 by applying a pressing force greater than a predetermined threshold, in this case an axial pressing force. The cap 16 is then placed in the unscrewing configuration, as shown on
In the example shown, in reference to
As described above, the outer casing 42 is kept at an intermediate distance from the inner casing 44 when the gadroons 88 are in the groove 73, in contact with the lower portion of this groove 73, formed by the retaining stops 72. We understand that when the user continues the rotational movement of the cap 16 relative to the container 12 to unscrew the cap 16 completely from the dispensing portion 14, the frangible parts of the ring 74 break. This ring 74 therefore provides a simple way of checking that the nozzle has not been used previously.
In an especially advantageous embodiment, the cap 16 also comprises a visual means indicating to the user that the storage configuration has been crossed. This means may comprise an identification surface carried by the inner casing 44 and a reference surface carried by the outer casing 42, the reference surface being intended to cover the identification surface only in the storage configuration. The two surfaces each have a different appearance which allows the user to clearly distinguish between the identification surface and the reference surface when the cap 16 is open. The cap 16 according to this embodiment is simpler and less expensive to manufacture. The frangible ring 74 described above could therefore be replaced by the combination of the identification surface and the reference surface. The two embodiments could also be combined so that the indication to the user that the cap 16 is open is simpler and safer.
If the user, for example a child, only turns the outer casing 42 in the first direction 1 without pressing hard enough on the bottom 76, the cap 16 will be in the safety configuration, as shown on
In this safety configuration, the actuation projections 84 move intermittently from one guide slope 67 to another. Thus, the guide slopes 67, separated from each other by a notch 64, form a discontinuous camway and the passage of the actuation projection 84 over the camway discontinuity generates a tactile or even audible indication.
Between two uses, the user screws the cap 16 back onto the dispensing portion 14. The outer casing 42 simply has to be turned in a second direction 2, corresponding to the clockwise direction without applying a specific axial pressing force. Each screwing stop 86 carried by the actuation projection 84 then comes up against the complementary screwing stop 66 carried by the inner casing 44. Thus, the two outer and inner casings 42, 44 are connected in a rotational movement in the second direction 2 and the cap 16 can be screwed back on. When screwing the cap back on, the actuation projections 84 press against the notches 64, which prevents the gadroons 88 from forcing on the retaining stops 72 and from returning into the retaining housing 77. We therefore understand that it is possible to move from the storage configuration of the nozzle 10 to the safety or unscrewing configuration but that the opposite is not possible. This therefore guarantees that once the nozzle 10 has been used at least once, the residual liquid evaporation path is always open.
In one embodiment, the cap 16 comprises clearance reduction ribs 65 on the inner casing 44, as shown on
The lug 92 extends, in a direction opposite to the flat area 90 (to the left on
In the alternatives shown on
In addition, as can be seen in detail on
In one embodiment, as shown for example on
The invention is not limited to the embodiments described. In particular, it will be understood that an absorption pad alone can be provided, without necessarily providing on the inner casing 44 a protuberance having an expulsion shape 46. Moreover, we understand that the structural shapes of the means described may easily vary while fulfilling functions such as those described.
Number | Date | Country | Kind |
---|---|---|---|
1754835 | May 2017 | FR | national |
Number | Date | Country | |
---|---|---|---|
Parent | 16618650 | Dec 2019 | US |
Child | 17732142 | US |