There are currently over 100 million wine drinkers in the United States alone, as compared to about half that for beer and spirits. This is a relatively recent trend that is projected to grow, as America's Millennials have demonstrated a preference for wine over beer.
The American wine consumer is becoming younger, more feminine and more cost conscious. A beverage once reserved for wealthier, higher educated Americans to enjoy only at dinner and special occasions is now a beverage for the masses, enjoyed at the most casual of settings, including pools, beaches, camping, concert and sporting events. The use of glass is not ideal or permitted at these venues or occasions, and yet traditional wine consumption practices are predicated on the use of a GLASS bottle and a GLASS tumbler. As a result, the actual or perceived quality of wine at non-glass venues is greatly diminished when served in a plastic cup or from a delivery system that does not convey quality and experience.
There exist few solutions that address the need for mass dispensing of wine in non-glass settings that satisfy both the concessionaire's need for cost and convenience AND the consumer's desire for experience and quality. Most concession providers resort to serving wine out of a conventional 750 ml bottle which is not only inefficient for service time, but it also results in a good amount of product loss. Also the product cost are higher because bottles are relatively expensive and costly to ship when compared to wine stored and shipped in bags. Alternatively, concessionaires have begun to offer sealed single-serving wine cups, but these options are unappealing to most wine drinkers because the quality is low and the experience has little to do with what they associate with the desired wine experience and taste.
There are significant and growing numbers of wine drinkers seeking wine in non-glass environments. For instance, 50 million of the 75 million American baseball fans are wine drinkers, and yet wine sales only account for about 5-10% of alcohol sales at large-scale, non-glass venues hosting sporting events, concerts, fairs and festivals. This glaring discrepancy begs the question, “Why?”
Provided are liquid dispensing systems and refill containers for use in such systems. The present liquid dispensing systems and its components are designed to create a low-cost, efficient manner for dispensing beverages, e.g., wine, for which temperature and freshness greatly affect the taste and experience of the beverage, so that the consumer will receive a good quality product that meets their expectations for what constitutes a pleasant taste and experience.
In one aspect, liquid dispensing systems are provided. In an embodiment, a liquid dispensing system for dispensing a liquid comprises an insulated housing comprising a top wall and a side wall mounted to the top wall, the side wall extending downwardly from the top wall to define an interior configured to receive a refill container comprising a liquid; a bottom surface mounted to the housing at a mounting interface and configured to enclose the interior of the housing; a sloped surface mounted within the interior of the housing and configured to induce the liquid within the refill container to flow toward a dispensing aperture through which the liquid is dispensed from the system; and a pump assembly in fluid communication with the interior of the housing, the pump assembly comprising a gas source and configured to deliver a gas from the gas source to the interior of the housing to apply pressure to the refill container.
In another embodiment, a dispensing system for dispensing a liquid comprises an insulated housing comprising a top wall and a side wall mounted to the top wall, the side wall extending downwardly from the top wall to define an interior configured to receive a refill container comprising a liquid; a base mounted to an end of the housing opposite the top wall at a mounting interface and via a gas-tight seal, the base comprising a side wall extending downwardly from the side wall of the housing and a floor mounted to the side wall, the floor configured to enclose the interior of the housing; a sloped surface mounted within the interior of the housing and configured to induce the liquid within the refill container to flow toward a dispensing aperture through which the liquid is dispensed from the system; and a pump assembly in fluid communication with the interior of the housing, the pump assembly comprising one or more pumps mounted in an interior defined by the side wall and floor of the base, the one or more pumps configured to deliver a gas to the interior of the housing to apply pressure to the refill container.
In another aspect, methods of dispensing a liquid using the disclosed systems are also provided. Relative to the illustrative systems described above, in an embodiment, the method comprises inserting the refill container into the interior of the housing; dispensing a portion of the liquid within the refill container through the dispensing aperture; delivering gas from the gas source to the interior of the housing, thereby applying pressure to the refill container; and dispensing an additional portion of the liquid within the refill container through the spout.
Other principal features and advantages of the present disclosure will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the present disclosure will hereafter be described with reference to the accompanying drawings.
Provided are liquid dispensing systems and refill containers for use in such systems. In one aspect, a liquid dispensing system is provided. The liquid dispensing system is configured to maintain a selected temperature of a liquid, e.g., a beverage such as wine, and to dispense the liquid from a refill container housed within the liquid dispensing system. The selected temperature may be in a range of from about 37° F. to about 72° F. The liquid dispensing system comprises a housing for enclosing a refill container and may comprise one or more of the refill container, a base, an insert, and a pump assembly. Each of these components is further described in more detail, below.
An illustrative liquid dispensing system 100 is shown in
Housing
The housing 102 is configured to receive at least a portion (or all) of the refill container 104. The housing 102 is also configured to minimize or prevent the transfer of heat through the housing 102 so as to maintain the selected temperature within an interior of the housing 102 (and thus of contents therein, e.g., the liquid in the refill container 104). As such, the housing 102 may be referred to as an insulated housing. The housing 102 includes a top wall 110 and a side wall 112 mounted to the top wall 100 and extending downwardly from the top wall 110. The side wall 112 is formed as a cylinder. The housing 102 does not include a bottom wall, i.e., the housing 102 is open at the end opposite the top wall 110. However, as described below, a bottom surface may be provided by another component (e.g., the base 106) mounted to the housing 102 in order to enclose the interior of the housing, i.e., so that the interior is surrounded on all sides.
Although the housing 102 includes the top wall 110 and the side wall 112, in general, a housing may include one or more walls defining an interior. The number of walls, the shape of the walls, and the dimensions of the walls are not particularly limited. Instead, these parameters may be selected depending upon the application environment for the system 100 (e.g., personal use versus commercial), the configuration of the refill container 104, etc.
Although not shown in this embodiment, one or more walls (or double walls) of the housing 102 may be partially or completely removeable (e.g., via vertically sliding, horizontally sliding, hinging, bending, etc.) from an adjoining wall (or double wall). An opening in the housing 102 created by partial/complete removal of a wall provides access to the interior of the housing 102 (e.g., so as to insert/remove the refill container 104). However, as shown in
The side wall 112 defines a dispensing aperture 116 configured to receive a spout (not shown here, but see a spout 430 of
Although not shown in this embodiment, a dispensing aperture may be formed in a tab(s) partially or completely releasably mounted (e.g., via hinging, sliding, etc.) to a side wall of a housing and positioned within another larger aperture formed in the side wall of the housing. When attached or slid into place, the tab(s) may snap or lock into place, preventing a spout of a refill container from moving and/or preventing air flow between the interior of the housing and ambient air.
A flexible, polymeric (e.g., silicone, polypropylene, etc.) lining (e.g., ring) may be mounted to an inside surface of the dispensing aperture 116. This is illustrated in
Another embodiment of a liquid dispensing system 400 is shown in
In general, when a sloped floor is used, it may assume various configurations. By way of illustration, a sloped floor may be formed from two (or more) sloped surfaces, forming a V-shaped cross-section (see an insert 608 of
Another embodiment of a liquid dispensing system 600 is shown in
Refill Container
As shown in
The refill container 104 includes a spout mounted thereon through which the liquid may be dispensed upon demand, e.g., by a user pressing a button mounted to the spout. The configuration of the spout is not particularly limited, although the position of the spout is desirably near a bottom end of the refill container 104. The circles at the bottom ends of the refill containers 104 and 604 of
The refill container 104 may be, but need not be, actively mounted to an interior surface of the system 100 (e.g., by pegs, hook, clips, etc.). However, as shown in
In general, the outer shape and the dimensions of a refill container are not particularly limited. As shown in
A refill container may be referred to as a bag or a liquid bladder.
Base
As shown in
The base 106 includes a side wall 160, extending downwardly from the side wall 112 of the housing 102 (once mounted thereto). The side wall 160 is formed as a cylinder. In general, as described above with respect to a housing, a base may include one or more walls defining an interior, with the number of walls, the shape of the walls, and the dimensions of the walls not being particularly limited. Similarly, none, some, or all of the walls of a base may be double walls.
In this embodiment, the base 106 includes a floor 162 mounted to the side wall 160. The floor 162 may provide a support surface on which the insert 108 rests. In addition, floor(s) can define interior compartments within the base 106 which may be used for insulation (e.g., filled with Styrofoam or evacuated to a vacuum), cooling (e.g., containing a cooling unit such as an ice pack), or storage. In general, the position of any floor(s) with respect to a side wall of a base is not particularly limited. In the embodiments of
The housing 102 and the base 106 may be mounted together using a variety of techniques, e.g., locking, snapping, twisting, threading, etc. By way of illustration, two different snap mountings are shown in
Although not shown in
Insert
As shown in
Another embodiment of an insert is shown in
In general, the shape and dimensions of the wall(s) and the plate(s) of an insert are not particularly limited, but depend upon the configuration of a housing, a base and a refill container.
Pump Assembly
With respect to the pump assembly 980, it includes a gas source 982 (e.g., air). The gas source 982 may be provided by a variety of components, e.g., a pump (e.g., hand pump, foot pump, baffle pump, etc.), a compressor, a fan, etc. Any of these illustrative components may be manually operated or operated under electrical or battery control. The pump assembly 980 further includes valves, e.g., a check valve 984 for the gas source 982, a check valve 986 for the system 900, and a relief valve 988 for the system 900. The gas source 982 is in fluid communication with the housing 902 via a fluid pathway 989 (e.g., one or more tubes). During use, gas (e.g., air) provided by the gas source 982 fills the interior of the housing 902, thereby applying a uniform pressure on the refill container 904. This pressure forces out liquid in the refill container 904 through the spout 930 when the spout 930 is opened. This facilitates removal of all of the liquid in the refill container 904, which reduces waste and lowers costs, and creates a faster flowrate of the liquid. The amount of pressure provided by the gas depends upon how much gas is introduced to the system. Relief valves can be selected so as to let out gas from the interior of the housing 902 if the pressure goes above a predetermined value.
The system 1000 includes a housing 1002, a base 1006, an insert 1008, and a pump assembly. Also shown in these figures is a drinking vessel for receiving liquid dispensed from the system 1000.
The housing 1002 is an insulated housing including a top double wall (not shown) and a side double wall 1012 shaped as a cylinder. The cylinder defines an interior for receiving a refill container (only a spout 1030 of the refill container is shown). A cap 1090 is mounted to the housing at its top end in which depressions 1093 are formed, providing gripping surfaces for a user. A collar 1092 is mounted to the housing at its bottom end. The collar 1092 has a semi-circular dispensing aperture formed therein for receiving the spout 1030. Hinged tabs 1094 for mounting the housing 1002 to the base 1006 are also mounted on the collar 1092. It is to be understood that both the cap 1090 and the collar 1092 may be considered to be part of the housing 1002.
The base 1006 includes a side wall 1060 which is also cylindrical in shape although its walls are slightly curved. A semi-circular aperture is formed in the side wall 1060 to receive a portion of the spout 1030. As best shown in
The insert 1008 includes a sloped plate portion which rests upon and conforms to the surface of the floor 1032 of the base 1006. In this embodiment, both sloped plate portion of the insert 1008 and the floor 1032 are slightly curved in that opposing side edges of the sloped plate portion and the floor 1032 are slightly higher than the centers of each. The resulting shape of the sloped plate portion and the floor 1032 is that of a slightly folded tortilla shell. In this way, a channel is formed that extends from a back edge of the sloped plate portion/floor 1032 to an opposing edge and funnels liquid in the refill container towards the spout 1030. The channel and flow direction from back towards front are indicated with an arrow in
Operation of the system 1000 is illustrated in
The belt 1220 is configured to provide a gas-tight seal between the housing 1002 and the base 1006 when these two components are mounted together as described above. Specifically, the belt 1220 is configured to apply an inward pressure on surfaces to which the belt 1220 contacts, i.e., outer surfaces of the housing 1002 and the base 1006. This inward pressure, i.e., towards the center of the system 1000, is indicated with an arrow in
The belt 1220 includes an elongated portion 1222 having an outer side surface 1223a, an inner side surface 1223b, top and bottom surfaces, and opposing ends 1224a, b. The belt 1220 further includes a buckle portion 1225. The elongated portion 1222 is configured to extend around the perimeters of the housing 1002 and the base 1006 and around their mounting interface. As shown in
As noted above, the buckle portion 1225 is configured to bring together opposing ends 1224a, b of the elongated portion 1222 together so that the elongated portion 1222 conforms to the outer surfaces of the housing 1002 and the base 1006. In this embodiment, the buckle portion 1225 includes upper and lower pegs 1221a, b projecting from the outer side surface 1223a of the elongated portion 1222 and upper and lower pivotable hooks 1227a, b, which fit around a portion of the upper and lower pegs 1221a, b, respectively. The upper/lower pegs 1221a, b are mounted to one end 1224a of the elongated portion 1222 while the upper/lower pivotable hooks 1227a, b are mounted to the opposing end 1224b of the elongated portion 1222.
The belt 1220 also defines an aperture 1229 through which the spout 1030 may be inserted. In this embodiment, the aperture 1229 is formed by having opposing ends 1224a, b of the elongated portion 1222 shaped as semi-circles (which, when brought together, form a circle). Operation of the belt 1220 is illustrated in
The belt 1220 further comprises a gasket 1241 which fits in the recess of the c-shaped defined by the elongated portion 1222 and the upper and lower ledges 1226a, b. The gasket 1241 further facilitates the formation of the gas-tight seal.
It is to be understood that various configurations may be used for the belt 1220, e.g., the elongated portion 1222 may assume different shapes and dimensions and the buckle portion 1225 may include different, additional, or fewer components, provided the belt has the functionalities described above. However, for cylindrically shaped housings and bases, the belt 1220 and its elongated portion 1222 will generally be circular in shape.
Another illustrative belt-based mounting is shown in
The belt 1420 is configured similarly to the belt 1220 in that it includes an elongated portion 1422 with opposing ends 1424a, b and a buckle portion 1425. However, in this embodiment, the buckle portion 1425 includes a single peg 1421 and a single pivotable hook 1427. Also, an aperture 1429 is formed along the length of the elongated portion 1422 (rather than at opposing ends) and two hinges 1443 are included in the belt 1420 to facilitate fitting the belt onto the housing 1002 and the base 1006. Regarding the two hinges 1443, one hinge or more than two hinges may be used. One or more hinges may also be used with the belt 1220. Hinges may be placed anywhere along the length of the elongated portion 1422 (or 1222).
It is to be understood that in the description of the belts above, references to a housing may instead refer to a collar mounted thereon.
As illustrated in
Although not shown, any of the outer surfaces of the disclosed liquid dispensing systems, e.g., housing, base, etc. may be labeled with permanent or removable decorations, words, and images (e.g., via adhesive or magnetic mounting).
Although the liquid dispensing systems described above focused on a single housing, a system may comprise a plurality of housings. Similarly, although the liquid dispensing systems described above focused on a single refill container within a housing, the housing may comprise a plurality of refill containers.
Unless otherwise specified, the materials used for the components of the disclosed liquid dispensing system are not particularly limited, but rather may be selected according to the intended function of the components. However, in embodiments, the housing and the base are not composed of cardboard or paper or a material functionally equivalent to cardboard or paper. Rather, rigid polymers, plastic, or metal may be used to form the housing and the base (as well as other components of the liquid dispensing system). The present liquid dispensing systems are not configured as a single-use product. Rather, the liquid dispensing systems are configured for multiple use, upon refilling the refill container or inserting a new refill container.
Liquid dispensing systems according to the present disclosure may include various combinations of the components, features and functionalities described above, without limitation.
Some features referenced above but not shown and other features not referenced or shown have been described in U.S. Provisional Patent Application 62/545,590, filed Aug. 15, 2017, which is hereby incorporated by reference in its entirety. Any of these may be included in the present liquid dispensing systems without limitation.
It is to be understood that the refill containers themselves are also encompassed by the present disclosure, as well as methods of using the refill containers and the liquid dispensing systems.
It is to be understood that the present disclosure encompasses the liquid dispensing systems themselves, i.e., absent the refill containers.
At least some embodiments of the present liquid dispensing systems may be characterized by one or more of the following advantages: reducing the cost of beverage to consumers by reducing cost of packaging supplies, shipping weights, storage needed, and loss of product; increase efficiency by removing many of the steps needed for conventional beverage delivery and increasing the size of the product so fewer steps needed to be done and are performed less often; maintain freshness of the beverage by design and packaging supplies that reduce exposure to oxygen; maintain an ideal temperature of the beverage by allowing the user to preserve the temperature of the beverage, should it be cooler than the ambient air or chill the beverage without watering down the beverage by adding ice and even in the absence of access to electricity; and reduce waste since wine dispensing by way of the refill containers uses much less packaging material when compared to bottles and single-serving dispensing units.
Unless otherwise specified, the term “mount” includes join, unite, connect, couple, associate, insert, hang, hold, affix, attach, fasten, bind, paste, secure, bolt, screw, rivet, solder, weld, glue, form over, form in, layer, mold, rest on, rest against, abut, and other like terms. The phrases “mounted on”, “mounted to”, and equivalent phrases indicate any interior or exterior portion of the element referenced. These phrases also encompass direct mounting (in which the referenced elements are in direct contact) and indirect mounting (in which the referenced elements are not in direct contact, but are connected through an intermediate element). Elements referenced as mounted to each other herein may further be integrally formed together, for example, using a molding or thermoforming process. As a result, elements described herein as being mounted to each other need not be discrete structural elements. The elements may be mounted permanently, removably, or releasably unless specified otherwise.
Use of directional terms, such as top, bottom, right, left, front, back, etc. are merely intended to facilitate reference to various surfaces that form components of the devices referenced herein and are not intended to be limiting in any manner.
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more.”
The foregoing description of illustrative embodiments of the present disclosure has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosure. The embodiments were chosen and described in order to explain the principles of the disclosure and as practical applications of the disclosure to enable one skilled in the art to utilize the disclosure in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the claims appended hereto and their equivalents.
The present application is a continuation of U.S. patent application Ser. No. 16/102,861 that was filed Aug. 14, 2018, the entire contents of which are incorporated herein by reference; which claims priority to U.S. provisional patent application No. 62/545,590 that was filed Aug. 15, 2017; the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62545590 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16102861 | Aug 2018 | US |
Child | 16568589 | US |