1. Technical Field
The present invention relates to liquid ejecting apparatuses, and more specifically, to a configuration of liquid supplying flow channels through which liquid is supplied to liquid ejection heads.
2. Related Art
Generally, ink jet printers are widely known as a type of liquid ejecting apparatuses that eject liquid onto a medium. In these printers, printing is performed by ejecting ink (liquid) from ink cartridges (liquid storage containers) through nozzles which are formed on a liquid ejection head onto a medium (for example, sheet of paper). Recently, pigment ink has been sometimes used in these printers in order to achieve high-quality printing.
However, pigment ink has a problem in that pigment particles in the ink solvent settle out over time, resulting in uneven concentration of the pigment ink, thereby shades of the printed colors being slightly changed. In particular, when the pigment particles move through a long liquid supplying flow channel from the ink cartridge to the liquid ejection head, the sedimentation of pigment particles may occur in the liquid supplying flow channel. Accordingly, even if ink is stirred in the ink cartridge, it is difficult to prevent the color shades of pigment ink from being changed without reducing the unevenness in concentration of the pigment ink in the liquid supplying flow channel from the ink cartridge to the liquid ejection head.
JP-A-2010-188590 discloses a technique for stirring ink in the liquid supplying flow channel, in which a pressure and vacuum pump is used to generate a pressure variation inside the liquid supplying flow channel (passage), thereby causing a movable wall which is a part of the wall of the liquid supplying flow channel to be displaced. This displacement of the movable wall generates a flow of ink so that ink is stirred in the liquid supplying flow channel.
In the technique according to JP-A-2010-188590, however, the pressure and vacuum pump is provided as an additional device for generating a pressure variation in the liquid supplying flow channel so as to stir the ink, which may lead to large-sized printer or complicated configuration. Accordingly, a technique is needed for stirring ink in the liquid supplying flow channel without using an additional device.
An advantage of some aspects of the invention is that a liquid ejecting apparatus capable of stirring the liquid in the liquid supplying flow channel between the liquid storage container and the liquid ejection head without providing any additional device is provided.
According to an aspect of the invention, a liquid ejecting apparatus includes a liquid ejection head that reciprocates and ejects a liquid therefrom, a liquid supplying flow channel that causes the liquid to move so as to supply the liquid to the liquid ejection head, a non-return valve that opens when the liquid flows from an upstream region to a downstream region where the liquid ejection head is located and closes when the liquid flows from the downstream region to the upstream region, the non-return valve being disposed in the course of the liquid supplying flow channel, a volume changing unit that changes a volume of an inner space in accordance with the movement of the liquid ejection head, the volume changing unit being disposed in the liquid supplying flow channel between the non-return valve and the liquid ejection head, and a stirring unit that stirs the liquid stored therein in accordance with the volume change of the inner space of the volume changing unit, the stirring unit being disposed in the liquid supplying flow channel between the volume changing unit and the non-return valve.
With this configuration, in the liquid supplying flow channel that supplies the liquid to the liquid ejection head, when the liquid ejection head is moved so as to change the volume of the inner space of the volume changing unit, the liquid stored in the stirring unit between the volume changing unit and the non-return valve can be stirred. Accordingly, the liquid which has been stirred can be supplied from the liquid supplying flow channel to the liquid ejection head without adding a special stirring device.
It is preferable that, in the liquid ejecting apparatus, the liquid ejection head is capable of moving between a medium ejection area in which the liquid is ejected from the liquid ejection head onto the medium and a non-medium ejection area other than the medium ejection area, and the volume changing unit changes the volume of the inner space of the volume changing unit when the liquid ejection head moves in the non-medium ejection area.
With this configuration, the volume of the volume changing unit can be changed and the liquid in the stirring unit of the liquid supplying flow channel can be stirred by using the movement of the liquid ejection head in the area other than the area in which printing is performed to the medium. If the volume of the volume changing unit is changed during ejection of the liquid onto the medium, a pressure variation occurs in the liquid supplying flow channel, which may leads to a change of the ejection amount. Accordingly, the liquid which has been stirred can be supplied from the liquid supplying flow channel to the liquid ejection head without affecting printing operation, since the volume is changed in the area which is different from the area in which printing is performed. In addition, the liquid can be selectively stirred.
It is preferable that, in the liquid ejecting apparatus, the stirring unit includes a movable wall that moves in accordance with the volume change of the inner space of the volume changing unit so as to change the volume of the liquid stored in the stirring unit.
With this configuration, the liquid can be thoroughly stirred in the stirring unit, since the volume of the liquid in the stirring unit can be changed with certainty in accordance with the movement of the movable wall.
It is preferable that, in the liquid ejecting apparatus, the movable wall is regulated so that the volume of the liquid stored in the stirring unit does not fall below a predetermined volume when the movable wall moves in a direction in which the volume of the liquid decreases.
With this configuration, the liquid can be effectively stirred, for example, in the stirring unit and the liquid which has been stirred can be reliably supplied to the liquid ejection head which is located downstream relative to the stirring unit in the liquid supplying flow channel.
It is preferable that the liquid ejecting apparatus further includes a biasing unit that biases the movable wall in a direction in which the volume of the liquid stored in the stirring unit decreases.
With this configuration, the movable wall that is biased by the biasing unit applies a pressure on the liquid in the stirring unit, thereby preventing the liquid from flowing from the upstream region into the stirring unit through the non-return valve. As a result, the liquid can be reliably stirred in the stirring unit, since the amount of the liquid that corresponds to the changed volume of the volume changing unit can flow into the stirring unit or flow out from the stirring unit.
It is preferable that the liquid ejecting apparatus further includes a check valve that prevents the liquid from flowing between the liquid ejection head and the liquid supplying flow channel when the volume of the inner space of the volume changing unit changes, the check valve being disposed in the liquid supplying flow channel.
With this configuration, even if a pressure of the liquid, for example, in the liquid supplying flow channel decreases in accordance with the volume change of the liquid supplying flow channel caused by the volume changing unit, the liquid in the liquid ejection head is prevented from being withdrawn into the upstream region. Further, even if a pressure of the liquid in the liquid supplying flow channel increases, the liquid is prevented from being excessively supplied to the liquid ejection head in the downstream region. Accordingly, printing onto the medium after the stirring operation can be performed in a stable manner.
It is preferable that, in the liquid ejecting apparatus, the volume changing unit has a bellows and the volume of the inner space of the volume changing unit changes when the bellows expands/collapses.
With this configuration, the liquid can be stirred in the stirring unit that is formed in the liquid supplying flow channel when the volume is changed by using the expansion/collapse of the bellows. Accordingly, the liquid which has been stirred can be supplied to the liquid ejection head without adding a special stirring device.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
An embodiment of a liquid ejecting apparatus according to the present invention which is embodied as an ink jet printer (hereinafter also referred to as “printer”) will be described below with reference to the drawings. For ease of explanation, the gravity direction and antigravity direction in the vertical axis as shown in
As shown in
A cartridge holder 14 is disposed on one side (in this embodiment, right end) of the frame 12 in the scan direction, which is the longitudinal direction of the frame 12. A plurality of (in this case, four) ink cartridges 15 as an example of a liquid storage container that stores ink as an example of a liquid are detachably mounted in the frame 12. Further, a pressure pump 17 that supplies pressurized air via air supply tubes 16 to each of the ink cartridges 15 is disposed above the cartridge holder 14. In this embodiment, four ink cartridges 15 which are mounted in the cartridge holder 14 each contain different colors of pigment ink.
A guide shaft 19 is formed in the frame 12 so as to extend in the left-right direction, which is the scan direction, and supports a carriage 20 in a slidable manner. The carriage 20 is connected to a carriage motor 22 which is disposed at a position upstream in the transportation direction (on the back side of the frame 12) via a timing belt 21. The carriage 20 is configured to reciprocate along the guide shaft 19 in the left-right direction when driven by the carriage motor 22.
The carriage 20 is provided with a liquid ejection head 24 having a plurality of nozzles (not shown in the figure) formed on the underside so that ink is ejected therethrough and a plurality of valve unit 25 that correspond to the ink cartridges 15. The ink supplied from the respective ink cartridges 15 is pressurized by the pressure pump 17 and flows through liquid supplying flow channels EKR to the liquid ejection head 24.
Each liquid supplying flow channel EKR includes a first supply tube 26, a non-return valve 40, a second supply tube 27, a stirring unit 50, a third supply tube 28, a volume changing unit 60 and a fourth supply tube 29, in series from the side of the ink cartridges 15. These components communicate with each other while the first supply tube 26 and the fourth supply tube 29 communicate with the ink cartridge 15 and the carriage 20, respectively, such that ink flows therethrough. At least third supply tube 28 has a flexibility and is partially curved in a substantially semi-circular arc to form a curved portion 28a so as to orient the liquid supplying flow channel EKR in substantially the opposite direction. Accordingly, as the carriage 20 moves in the left-right direction, the position of the curved portion 28a moves in the left-right direction.
In this embodiment, all the liquid supplying flow channels EKR from the ink cartridges 15 to the carriage 20 have the same configuration, while at least the third supply tubes 28 are superposed in the up-down direction in plan view as seen from above as shown in
In this configuration, ink flows from the ink cartridges 15 located upstream of the liquid supplying flow channels EKR to the carriage 20 located downstream of the liquid supplying flow channels EKR and is then supplied to the liquid ejection head 24 via the valve units 25 which are mounted on the carriage 20. When the liquid ejection head 24 is moved to an area where the liquid ejection head 24 faces the paper sheet P so as to eject ink onto the paper sheet P, which is called a medium ejection area, printing operation is performed to the paper sheet P by ejecting ink onto the paper sheet P.
The valve unit 25 has a valve mechanism (hereinafter also referred to as “self-sealing valve”) that supplies ink from the liquid supplying flow channels EKR to the liquid ejection head 24 if a pressure inside the liquid ejection head 24 falls due to reasons such as the ink ejection from the nozzles during printing operation. That is, a pressure adjusting function is provided so that the pressure inside the liquid ejection head 24, which is a back pressure, is maintained at slightly negative relative to the atmosphere pressure outside the liquid ejection head 24, thereby forming an uniform meniscus in a plurality of nozzles and stabilizing the ink ejection operation.
A home position HP is provided in a non-medium ejection area outside the medium ejection area which is one side (in this embodiment, right end) of the range in which the carriage 20 moves in the scan direction in the frame 12. Further, a maintenance device 30 that performs various maintenance operations to the liquid ejection head 24 is disposed in the home position HP.
The maintenance device 30 includes a cap 31 formed in a bottom-closed box-like shape in a size that corresponds to the liquid ejection head 24 and a lifting mechanism 32 that moves the cap 31 upward and downward. The cap 31 is moved upward from the lower position so as to abut the liquid ejection head 24 which has been moved to the home position HP, thereby forming a closed space. Then, the closed space is kept under negative pressure by means of a suction pump, which is not shown in the figure, such that maintenance operation is performed to stabilize the ink ejection operation from the nozzles, for example, by suctioning the thickened ink through the nozzles.
In this embodiment, the carriage 20 is configured to move further in the right direction beyond the home position HP, where the cap 31 abuts the liquid ejection head 24, along the guide shaft 19 by a predetermined distance. Further, a projection 80 is formed on the inner surface of an upper case of the printer 11, which is not shown, so as to extend downward, such that the curved portion 28a of the third supply tube 28 abuts the projection 80 in the left-right direction when the carriage 20 reaches the home position HP. It should be noted that, all the curved portions 28a of the third supply tubes 28 for the four liquid supplying flow channels EKR that correspond to the four ink cartridges 15 abut the projection 80 in the left-right direction.
As shown in
While the projection 80 is formed to prevent the curved portion 28a of the third supply tube 28 from moving in the right direction by abutting the curved portion 28a, the position of the projection 80 in the front-back and left-right directions, the outline of the projection 80 seen from above, and the extending amount of the projection 80 in the down direction are determined so as not to interrupt the reciprocating movement of the carriage 20 in the scan direction (left-right direction). The projection 80 of this embodiment has a cylindrical shape. Although the volume changing unit 60 in
In this embodiment, the volume changing unit 60 includes a bellows 61 that expands and collapses in the left-right direction. When the bellows 61 expands from the initial state, which is a collapsed state, the ink volume in the volume changing unit 60 increases, while the expanded bellows 61 collapses back to the initial state, the ink volume in the volume changing unit 60 decreases. The bellows 61 is made of an elastically deformable material (for example, elastic rubber) so that the bellows 61 in the expanded state returns by itself into the initial collapsed state when the carriage 20 moves from right to left to return to the home position HP. Alternatively, the bellows 61 may be provided with a bias member such as a coil spring so that the bellows 61 in the expanded state returns by itself into the initial collapsed state.
The printer 11 according to this embodiment is configured such that ink in the liquid supplying flow channel EKR can be stirred when the carriage 20 moves (reciprocates) between the home position HP and the position away from the home position HP in the right direction by the distance SK. That is, as shown in
Next, the ink stirring operation in the liquid supplying flow channel EKR will be described below with reference to
As shown in
The movable wall 53 which opposes the inner bottom wall 51b in the up-down direction is biased by a coil spring 54 as an example of a biasing unit in a direction toward the inner bottom wall 51b, that is, in a direction in which the volume of the inner space 50A decreases, while the periphery of the movable wall 53 remains in close contact with the inner side wall 51a. Further, in this embodiment, a rim-like projection 52 is formed on the inner side wall 51a of the stirring container 51 so as to radially inwardly project (that is, into the inner space 50A) and engage with the movable wall 53 when viewed from above. When the movable wall 53 moves downward and decrease the volume of the inner space 50A to a predetermined volume, the projection 52 regulates the movable wall 53 so as not to move in the down direction. Further, the second supply tube 27 and the third supply tube 28 are each connected to the stirring unit 50 at the lowest position of the stirring container 51. In addition, the non-return valve 40 has a so-called leaf valve configuration that opens/closes a flow channel port 41 by using a plate-like valve body 42.
Next, as shown in
In this embodiment, the decreased volume of the inner space 50A of the stirring unit 50 due to the downward movement of the movable wall 53 from the position shown in
Next, as shown in
As ink flows into the inner space 50A, the movable wall 53 moves upward and the volume of the inner space 50A of the stirring unit 50 increases. During the upward movement of the movable wall 53, a biasing force G1 is applied on the movable wall 53 since the movable wall 53 is biased downward by the coil spring 54. The biasing force G1 acts to depress the movable wall 53 which is moving upward, thereby constantly applying a pressure on the ink in the inner space 50A. This pressure acts to press the non-return valve 40 from the downstream to the upstream region so as to maintain the non-return valve 40 in the closed state, thereby preventing the ink that has flowed into the inner space 50A from being flowed out toward the region upstream of the non-return valve 40 and also prevents ink from flowing from the ink cartridge 15 (the upstream region) during the upward movement of the movable wall 53.
Accordingly, since the ink that has flowed from the third supply tube 28 into the inner space 50A forces the movable wall 53 to move upward and causes a flow of ink in the inner space 50A, ink is stirred in the stirring unit 50. During this ink stirring operation, the surface of ink remains in close contact with the movable wall 53, thereby preventing ruffles from being generated on the surface. As a result, ink is more likely to be thoroughly stirred since ink circulates in the inner space 50A, for example as indicated by the arrow F5 in the figure.
After the ink flowed (is supplied) from the upstream region into the inner space 50A as shown in
That is, when a predetermined amount of ink is supplied from the upstream region into the inner space 50A, the movable wall 53 which is biased by the coil spring 54 constantly applies a pressure on the ink, thereby maintaining the non-return valve 40 in the closed state. Since the non-return valve 40 is maintained in the closed state, the amount of ink supplied from the upstream region to the inner space 50A is limited. For example, in the state shown in
As mentioned above, when the volume of the inner space 62 of the volume changing unit 60 increases and decreases by preventing ink from being supplied from the upstream region into the inner space 50A of the stirring unit 50, the movable wall 53 can move in the stirring unit 50 in accordance with the increase and decrease of the volume of the inner space 62 of the volume changing unit 60 without being regulated. As a result, even if the volume of the inner space 62 repeatedly increases and decreases in the volume changing unit 60, ink is thoroughly stirred by the movement of the movable wall 53 without being excessively supplied from the ink cartridge 15 to the stirring unit 50.
As a matter of course, when printing is performed by ejecting ink from the liquid ejection head 24 onto the paper sheet P, since ink is supplied from the liquid supplying flow channel EKR to the liquid ejection head 24, ink stored in the inner space 50A decreases from the state shown in
In this embodiment, when the bellows 61 expands as shown in
In addition, when the bellows 61 expands from the collapsed state as shown in
According to the above-mentioned embodiment, the following effect can be obtained.
(1) In the liquid supplying flow channel EKR that supplies ink to the liquid ejection head 24, when the liquid ejection head 24 is moved so as to change the volume of the inner space 62 of the volume changing unit 60, ink stored in the stirring unit 50 in the liquid supplying flow channel EKR between the non-return valve 40 and the liquid ejection head 24 can be stirred. Accordingly, ink which has been stirred can be supplied to the liquid ejection head 24 without adding a special device (stirring device) such as a pressure and vacuum pump.
(2) The ink in the stirring unit 50 of the liquid supplying flow channel EKR can be stirred by using the movement of the liquid ejection head 24 in the area other than the area in which printing is performed by ejecting ink onto the paper sheet P. Accordingly, ink which has been stirred can be supplied from the liquid supplying flow channel EKR to the liquid ejection head 24 without affecting printing operation.
(3) The ink can be thoroughly stirred in the stirring unit 50, since the volume of the ink in the stirring unit 50 can be changed with certainty in accordance with the movement of the movable wall 53.
(4) The ink can be effectively stirred in the stirring unit 50 and the ink which has been stirred can be reliably supplied to the liquid ejection head 24 which is located downstream relative to the stirring unit 50 in the liquid supplying flow channel EKR, since the movable wall 53 is regulated so as not to move in the direction in which the volume of ink stored in the stirring unit 50 falls below a predetermined amount.
(5) The movable wall 53 that is biased by the coil spring 54 applies a pressure on the ink in the stirring unit 50, thereby preventing the ink from flowing from the upstream region into the stirring unit 50 through the non-return valve 40. As a result, ink can be reliably stirred in the stirring unit 50, since the amount of ink, for example, that corresponds to the changed volume of the inner space 62 of the volume changing unit 60 can flow into the stirring unit 50 or flow out from the stirring unit 50.
(6) Even if a pressure of the ink, for example, in the liquid supplying flow channel EKR decreases in accordance with the volume change of the inner space 62 of the volume changing unit 60, the ink in the liquid ejection head 24 is prevented from being withdrawn into the upstream region. Further, even if a pressure of the liquid in the liquid supplying flow channel EKR increases, the liquid is prevented from being excessively supplied to the liquid ejection head 24 in the downstream region. Accordingly, printing onto the paper sheet P after the stirring operation can be performed in a stable manner.
(7) The ink can be stirred in the stirring unit 50 that is formed in the liquid supplying flow channel EKR when the volume of the inner space 62 of the volume changing unit 60 is changed by using the expansion/collapse of the bellows 61. Accordingly, the ink which has been stirred can be supplied from the liquid supplying flow channel EKR to the liquid ejection head 24 without adding a special stirring device.
The above-mentioned embodiment may be modified as follows:
In the above-mentioned embodiment, the projection 52 that regulates the movement of the movable wall 53 in the down direction may not be formed on the inner side wall 51a of the stirring container 51 of the stirring unit 50. The stirring operation according to this modified example will be described below with reference to
According to this modified example, the coil spring 54 as an example of a biasing unit is disposed in the stirring unit 50 and has a length that satisfies spring properties in that the coil spring 54 generates a contraction force when it becomes longer than the standard length and a compression force when it becomes shorter than the standard length. Further, the upper end of the coil spring 54 is secured to the stirring container 51 and the lower end is secured to the movable wall 53.
According to this modified example, in the state where the bellows 61 has expanded to the maximum and the volume of the inner space 62 has increased as shown in
Then, the generated negative pressure acts to open the non-return valve 40 so that ink is supplied from the ink cartridges 15 to the inner space 50A of the stirring unit 50 through the non-return valve 40 as indicated by the arrow F3 in the figure. The ink is continuously supplied from the ink cartridges 15 until the movable wall 53 reaches the position in which the biasing force G2 that moves ink upward is no longer generated, in other words, the coil spring 54 becomes the standard length. As a result, ink flows from the second supply tube 27 into the inner space 50A of the stirring unit 50, thereby supplying ink to the stirring unit 50 while stirring ink in the stirring unit 50 in the same manner as that of the above-mentioned embodiment.
After that, as the bellows 61 of the volume changing unit 60 collapses into the initial state and the volume of the inner space 62 decreases to the minimum as shown in
As the ink in the inner space 62 of the volume changing unit 60 flows through third supply tube 28 into the inner space 50A of the stirring unit 50 as indicated by the arrow F4 in the figure, ink flows within the stirring unit 50, and accordingly, ink is stirred in the stirring unit 50. During this ink stirring operation, the surface of ink remains in close contact with the movable wall 53, thereby preventing ruffles from being generated on the surface. As a result, ink circulates in the inner space 50A, for example as indicated by the arrow F5 in the figure, and is more likely to be thoroughly stirred.
According to the above-mentioned modified example, the following effect can be obtained in addition to the effect described in (1) to (7).
(8) The need of providing the projection 52 in the stirring container 51 can be eliminated by using both the contraction force caused by the expansion of the coil spring 54 and the compression force caused by the compression of the coil spring 54. Accordingly, the configuration of the stirring unit 50 can be simplified.
This modified example will be described below with reference to
According to this modified example, the upper end of the stirring container 51 is open and a flexible member 55 made of an elastic material, such as elastic rubber and elastomer, is mounted on the stirring container 51 so as to cover the opening as shown in
As shown in
Accordingly, a negative pressure against the biasing force G2 is applied on the ink that is stored in the inner space 50A of the stirring unit 50. The generated negative pressure acts to open the non-return valve 40 so that ink is supplied from the ink cartridges 15 to the inner space 50A of the stirring unit 50 through the non-return valve 40 as indicated by the arrow F3 in the figure. As a result, ink continuously flows from the second supply tube 27 into the inner space 50A of the stirring unit 50 until the flexible member 55 returns (moves upward) to the initial state, thereby supplying ink to the stirring unit 50 while stirring ink in the stirring unit 50.
As shown in
Accordingly, the flexible member 55 is forced to elastically deform upward. This elastic deformation causes the flexible member 55 to generate a restoring force that acts to restore itself into the initial non-deformed state, and accordingly, generates a positive biasing force G3 which moves the ink downward and applies a pressure on the ink in the inner space 50A. This pressure acts to constantly maintain the non-return valve 40 in the closed state during elastic deformation of the flexible member 55, thereby preventing the ink that has flowed into the inner space 50A from being flowed out toward the region upstream of the non-return valve 40 and also preventing ink from being flowed from the ink cartridge 15.
Since the amount of ink corresponding to the changed amount of the inner space 62 of the volume changing unit 60 flows into the inner space 50A of the stirring unit 50, the flowed ink forces the flexible member 55 to bend upward and causes a flow of ink to stir the ink in the inner space 50A. According to this modified example, the surface of ink remains in close contact with the flexible member 55 during this ink stirring operation, thereby preventing ruffles from being generated on the surface. As a result, ink is more likely to be thoroughly stirred since ink circulates in the inner space 50A, for example as indicated by the arrow F5 in the figure.
It should be noted that the surface of ink according to this modified example may not be in close contact with the flexible member 55, and for example, air may be interposed therebetween. Although ruffles may be generated on the surface of ink to the air layer in some cases, it is not to mention that ink stirring operation may be obtained. In this case, the flexible member 55 serves as a biasing unit that pressurizes and depressurizes ink via the air layer.
According to the above-mentioned modified example, the following effect can be obtained in addition to the effect described in (1) to (7).
(9) Since the function of the movable wall 53 or the biasing unit may be shared by a member of the stirring container 51, the configuration of the stirring unit 50 can be simplified.
By way of example, the volume changing unit 60 may be formed so that the volume of the inner space 62 changes by a so-called piston configuration. That is, as shown in
The above-mentioned volume changing unit 60 is connected to the third supply tube 28 at the left end of the case 65 and connected to the fourth supply tube 29 at the right end of the piston 66. Accordingly, the ink supplied from the upstream region flows via the third supply tube 28 into the inner space 62, and then, via the through hole 66h of the piston 66 and the fourth supply tube 29 into the carriage 20 (liquid ejection head 24) in the downstream region.
In the volume changing unit 60 according to this modified example, when the carriage 20 is located at the home position HP, the volume of the inner space 62 is the minimum as shown in
After that, when the carriage 20 moves back to the home position HP, a compression force of the compressed coil spring 67 forces the piston 66 to move back to the initial state, and accordingly, the volume of the inner space 62 returns by itself (decreases) from the maximum to the minimum.
Since the above embodiment is configured to regulate the movement of the third supply tube 28, a tension is applied on the entire components of the liquid supplying flow channel EKR during the movement of the carriage 20. On the other hand, since this modified embodiment is configured to regulate the movement of the case 65, it is possible that a tension is applied on fewer components, for example, only the fourth supply tube 29.
Alternatively, the volume changing unit 60 may be configured such that the volume of the inner space 62 is changed by squeezing the supply tube which is a component of the liquid supplying flow channel EKR. By way of example, in this modified example, either the third supply tube 28 or the fourth supply tube 29 may be formed as an elastically deformable supply tube. The volume changing unit 60 is configured such that at least one of these supply tubes is squeezed between a pressing member 70 and a receiving member 77 of the printer 11 while being pressed down by the pressing member 77 as shown in
Specifically, a cooperating member 71 is provided so as to move in the right direction in accordance with the movement of the carriage 20 from the position indicated by the reference numeral 20a to the position indicated by the reference numeral 20b in
In the volume changing unit 60 according to this modified example, when the carriage 20 moves back to the home position HP, the supply tube which has been pressed down returns to the initial state by its restoring force that pushes the pressing member 70. As the supply tube restores to the initial state, the volume of the inner space 62 changes (increases) from the minimum to the maximum. Accordingly, when the volume changing unit 60 is configured to press down the component of the liquid supplying flow channel, a member for movement regulation such as the projection 80 in the above-mentioned embodiment may not be provided.
The entire disclosure of Japanese Patent Application No. 2011-022794, filed Feb. 4, 2011 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2011-022794 | Feb 2011 | JP | national |