The present application claims priority from Japanese Patent Application No. 2008-239383, which was filed on September 18, 2008, the disclosure of which is herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a liquid ejecting apparatus including a liquid ejecting head configured to eject liquid droplets.
2. Description of the Related Art
Patent Document 1 (US 2006/0221112 A1 corresponding to JP-A-2006-272909) discloses an ink-jet recording apparatus including an ink-jet head having a channel unit, and an actuator unit and a driver IC fixed on an upper surface of the channel unit. In this ink-jet recording apparatus, when a temperature sensor included in the driver IC detects a temperature lower than a predetermined temperature, the controller controls the driver IC to supply a non-ejection signal to the actuator unit. In this time, heat of the driver IC is transferred to the actuator unit via the channel unit. Thus, an environmental temperature of the actuator unit is risen by a multiplier effect of heat generated by the actuator unit and heat from the driver IC. As a result, there can be restrained a deterioration of a recording quality owing to a change of a displacement amount of an active portion of the actuator unit, which change is caused by the environmental temperature.
In the ink-jet recording apparatus described in the Patent Document 1, a control is performed in which mainly the environmental temperature of the actuator unit is kept at a value equal to or higher than a predetermined value, but a control is not performed in which the diver IC is driven to generate heat where a low-temperature ink is flowed into the ink-jet head. Thus, the low-temperature ink flowed into the head lowers an ink temperature in the head, thereby increasing an ink viscosity. This increase in the ink viscosity may pose a risk in which the ink cannot be ejected from nozzles or ejected with a relatively small amount because a resistance to a flow of the ink becomes relatively large.
On the other hand, where ejection energy applied to the ink is increased in order to eject the ink, whose viscosity is increased, from the nozzles with the same amount as at ordinary temperatures, electric power consumption upon the ink ejection becomes large. Further, it is possible to restrain the increase in the ink viscosity in the head by also providing a heater on the ink-jet head, but in this case, a manufacturing cost unfortunately increases.
This invention has been developed in view of the above-described situations, and it is an object of the present invention to provide a liquid ejecting apparatus which can heat a liquid in a liquid channel of a liquid ejecting head and a liquid to be flowed into the liquid channel by heat generated by a driver IC and thereby lower a liquid viscosity.
The object indicated above may be achieved according to the present invention which provides a liquid ejecting apparatus, comprising: A liquid ejecting apparatus, comprising: a liquid ejecting head including (a) a plurality of liquid-ejection openings from each of which a liquid droplet is ejected, (b) a liquid channel having a plurality of individual liquid channels each having one end as a corresponding one of the plurality of liquid-ejection openings, and (c) a plurality of actuators each of which applies, to a liquid in a corresponding one of the plurality of individual liquid channels, ejection energy that causes the liquid droplet to be ejected from a corresponding one of the plurality of liquid-ejection openings; an inflow liquid temperature sensor which detects a temperature of the liquid to be flowed into the liquid channel from an outside; a driver IC which is disposed so as to be thermally connected to the liquid ejecting head, which includes a signal producing circuit configured to produce (a) an ejection signal that causes the liquid droplet to be ejected from the liquid-ejection opening, (b) a non-ejection signal that causes the liquid droplet not to be ejected from the liquid-ejection opening and a liquid near the liquid-ejection opening not to be vibrated, and (c) a vibration signal that causes the liquid droplet not to be ejected from the liquid-ejection opening and the liquid near the liquid-ejection opening to be vibrated, and which supplies one of the produced signals to each of the plurality of actuators in each recording period; and a controller configured to control the driver IC, wherein the controller includes: a storing section configured to store drive data of the plurality of actuators that indicate an amount of the liquid droplets ejected from the plurality of liquid-ejection openings in each recording period; a first estimating section configured to estimate a first heat amount by which the liquid to be flowed into the liquid channel in a predetermined period including a plurality of the recording periods deprives the liquid ejecting head of heat on the basis of (a) an amount of the liquid to be flowed into the liquid channel by the ejection of the liquid droplets from the plurality of liquid-ejection openings on the basis of the stored drive data, (b) an internal channel liquid temperature as a temperature of the liquid in the liquid channel, and (c) an inflow liquid temperature detected by the inflow liquid temperature sensor; a second estimating section configured to estimate, on the basis of the stored drive data, a second heat amount generated by the driver IC in the predetermined period by supplying the ejection signal to the plurality of actuators by the signal producing circuit; and a signal-producing-circuit controlling section configured to cause the signal producing circuit to produce the ejection signal, the non-ejection signal, and the vibration signal in each recording period on the basis of the stored drive data such that one of the ejection signal, the non-ejection signal, and the vibration signal is supplied to each of the plurality of actuators, and wherein the signal-producing-circuit controlling section controls the signal producing circuit such that an increased heat amount exceeds a third heat amount obtained by subtracting the second heat amount from the first heat amount, the increased heat amount being as a heat amount of the driver IC which is increased by supplying, instead of the non-ejection signal supplied to each of at least one of the plurality of actuators, the vibration signal to each of at least one of the at least one actuator to which the non-ejection signal is supplied.
In the liquid ejecting apparatus as described above, since the signal-producing-circuit controlling section controls the signal producing circuit such that the driver IC generates the heat amount exceeding the third heat amount, the liquid in the liquid channel and the liquid flowed from the outside into the liquid channel are heated by the heat amount generated by the driver IC, thereby restraining an increase in thickening of a viscosity of the liquid.
The objects, features, advantages, and technical and industrial significance of the present invention will be better understood by reading the following detailed description of a preferred embodiment of the invention, when considered in connection with the accompanying drawings, in which:
Hereinafter, there will be described a preferred embodiment of the present invention by reference to the drawings.
As shown in
In the ink-jet printer 101, there is formed a sheet feeding path in which each sheet P is fed from the sheet-supply unit 101b toward the sheet-discharge portion 15 along boldface arrow in
As shown in
An outer peripheral surface 8a of the sheet-feed belt 8 is subjected to a silicone treatment to have a viscosity. At a position opposed to the belt roller 6 is disposed a nipping roller 4. The nipping roller 4 presses, to the outer peripheral surface 8a of the sheet-feed belt 8, each sheet P supplied by the sheet-supply unit 101b. The sheet P pressed to the outer peripheral surface 8a is fed in a sheet feeding direction (i.e., a rightward direction in
A peeling plate 5 is provided at a position opposed to the belt roller 7. The peeling plate 5 peels each sheet P from the outer peripheral surface 8a. The peeled sheet P is fed while being guided by guides 29a, 29b and being nipped between two pairs of feed rollers 28. Then, the sheet P is discharged to the sheet-discharge portion 15 from an opening 30 formed in an upper portion of the body 101a.
The four ink-jet heads 1 are respectively corresponded to the inks of four colors, namely, magenta, cyan, yellow, and black, and each of the ink-jet heads 1 has a generally rectangular parallelepiped shape extending in the main scanning direction. Further, the four ink-jet heads 1 are fixed so as to be arranged in the sheet feeding direction. That is, the ink-jet printer 101 is a printer of a line type.
A bottom surface of each of the ink-jet heads 1 is provided by an ink-ejection surface 2a in which a plurality of ink-ejection openings 108 (with reference to
The ink-jet heads 1 are respectively connected to ink tanks (liquid storing portions) 17 in the ink-tank unit 101c. That is, each of the inks of the four colors is stored in a corresponding one of the four ink tanks 17 and is supplied from the corresponding ink tank 17 via a corresponding one of tubes (i.e., connecting tubes) 3 (with reference to
There will be next explained the ink-jet heads 1 in detail with reference to
As shown in
To the ink-inlet channel 71a is connected the tube 3, so that the ink is flowed into the ink-inlet channel 71a via the tube 3. It is noted that a temperature sensor (an inflow liquid temperature sensor) 98 is provided on or fixed to a midway portion of the tube 3 (with reference to
The reservoir channel 74 temporarily stores the ink supplied from the ink tank 17. The reservoir channel 74 (74a-74d) extends as shown in
A lower surface of the plate 73 is provided by a surface having projections and depressions such that spaces are formed between the lower surface of the plate 73 and FPCs (Flexible Printed Circuits) 50 which will be described below. The plate 73 is fixed to a channel unit 9 (which will be described below) by projected potions of the lower surface of the plate 73, and the reservoir channel 74 is communicated with ink-supply openings 105b (which will be described below) of the channel unit 9 by the ink-outlet channels 73a respectively formed in the projected portions. As a result, the ink supplied from the ink tanks 17 passes through the ink-inlet channel 71a, the reservoir channel 74, and the ink-outlet channels 73a in order and to be supplied from the ink-supply openings 105b to the channel unit 9.
As shown in
Further, to the reservoir unit 70, there are fixed four temperature sensors (first temperature sensors) 99a-99d, more specifically, the temperature sensors 99a, 99c are fixed to the side face 70b while the temperature sensors 99b, 99d are fixed to the side face 70c. These four temperature sensors 99a-99d are disposed at positions respectively opposed to the heaters 97a-97d in the sub-scanning direction, and configured to individually detect respective temperatures of the ink in the partial channels 74a-74d formed by dividing the reservoir channel 74 in quarters. This allows a temperature of the ink (i.e., ink temperature) in the reservoir channel 74 to be accurately detected. The four temperature sensors 99a-99d transmit, to the controller 100, detected signals based on the detections by the respective temperature sensors 99a-99d.
As shown in
As shown in
There will be next explained the head main body 2 in more detail with reference to
As shown in
As shown in
The four manifold channels 105 are arranged in the main scanning direction so as to be respectively opposed to the partial channels 74a-74d in a vertical direction. To each of the manifold channels 105, the ink is flowed mainly from a corresponding opposed one of the partial channels 74a-74d. It is noted that the four manifold channels 105 are independent of each other in the channel unit 9, but are communicated with each other in the reservoir unit 70.
Further, each of the manifold channels 105 includes four sub-manifold channels 105a branched therefrom and extending in the main scanning direction so as to be parallel to each other. As shown in
Further, the channel unit 9 has a smaller thermal capacity than the reservoir unit 70, and is thermally coupled to the four driver ICs 51a-51d via the reservoir unit 70. As a result, the heat from the driver ICs 51a-51d is diffused by the reservoir unit 70 having a relatively large thermal capacity, so that the channel unit 9 is uniformly heated from a surface thereof which is coupled to the reservoir unit 70. Thus, the channel unit 9 is less affected by a thermal fluctuation based on a placement of the driver ICs 51a-51d and a difference of an amount of generated heat when compared with a case in which the driver ICs 51a-51d are directly fixed to or thermally coupled to the channel unit 9. Further, the channel unit 9 is heated, whereby the ink in the ink channels in the channel unit 9 is also heated.
In the present embodiment, in the upper surface 9a of the channel unit 9, a plurality of the pressure chambers 110 are arranged in matrix in the main scanning direction so as to be equally spaced from each other, thereby constituting sixteen rows of the pressure chambers 110. These pressure-chamber rows are disposed in the sub-scanning direction so as to be parallel to each other. In correspondence with an outer shape (a trapezoid shape) of each of the actuator units 21, the number of the pressure chambers 110 included in each of the pressure-chamber rows gradually decreases from a longer side toward a shorter side of the trapezoid shape of each of the actuator units 21. The ink-ejection openings 108 are also disposed in a manner similar to this configuration in the lower surface (the ink-ejection surface 2a) of the channel unit 9.
As shown in
Through holes formed through the respective plates 122-130 are communicated with each other by stacking the plates 122-130 on each other while positioning. As a result, in the channel unit 9, there are formed a plurality of individual ink channels 132 partly constituting the ink channels of the head 1 and extending from the four manifold channels 105 (the sub-manifold channels 105a) and outlets of the respective sub-manifold channels 105a to the ink-ejection openings 108 via the pressure chambers 110.
There will be next explained a flow of the ink in the channel unit 9. The ink supplied from the reservoir unit 70 into the channel unit 9 via the ink-supply openings 105b is diverted into the sub-manifold channels 105a in each of the manifold channels 105. The ink in the sub-manifold channels 105a is flowed into each of the individual ink channels 132 and reaches a corresponding one of the ink-ejection openings 108 via a corresponding one of a plurality of the apertures 112 each as functioning as a restrictor and a corresponding one of the pressure chambers 110.
There will be next explained the actuator units 21. As shown in
Via the land 136 and inner wiring of the FPCs 50, the common electrode 134 is kept at a ground potential equally in areas thereof respectively corresponding to all the pressure chambers 110. On the other hand, the individual electrodes 135 are electrically connected to the respective outputting circuits 52 of the respective driver ICs 51a-51d, so that one of the ejection signal, the non-ejection signal, and the vibration signal from the driver ICs 51a-51d is selectively inputted to the individual electrodes 135. As thus described, in each of the actuator units 21, there are provided a plurality of the actuators corresponding to the number of the pressure chambers 110, with the individual electrodes 135 and areas interposed between the individual electrodes 135 and the pressure chambers 110 as individual actuators.
Here, there will be explained a method for driving the actuator units 21 in order to eject ink droplets from the ink-ejection openings 108. The piezoelectric sheet 141 is polarized across a thickness thereof (hereinafter, may be referred to as a “polarization direction”), and when an electric field is applied to the piezoelectric sheet 141 in the polarization direction in a state in which the individual electrodes 135 are given a potential different from that of the common electrode 134, the piezoelectric sheet 141 functions as an active portion in which a portion of the piezoelectric sheet 141 to which the electric field is applied is deformed owing to piezoelectric effect. This active portion extends in its thickness direction and contracts or shrinks in its surface direction when directions of the electric field and the polarization are the same as each other. An amount of displacement of this extension and contraction is larger in the surface direction than in the thickness direction. On the other hand, the lower piezoelectric sheets 142, 143 nearer to the pressure chambers 110 are non-active layers which are not voluntarily displaced with respect to an external electric field.
As shown in
In the present embodiment, the ejection signal including one or a plurality of a voltage pulse or pulses is outputted from the driver ICs 51a-51d, and a positive predetermined potential is applied to the individual electrodes 135 in advance. Then, the ground potential is temporarily applied to the individual electrodes 135 each time when the ejection of the ink is required, and then the predetermined potential is applied again to the individual electrodes 135 at a predetermined timing. In this case, at the timing when the individual electrodes 135 become the ground potential, a negative pressure wave is produced in the pressure chambers 110. The negative pressure wave is transmitted from each of the pressure chambers 110 toward opposite ends of a corresponding one of the individual ink channels 132, then is reversed to positive at a position near the outlets of the sub-manifold channels 105a, and then is returned to the pressure chambers 110 again. The timing at which the predetermined potential is applied to the individual electrodes 135 corresponds to a timing at which the reversed pressure wave is returned to the pressure chambers 110. That is, the ink is sucked from the sub-manifold channels 105a by the negative pressure produced in the pressure chambers 110. When the predetermined potential is applied to the individual electrodes 135 at the timing when the ink has reached the pressure chambers 110, a pressure of the ink in the pressure chambers 110 rises, whereby the ink droplets are ejected from the ink-ejection openings 108.
A width of each of the voltage pulse(s) applied to the individual electrodes 135 is a length of time AL (Acoustic Length) in which the pressure wave is propagated from the outlets of the sub-manifold channels 105a to the ink-ejection openings 108 via the ink as a medium as described below. The width of each of the voltage pulse(s) included in the ejection signal is set as thus described, whereby (a) the pressure wave made positive by being reversed at the opposite ends of each individual ink channel 132 and (b) the positive pressure wave produced at the timing when the predetermined potential is applied to the corresponding individual electrode 135 are superposed on each other in the corresponding pressure chamber 110. Thus, the ink droplets can be ejected from the ink-ejection openings 108 in a state in which a height of the voltage pulse(s) is relatively low.
In order to drive the actuator units 21 such that the ink droplets are not ejected from the ink-ejection openings 108, a vibration signal including a plurality of voltage pulses each of which has a lower height beyond a specific value than the voltage pulse(s) included in the ejection signal and/or a vibration signal including a plurality of voltage pulses each of which has a narrower or wider pulse width beyond a specific value than the length of time AL are or is applied to the individual electrodes 135. In each case, since an amplitude of the pressure wave produced in the pressure chambers 110 does not become large beyond a threshold required for the ejection, the ink droplets are not ejected from the ink-ejection openings 108, and fine vibrations are produced in a meniscus of the ink The ink near the ink-ejection openings 108 is agitated by the vibrations of the ink meniscus, thereby restraining thickening of the ink due to drying. Thus, an ink ejection failure is restrained. It is noted that, in the present embodiment, there is employed, as the vibration signal, the vibration signal including the plurality of voltage pulses each of which has the narrower pulse width beyond the specific value than the length of time AL.
There will be next explained the controller 100 in detail with reference to
As shown in
The recording-data storing section 151 is configured to store recording data transmitted from a host computer, not shown. The recording data includes image data relating to an image to be formed on the sheet P. The image data is a group of dot data indicating an amount of a liquid ejected from the ink-ejection openings 108, to one of which each of dots of the image is corresponded. The image data has a type of drive data for driving the actuator units 21 by a recording controller 161 which will be described below. That is, the drive data indicate an amount of the ink ejected from each of the ink-ejection openings 108 in each of recording periods (recording cycles). Specifically, the drive data indicate that the amount of the ink ejected from each ink-ejection opening 108 in each recording period is one of four levels or settings (i.e., a small amount, a medium amount, a large amount, and no amount). Here, with reference to
The waveform storing section 152 stores twelve unit waveforms and outputs the twelve unit waveforms to the respective outputting circuits 52 of the driver ICs 51a-51d in parallel. In the present embodiment, with reference to
These six unit waveforms have the same length of time (one recording period), and are used when the one recording period is 50 i sec (drive frequency: 20 kHz). It is noted that the one recording period corresponds to a time required that the sheet is fed by a predetermined distance (i.e., a minimum dot pitch) corresponding to a recording resolution in the sub-scanning direction.
Further, in the waveform storing section 152, there are prepared ejection waveforms W1′, W2′, W3′, a non-ejection waveform W4′, and vibration waveforms S1′, S2′ used when the one recording period is 100 i sec (drive frequency: 10 kHz). It is noted that since there is only a small difference between the waveforms W1, W2, W3, W4, S1, S2 and the waveforms W1′, W2′, W3′, W4′, S1′, S2′, that is, a unit waveform of each of the waveforms W1′, W2′, W3′, W4′, S1′, S2′ has one recording period twice as long as that of a unit waveform of each of the waveforms W1, W2, W3, W4, S1, S2 in the length of time by adding, to the unit waveform of each of the waveforms W1, W2, W3, W4, S1, S2, a high-level period whose length is the same as that of the one recording period of each of the waveforms W1, W2, W3, W4, S1, S2,
The ejection signals, the non-ejection signal, and the vibration signals are ones made by amplifying the above-described twelve unit waveforms by the respective outputting circuits 52 of the driver ICs 51a-51d. A low level potential of each signal is set to the ground potential, and a high level potential of each signal is set to a positive first predetermined potential (for example, 24V). This amplification is performed for each of the individual electrodes 135 in each of the recording periods, and one amplifying subject waveform is selected from the twelve unit waveforms on the basis of an ejection-selecting signal and a vibration-selecting signal as described below. It is noted that, in the present embodiment, in addition to the above-described vibration signal, there is also used, as the vibration signal, a vibration signal amplified by the respective outputting circuits 52 of the driver ICs 51a-51d such that a low level potential of each of the vibration waveforms S2, S2′ is the ground potential while a high level potential thereof becomes a second predetermined potential (for example, 36V) higher than the first predetermined potential.
Here, there will be explained the unit waveform. As shown in
The non-ejection waveform W4 is always kept at the high level potential. Thus, even where the non-ejection signal produced on the basis of the non-ejection waveform W4 is applied to the individual electrodes 135, the ink is not ejected from the ink-ejection openings 108, so that the fine vibration is not produced in the meniscus of the ink.
Further, the vibration waveforms S1, S2 respectively include five and ten pulses. A width of each pulse included in the vibration waveforms S1, S2 is about half of the AL and equal to or less than the above-described specific value. Thus, even where the vibration signal produced on the basis of the vibration waveforms S1, S2 is applied to the individual electrodes 135, the ink is not ejected though the ink meniscus formed in the ink-ejection openings 108 is vibrated. An amount of heat (i.e., a heat amount) generated when the vibration signal is applied to the individual electrodes 135 is in proportion to a number of the pulses included in the vibration signal. For example, a heat amount generated when the vibration signal produced on the basis of the vibration waveform S1 is applied to the individual electrodes 135 is half of a heat amount generated when the vibration signal produced on the basis of the vibration waveform S2 is applied. Further, the heat amount generated when the vibration signal is applied to the individual electrodes 135 is in proportion to a square of a pulse height included in the vibration signal. That is, the heat amount generated when the vibration signal amplified such that the high level potential of the vibration waveform S2 becomes the first predetermined potential is applied to the individual electrodes 135 is 1/2.25 of the heat amount generated when the vibration signal amplified such that the high level potential of the vibration waveform S2 becomes the second predetermined potential is applied.
The signal-produce controller 153 includes the recording controller 161, a vibration controlling section 162, and a changing section 165. The recording controller 161 is configured to output the ejection-selecting signal to the outputting circuits 52 on the basis of the stored drive data. The ejection-selecting signal is outputted in each of the recording periods to command the waveform (W1-W4) of the signal applied to each of the individual electrodes 135. Each of the outputting circuits 52 selects one of the ejection waveforms W1-W3 and the non-ejection waveform W4 on the basis of the ejection-selecting signal and applies the selected waveform to each individual electrode 135 as the ejection signal and the non-ejection signal amplified such that the high level potential of the waveform becomes the first predetermined potential.
The vibration controlling section 162 is configured to output, upon turning on the printer 101 (Le., just after a start of an operation of the printer 101), the vibration-selecting signal to the outputting circuits 52 where an average ink temperature in the reservoir channel 74 (an average value in the four temperature sensors 99a-99d) which is an average temperature of the four temperatures respectively detected by the temperature sensors 99a-99d is lower than a predetermined temperature. In this time, the vibration-selecting signal functions as a signal commanding the vibration waveform S2 where the average ink temperature is lower than a threshold temperature, and functions as a signal commanding the vibration waveform S1 where the average ink temperature is equal to or more than the threshold temperature. Further, in this time, the number of the individual electrodes 135 to which the vibration signal is supplied is increased in accordance that the detected ink temperature becomes low. Each of the outputting circuit 52 selects one of the two vibration waveforms S1, S2 on the basis of the vibration-selecting signal, and supplies the selected waveform to the corresponding individual electrodes 135 as a vibration signal amplified such that the high level potential thereof becomes the first predetermined potential.
As a result, when the printer 101 is turned on, and the ink temperature is lower than the predetermined temperature, the driver ICs 51a-51d generate heat to heat the reservoir unit 70 before the recording. Thus, the ink in the reservoir channel 74 is heated and the ink in the ink channels of the channel unit 9 is also heated via the reservoir unit 70, whereby the ink ejection failure occurs less frequently. Further, depending upon the detected ink temperature, the one of the vibration waveforms S1, S2 to be selected and the number of the individual electrodes 135 supplying the signal are changed, thereby restraining electric power consumption.
It is noted that the control of the vibration controlling section 162 in this time is performed for a predetermined length of time since the printer 101 is turned on such that the ink in the head becomes a temperature equal to or more than the predetermined temperature, but where the recording data is transmitted to the controller 100 before the predetermined length of time has passed, the vibration of the ink meniscus is forced to be finished. On the other hand, where the recording data is not transmitted to the controller 100 after the predetermined length of time has passed, the above-described control may be performed at regular intervals over a period until the recording data is transmitted. As a result, the ink ejection failure occurs much less frequently.
The vibration controlling section 162 includes a first estimating section 163 and a second estimating section 164. The first estimating section 163 is configured to calculate in advance an amount of the ink ejected from the ink-ejection openings 108 in a predetermined period (i.e., a period from a start of recording on one sheet P to an end of the recording), i.e., an amount of the ink (an ink amount V) to be flowed into the ink channel of the head 1 (i.e., the reservoir channel 74) on the basis of the stored drive data. Further, the first estimating section 163 is configured to estimate in advance a heat amount Q1 by which the ink to be flowed into the head 1 in the predetermined period deprives the head 1 of heat, on the basis of the calculated ink amount V, a temperature of the ink (i.e., an ink temperature T2) to be flowed into the head 1 which temperature has been detected by the temperature sensor 98, and an average ink temperature T1 (i.e., an internal channel liquid temperature) in the reservoir channel 74 which has been detected by the temperature sensors 99a-99d.
Specifically, a head temperature T1′ after being changed by the flow of the ink into the reservoir channel 74 is obtained by the following expression (1). Expression (1) represents a balance of heat before and after the ink is flowed into. Further, a variation of a volume of the ink by the temperature is ignored here.
αT2V+αT1V1+βT1V2=αT1′(V+V1)+βT1′V2 (1)
Here, “α” represents a specific heat capacity of the ink (cal/k·cm3), “β” represents a specific heat capacity of the reservoir unit 70 (specifically, only solid portions thereof exclusive of channel portions thereof), “V1” represents an amount of the ink in the reservoir unit 70 (exclusive of a discharged ink whose amount is the same as that of an inflow ink), and “V2” represents a volume of the reservoir unit 70 (specifically, only the solid portions thereof exclusive of the channel portions thereof). Then, “Q1” is calculated by substituting the calculated T1′ into the following expression (2), whereby the heat amount Q1 is assumed. Expression (2) represents the heat amount obtained by the inflow ink. This heat amount is equal to the heat amount by which the head 1 is deprived of heat.
Q1=α(T1′−T2)×V (2)
The second estimating section 164 is configured to assume in advance a total heat amount Q2 of the heat generated by the driver ICs 51a-51d in the predetermined period, on the basis of the stored drive data by supplying the ejection signal to the individual electrodes 135.
The vibration controlling section 162 outputs the vibration-selecting signal to the outputting circuits 52 where the average ink temperature in the reservoir channel 74 is lower than the predetermined temperature even in times other than a time just after the printer 101 is turned on. The vibration-selecting signal commands the vibration waveform (S1 and S2) and a value of the high level potential (the first predetermined potential and the second predetermined potential) depending upon the ink temperature. Each of the outputting circuit 52 to which the vibration-selecting signal is inputted in this time corresponds to at least one of the individual electrodes 135 to which the non-ejection signal is applied. At least one of the outputting circuits 52 selects one of the vibration waveforms S1, S2 on the basis of the vibration-selecting signal and applies the selected vibration waveform to the individual electrodes 135 after amplifying such that the vibration waveform is at a commanded potential. To the individual electrodes 135 is applied the vibration signal instead of the non-ejection signal.
In this time, the vibration controlling section 162 outputs the vibration-selecting signal to the outputting circuits 52 in the predetermined period by supplying the vibration signal to ones of the individual electrodes 135 whose number is required for an entirety of the four driver ICs 51a-51d to generate an amount of heat larger than a heat amount Q3 obtained by subtracting the heat amount Q2 from the heat amount Q1. It is noted that, in the present embodiment, the heat amount at least larger than the heat amount Q3 is a heat amount in which the ink in the head 1 and the ink flowed thereinto can be heated to a temperature equal to or more than the predetermined temperature. Further, an amount of heat released by the head 1 to ambient air and a component for mounting the head 1 is taken into consideration to obtain the heat amount Q3.
As thus described, where the average ink temperature is equal to or more than the predetermined temperature, the signal-produce controller 153 performs the control to command one of the ejection signal and the non-ejection signal which is to be supplied to each of the individual electrodes 135 in each recording period on the basis of the drive data. On the other hand, where the average ink temperature is lower than the predetermined temperature, the signal-produce controller 153 performs a control to command the ejection signal, the non-ejection signal, and the vibration signal to be supplied to each individual electrode 135 in each recording period on the basis of the drive data, while satisfying a condition that the vibration signal is supplied in at least one recording period to at least one of the individual electrodes 135 to which the non-ejection signal is supplied in at least one recording period in the predetermined period when the average ink temperature is equal to or more than the predetermined temperature. It is noted that the number of the individual electrodes 135 to which the vibration signal is supplied may be equal to or smaller than the number of the individual electrodes 135 to which the non-ejection signal is supplied.
Further, in this time, in accordance that a difference (i.e., a temperature difference) between the ink temperature T1 and the ink temperature T2 becomes large, the vibration controlling section 162 outputs, to the outputting circuits 52, the vibration-selecting signal in which the total number of drivings of the individual electrodes 135 to which the vibration signal is supplied in each recording period is increased. Further, in this time, where the temperature difference between the ink temperature T1 and the ink temperature T2 is less than a first predetermined value, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S1. On the other hand, where the temperature difference is equal to or more than the first predetermined value and less than a second predetermined value, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2. In both cases, the high level potential is the first predetermined potential. Further, where the temperature difference between the ink temperature T1 and the ink temperature T2 is equal to or more than the second predetermined value, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2. The high level potential in this case is the second predetermined potential. By these controls, in accordance that the temperature difference between the ink temperature T1 and the ink temperature T2 becomes large, the heat amount of the heat generated by the driver ICs 51a-51d is increased. Thus, the ink in the head 1 and the ink flowed thereinto can be effectively heated.
Further, in accordance that an amount (hereinafter may be referred to as an “inflow ink amount”) of the ink to be flowed into the head 1 in the predetermined period becomes large, the vibration controlling section 162 may output, to the outputting circuits 52, the vibration-selecting signal in which the above-described total number of the drivings of the individual electrodes 135 is increased.
Further, the vibration controlling section 162 may perform a control based on the inflow ink amount. Where the inflow ink amount is smaller than a first predetermined amount, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S1. On the other hand, where the inflow ink amount is equal to or more than the first predetermined amount and smaller than a second predetermined amount, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2. In both cases, the high level potential may be the first predetermined potential. Further, where the inflow ink amount is equal to or more than the second predetermined amount, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2. The high level potential in this case may be the second predetermined potential. By these controls, in accordance that the inflow ink amount becomes large, the heat amount of the heat generated by the driver ICs 51a-51d is increased. Thus, like the above-described controls, the ink in the head 1 and the ink flowed thereinto can be effectively heated.
Further, the vibration controlling section 162 may perform the control based on the inflow ink amount as just mentioned in addition to the above-described control based on the temperature difference. For example, an explanation will be given assuming that only the first predetermined value is set as the threshold value relating to the temperature difference. Where the temperature difference is less than the first predetermined value, a difference of a content of the control with respect to the inflow ink amount is as described above. Where the temperature difference is equal to or more than the first predetermined value and where the inflow ink amount is smaller than the first predetermined amount, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2. The high level potential in this case is the first predetermined potential. Where the inflow ink amount is equal to or more than the first predetermined amount and smaller than the second predetermined amount, the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2, but makes the high level potential be the second predetermined potential. Further, where the inflow ink amount is equal to or more than the second predetermined amount, the vibration controlling section 162 causes the outputting circuits 52 to select a new vibration waveform though a setting of this new vibration waveform is required. The high level potential in this case is the second predetermined potential. In this case, the new vibration waveform includes more pulses than the vibration waveform S2. Alternately, though the vibration controlling section 162 causes the outputting circuits 52 to select the vibration waveform S2, the high level potential may be a potential greater than the second predetermined potential.
The content of the control of the vibration controlling section 162 with respect to each outputting circuit 52 is not limited to a combination of the above-described levels relating to the temperature difference and the inflow ink amount. That is, there may be set the number of the pulses included in the vibration waveform and a drive voltage (i.e., the value of the high level potential) in accordance with the number of the levels.
Further, in a non-recording period, in which the image is not recorded on the sheet P, in the predetermined period, the vibration controlling section 162 causes each outputting circuit 52 to select one of the vibration waveforms S1, S2 and makes the high level potential be the first predetermined potential or the second predetermined potential with regard to the plurality of individual electrodes 135. As a result, the driver ICs 51a-51d can be operated to generate the heat even in the non-recording period, so that the ink can be efficiently heated. Further, in this time, the signal may be applied in a state in which the vibration waveform is selected with respect to all the individual electrodes 135. In both cases, the ink meniscus in the ink-ejection openings 108 is vibrated, thereby restraining the thickening of the ink caused in the non-recording period.
It is noted that, the predetermined period means the recording period in which the recording is performed on one sheet P and a continuous recording period in which the recording is continuously performed on the plurality of sheets. That is, the predetermined period includes a plurality of the recording periods. Further, the non-recording period can refer to a period in the predetermined period, in which the non-ejection signal is supplied to all the individual electrodes 135 to which the signal is supplied from the outputting circuit 52 of the driver IC 51a. Furthermore, the non-recording period can also refer to a period in the predetermined period, in which the non-ejection signal is supplied to all the individual electrodes 135 to which the signal is supplied from each of the driver ICs 51a-51d.
Further, in this time, the vibration controlling section 162 individually controls the heat amount of the heat generated by the driver ICs 51a-51d in accordance with the ink temperature detected by the four temperature sensors 99a-99d. For example, where the ink temperature detected by the temperature sensor 99a among the four temperature sensors 99a-99d is the lowest, the vibration controlling section 162 increases, compared with the other driver ICs, an amount of heat generated by the driver IC 51a in the predetermined period with the one recording period being as a unit. For example, the vibration controlling section 162 outputs, to the outputting circuit 52 of the driver IC 51a, the vibration-selecting signal such that the total number of the drivings of the individual electrodes 135 to which the vibration signal is supplied becomes the largest. In this time, as described above, in according to the combination of the temperature difference and the inflow ink amount, there may be changed the combination of the vibration signal (S1 or S2) to be selected and its high level potential value (the first predetermined potential or the second predetermined potential).
As a result, the ink having a relatively low temperature can be heated efficiently. Thus, it is made possible to eliminate waste driving of the driver ICs 51b-51d which heat the ink having a relatively high temperature. As a result, the driving of the driver ICs 51a-51d can be restrained to the minimum necessity, thereby reducing the electric power consumption.
Further, the manifold channels 105, the partial channels 74a-74d, the temperature sensors 99a-99d, and the heaters 97a-97d are disposed in correspondence with the placement of the respective actuator units 21. When the actuator units 21 are driven to eject the ink from the ink-ejection openings 108, the ink is flowed into the respective manifold channels 105 mainly from the respective partial channels corresponding to the actuator units 21. The ink in the partial channels is mainly heated by the heat generation of the respective driver ICs 51a-51d. The temperature sensor 99 detects the temperature of the ink in the corresponding partial channels, and the vibration controlling section 162 individually controls the amount of the heat generated by the driver ICs 51a-51d in accordance with the detected ink temperature as described above. That is, the vibration controlling section 162 performs a control of the temperature of the ink in each of the manifold channels 105. As a result, the temperature of the ink can be minutely controlled in each of the manifold channels 105 which corresponds to one of the actuator units 21.
Further, the vibration controlling section 162 may apply the vibration signal instead of the non-ejection signal to one or ones of the individual electrodes 135 to which the non-ejection signal is supplied over a predetermined number of the recoding periods even where the average ink temperature in the reservoir channel 74 is equal to or more than the predetermined temperature. That is, the vibration controlling section 162 causes the outputting circuits 52 to select one of the vibration waveforms S1, S2 instead of the non-ejection waveform W4. In this time, the high level potential is the first predetermined potential or the second predetermined potential in accordance with the combination of the temperature difference and the inflow ink amount. As a result, since the vibration signal is applied to the one or ones of the individual electrodes 135 while the non-ejection signal is continued to be applied to the individual electrode(s) 135, the ink near the ink-ejection openings 108 is agitated, thereby restraining the ink ejection failure owing to the thickening of the ink.
Where there is assumed that the vibration signal is supplied to all the individual electrodes 135, the changing section 165 judges, as a judging section, in advance whether the heat amount generated by the entirety of the driver ICs 51a-51d in the predetermined period exceeds the heat amount Q3 or not. Where this heat amount exceeds the heat amount Q3, the changing section 165 does not perform a change. That is, each of the driver ICs 51a-51d is driven in accordance with a content of the command of the ejection-selecting signal outputted by the recording controller 161 and a content of the command of the vibration-selecting signal outputted by the vibration controlling section 162. Detailed operations of these components are as described above.
On the other hand, where the heat amount generated by the entirety of the driver ICs 51a-51d does not exceed the heat amount Q3, the changing section 165 changes the content of the command of the ejection-selecting signal outputted by the recording controller 161 and the content of the command of the vibration-selecting signal outputted by the vibration controlling section 162. Specifically, the ejection-selecting signal causes each outputting circuit 52 to select one of the ejection waveforms W1′, W2′, W3′, and the non-ejection waveform W4′ on the basis of the stored drive data. Further, the ejection-selecting signal causes each outputting circuit 52 to select one of the vibration waveforms S1′, S2′ on the basis of the stored drive data for at least one of the individual electrodes 135 to which the non-ejection signal W4′ is supplied. It is noted that, whether the vibration waveform is amplified such that the high level potential is the first predetermined potential or the second predetermined potential is as in the case where the heat amount exceeds the heat amount Q3.
Further, the changing section 165 controls the sheet-feed controller 154 such that a velocity of the sheet-feed motor 19 from a first feeding velocity to a second feeding velocity which will be described below. That is, a printer operation in a case where the heat amount generated by the entirety of the driver ICs 51a-51d does not exceed the heat amount Q3 is as in the case where the heat amount exceeds the heat amount Q3 except where each recording period is doubled (to 100 i sec).
It is noted that, in the present embodiment, only two types of the vibration waveforms whose recording periods are different from each other are prepared, but equal to or more than three types of the vibration waveforms may be prepared. In a case of this modification, the changing section may control the vibration controlling section such that each outputting circuit 52 selects a vibration waveform in which a time length of each recording period becomes longer or is lengthened in accordance that the temperature difference between the ink temperature T1 and the ink temperature T2 becomes large. Further, the changing section may control the vibration controlling section such that each outputting circuit 52 selects the vibration waveform in which the time length of each recording period becomes longer in accordance that the amount of the ink to be flowed into the head in the predetermined period becomes large.
As thus described, the changing section 165 performs the changing operation in which the time length of each recording period becomes longer, whereby the amount of the ink to be flowed into the head 1 in a unit time becomes small, and accordingly the heat generated by the driver ICs 51a-51d is more likely to be transferred to an entirety of the head 1 (mainly the reservoir unit 70). As a result, the ink in the ink channels of the head 1 and the ink flowed thereinto can be effectively heated. Further, the ink temperature in the head 1 can be reliably increased.
Further, where the heat amount generated by the entirety of the driver ICs 51a-51d does not exceed the heat amount Q3, the changing section 165 energizes the four heaters 97a-97d to compensate the heat amount given to the head 1. As a result, a heat amount which is insufficient with only the heat generated by the driver ICs 51a-51d can be compensated with the heaters 97a-97d. Thus, the temperature of the ink can be reliably controlled.
The sheet-feed controller 154 controls the sheet-feed motor 19 such that the sheet P is fed at a predetermined feeding velocity. It is noted that the predetermined feeding velocity includes two types, namely, the first feeding velocity used where the one recording period is 50 i sec and the second feeding velocity used where the one recording period is 100 i sec. The second feeding velocity is a velocity half of the first feeding velocity. The sheet-feed controller 154 normally controls the sheet-feed motor 19 such that the sheet P is fed at the first feeding velocity. However, by the changing operation of the changing section 165 described above, the sheet-feed controller 154 controls the sheet-feed motor 19 such that the sheet P is fed at the second feeding velocity.
As described above, according to the ink-jet printer 101 as the present embodiment, even where the ink in the ink channels in the head 1 and the ink flowed thereinto have a relatively low ink temperature and a relatively high ink viscosity, the signal-produce controller 153 controls the driver ICs 51a-51d to generate the heat whose amount is larger than the heat amount Q3. Thus, the ink in the ink channels and the ink flowed thereinto are heated to a temperature equal to or more than the predetermined temperature, thereby lowering the ink viscosity. Consequently, there is eliminated a need for increasing an ink ejection energy for ejecting, from the ink-ejection openings 108, the ink droplets having the same amount as at ordinary temperatures, thereby maintaining electric power consumption for the ink ejection. Further, there is eliminated a need for providing heat sinks and the like for cooling the driver ICs 51a-51d having generated the heat, thereby simplifying the construction of the ink-jet heads 1. Further, there is obviated unevenness of an appropriate amount of the ink according to the viscosity of the ink, thereby contributing to maintaining of an image quality.
While the preferred embodiment of the present invention has been described, it is to be understood that the present invention is not limited to the details of the illustrated embodiment, but may be embodied with various changes and modifications, which may occur to those skilled in the art, without departing from the spirit and scope of the present invention. For example, in the above-described embodiment, the heat amount exceeding or larger than the heat amount Q3 may simply exceed the heat amount Q3 and may also be an amount in which the ink in the head 1 and the ink flowed thereinto are heated to a temperature lower than the predetermined temperature. Further, the vibration signal may be supplied in the predetermined period to only one or ones of the individual electrodes 135 to which the non-ejection signal is supplied. That is, the vibration signal may not be supplied to the individual electrodes 135 upon turning on the printer 101, in the non-recording period, and the like.
Further, in the above-described embodiment, any of a plurality of types of the vibration signals is supplied to the individual electrodes 135 instead of the non-ejection signal in each recording period on the basis of the drive data, but only one type of the vibration signal may be supplied to the individual electrodes 135. That is, the vibration controlling section 162 may not output, to the outputting circuits 52, the vibration-selecting signal for causing the outputting circuits 52 to select the vibration waveform S2 having more pulses than the vibration waveform S 1. Further, the vibration controlling section 162 may not increase the total number of the drivings of the individual electrodes 135 to which the vibration signal is supplied, in accordance that the temperature difference between the ink temperature T1 and the ink temperature T2 becomes large and in accordance that the amount of the ink to be flowed into the head becomes large. Further, the vibration controlling section 162 may not control the amount of the heat generated by the driver ICs 51a-51d depending upon the ink temperature detected by the four temperature sensors 99a-99d. In these cases, the control is simplified. Furthermore, in the above-described embodiment, the temperature sensors 99a-99d are fixed to the side face 70b or the side face 70c of the reservoir unit 70, but the present invention is not limited to this construction. For example, the temperature sensors 99a-99d may be disposed at positions distant from the reservoir unit 70 with a space interposed therebetween. Further, the temperature sensors 99a-99d may also be respectively disposed on the driver ICs 51a-51d directly fixed to the metal plate 71 of the reservoir unit 70. Where the reservoir unit 70 and the metal plate 71 are thermally connected to each other, it is possible to detect the temperature of the ink in the reservoir channel 74 also on the driver ICs 51a-51d. Further, the temperature of the ink in the reservoir channel 74 may be estimated using driver-IC temperature sensors respectively disposed on the diver ICs 51a-51d for detecting temperatures of the respective diver ICs 51a-51d, and then perform the calculations and the controls in the above-described embodiment using the estimated temperature of the ink. In this case, there is eliminated a need for providing the temperature sensors 99a-99d on the reservoir unit 70, thereby reducing the manufacturing cost.
Further, the changing section 165 may not be provided. Further, only one driver IC may be provided on each ink-jet head. Furthermore, the heaters 97a-97d may not be particularly provided because the heaters 97a-97d are supplementary components. In this case, there is eliminated a need for providing the heater for heating the ink in the ink channels of the head and the ink flowed thereinto, thereby reducing a manufacturing cost.
Further, the reservoir unit may not be provided. In this case, the temperature sensors 99a-99d and the driver ICs 51a-51d may be provided on the channel unit 9. In this case, the temperature sensors 99a-99d and the driver ICs 51a-51d may be disposed in correspondence with the four manifold channels 105 instead of the partial channels 74a-74d described above. Further, only one temperature sensor which detects the ink temperature in the ink channel may be provided on the ink-jet heads 1.
Further, in the above-described embodiment, from the viewpoint that the ink supplied to the channel unit 9 is effectively heated, the heaters 97a-97d are disposed so as to be opposed to the ink-outlet channels 73a of the reservoir unit 70. However, from the viewpoint that the temperature of the ink supplied to the channel unit 9 is measured more accurately, the temperature sensors 99a-99d may be disposed so as to be opposed to the ink-outlet channels 73a. That is, the heaters 97a-97d and the temperature sensors 99a-99d may have a reverse positional relationship to each other.
Further, the manifold channels 105 are separated from each other in correspondence with the placement of the actuator units 21, but the present invention is not limited to this construction. For example, all the manifold channels may be communicated with each other in a longitudinal direction of the heads 1.
Further, the above-described embodiment is one example in which the present invention is applied to an ink-jet printer including ink-jet heads configured to eject an ink from ink-ejection openings, but an object to which the present invention can be applied is not limited to the ink-jet printer of this type. For example, the present invention is applicable to various liquid ejecting apparatuses including liquid ejecting head which ejects conductive paste to form a wiring pattern on a circuit board, which ejects organic illuminant on a circuit board to form a high-definition display, or which ejects optical plastic on a circuit board to form a fine electronic device such as a light guide.
Number | Date | Country | Kind |
---|---|---|---|
2008-239383 | Sep 2008 | JP | national |