The present invention relates to a liquid ejecting apparatus which ejects liquid toward a target medium, and more particularly, to a liquid ejecting apparatus, configured to transport a tray in which the target medium such as an optical disc or the like can be set.
Here, the term “liquid ejecting apparatus” is used for referring not only to a recording apparatus, such as a printer, a copier, and a facsimile machine, having an ink jet recording head for ejecting ink from the recording head so as to perform recording on a recording medium but also to an apparatus that causes liquid to adhere onto a medium, corresponding to the recording medium in the above described recording apparatus, by ejecting liquid selected depending on the use of the apparatus in place of ink onto the medium from a liquid ejecting head corresponding to the above-described ink jet recording head.
As the liquid ejecting head, the following heads can be considered other than the above described recording head: a color-material ejecting head used for manufacturing a color filter for a liquid crystal display or the like, an electrode-material (conductive paste) ejecting head used for forming an electrode in an organic electroluminescent (EL) display or a field-emission display (FED), a bioorganic compound ejecting head used for manufacturing a bio-chip, and a sample spraying head as a precision pipette.
As examples of the recording apparatus and the liquid ejecting apparatus, an ink jet recording apparatus (hereinafter, referred to as a “printer”) which directly ejects ink on a labeled surface of an optical disc, for example, a compact disc, thereby performing recording is used that is, after the optical disc as a target medium is set on a tray formed of a plate body, the tray is transported into a medium transporting path by a transporting roller, and then recording is performed.
In such a printer, a guide member (attachment: hereinafter, referred to as “tray guide”) for guiding the tray toward the front of the apparatus is detachably provided. Then, at the time of performing recording on the optical disc, the tray guide is installed, and the tray is sent from the tray guide inside the apparatus. Accordingly, the tray is transported to a recording start position by the transporting roller while being supported on the tray guide (for example, see Japanese Patent Publication No. 2003-211757A).
Further, an ejecting roller provided on a downstream of a recording head generally has a driving roller that is driven to be rotated and a follower roller that is brought into contact with the driving roller to be rotated by the driving roller. As the follower roller, a spur roller which has a serrated circumference is used in order to prevent dot omission or ink transport. However, there is an optical disc which has a data area just below a labeled surface, and thus, if the spur roller is pressed into contact with the labeled surface of such an optical disc, data of the optical disc may be destroyed. For this reason, in a recording apparatus which can perform recording on the optical disc, the follower roller and the driving roller are spaced apart from each other.
As an example of such a configuration, in Japanese Patent Publication No. 2004-130774A, a recording apparatus is disclosed in which a stacker for stacking sheets of paper to be ejected is displaceably provided between a first position and a second position so as to be used as a tray guide. According to this configuration, in connection with the position switching operation of the stacker, the follower roller can be displaced correspondingly, and the operation of the user can be simplified. In addition, the tray guide is integrally provided in the recording apparatus, and thus the tray guide does not need to be separately managed, thereby implementing a user-friendly apparatus.
Moreover, although the follower roller (the spur roller) is spaced apart from the driving roller, if the tray is elevated from a tray supporting face in the tray guide, the optical disc set on the tray may be brought into contact with the follower roller, and a data area of the optical disc may be damaged.
Accordingly, in order to prevent such a problem, in Japanese Patent Publication No. 2003-211757A, a tray is disclosed in which the distance from a set region of the optical disc in the tray to a leading end of the tray is made large. In this case, when the tray is sent in the transporting path from the downstream of the follower roller toward the upstream, the optical disc and the follower roller do not face each other until the leading end of the tray is nipped by the transporting rollers on the upstream of the recording head. According to this configuration, in a state in which the leading end of the tray is not nipped by the transporting rollers, that is, in a state in which the tray is easily elevated from the tray guide, the optical disc and the follower roller do not face each other, and thus, the optical disc can be prevented from being brought into contact with the follower roller.
However, in the conventional configurations described above, the following four problems occur.
First, in order to switch the stacker described in Japanese Patent Publication No. 2004-130774A from the second position (a position for stacking sheets of paper) to the first position (a position for guiding the tray), the stacker in a substantially horizontal posture is rotated to be in a vertical posture once, is lifted upward, and then is rotated to be in the substantially horizontal posture again. The switching operation from the first position to the second position is performed in reverse order. However, it may be hard for the user to understand such an operation. Further, in order to rotate and moves vertically the stacker, a space of the recording apparatus in its heightwise direction needs to be provided.
Second, if the size of the tray is made such that the optical disc set on the tray is not brought into contact with the follower roller, as described above, the size of the printer in its depthwise direction is made large or the leading end of the tray projects to the rear side of the printer at the time of performing recording on the optical disc, which causes a problem in that the installment space in the rear side of the printer needs to be made large.
In addition, recently, for the sake of enhancing a throughput, the recording head tends to be made large. In this case, however, the medium transporting path from the transporting roller to the ejecting roller is elongated, and the length of the tray needs to be further lengthened accordingly, such that the above-described problem occurs more drastically. In addition, even when the follower roller is spaced apart from the driving roller and the follower roller is caused to slide along paper ejecting direction, the medium transporting path from the transporting roller to the ejecting roller is elongated, and thus the above-described problem occurs more drastically.
Third, in a state in which the tray is supported by the tray guide, if the position switching operation of the tray guide is executed, the optical disc set on the tray may be brought into contact with the spur roller, and thus the data area may be damaged. Further, if larger force than is necessary is applied and a compulsive position switching operation is performed, the optical disc set on the tray or the tray itself may be damaged.
Fourth, in order to cause the follower roller and the driving roller to be spaced apart from each other, a roller supporting frame for supporting the rotary shaft of the follower roller can be configured to slide in the medium transporting direction. With such a configuration, the size of the apparatus in its heightwise direction can be reduced, without needing the vertical space of the apparatus.
However, since the roller supporting frame has a shape which is long in a widthwise direction of the target medium, if the roller supporting frame is configured to slide in a direction perpendicular to the widthwise direction, that is, in the medium transporting direction, the posture of the roller supporting frame may be easily inclined at the time of the sliding operation, and thus a smooth sliding operation may not be performed. In addition, the sliding operation may be difficult.
It is therefore an object of the invention to provide a liquid ejecting apparatus in which a switching operation of a tray guide between positions is simplified, thereby further enhancing operability and reducing a size of the apparatus in its heightwise direction.
It is also an object of the invention to prevent a liquid ejecting apparatus from being enlarged or an installment space of the apparatus from being expanded, and to reliably prevent a target medium from being brought into contact with a follower roller of an ejecting roller.
It is also an object of the invention to provide a liquid ejecting apparatus which can prevent an optical disc set on a tray or a tray from being damaged, even when an erroneous operation is performed, in a state in which the tray is supported by a tray guide.
It is also an object of the invention to provide a liquid ejecting apparatus in which a roller supporting frame is allowed to stably slide when the roller supporting frame is configured to slide in a medium transporting direction.
In order to achieve the above objects, according to the invention, there is provided a liquid ejecting apparatus, comprising,
a liquid ejecting head, adapted to eject liquid toward a target medium;
a transporter, adapted to transport a tray on which the target medium is mounted toward a region facing the liquid ejecting head via a transporting path; and
a tray guide, disposed in a front side of the liquid ejecting apparatus, and having a supporting face adapted to support the tray thereon, the tray guide being movable between a first position connecting the supporting face with the transporting path to allow the transporter to transport the tray to the transporting path and a second position escaping the supporting face from the transporting path,
wherein the supporting face is kept being parallel to the transporting path when the tray guide is moved between the first position and the second position.
With this configuration, the displacement movement of the tray guide can be simplified, operability of the tray guide can be enhanced, and the size of the apparatus in its heightwise direction can be reduced.
The tray guide may be moved between the first position and the second position while being slid in a direction that the transporting path extends.
The tray guide may be situated above the transporting path when the tray guide is placed in the second position. In this case, a path for ejecting the medium, such as normal paper or the like, can be prevented from being complicated, without being influenced by the tray guide when such a medium is ejected.
The supporting face may extend horizontally. In this case, the size of the apparatus in its heightwise direction can be further reduced, without needing a space in the heightwise direction of the liquid ejecting apparatus.
The liquid ejecting apparatus may further comprise a tray guide retainer operable to retain the tray guide at either the first position or the second position and to guide the movement of the tray guide between the first position and the second position. The tray guide may be moved to the second position by pushing the tray guide retained in the first position toward a rear side of the liquid ejecting apparatus. The guide member may release the tray guide when the tray guide retained in the second position is pushed toward the rear side of the liquid ejecting apparatus.
In this case, the tray guide can be switched from the second position to the first position by performing a push-on operation, and thus an operation is simple and intelligible, thereby implementing a user-friendly apparatus.
Here, the tray guide retainer may comprise:
a first guide pin, project outward from each of both widthwise ends of the tray guide;
a guide member, disposed adjacent to each of both widthwise ends of the tray guide, and formed with a first groove extending in a direction that the tray guide moves and adapted to movably receive the first guide pin;
an urging member, urging the first guide pin in such a direction that the tray guide is moved to the first position; and
a cam unit, fitted with the first guide pin such that the first guide pin is retained at a third position corresponding to the second position of the guide tray, and such that the first guide pin is released from the third position when the tray guide retained in the second position is pushed toward the rear side of the liquid ejecting apparatus.
In this case, when being displaced from the second position to the first position, the tray guide receives urging force of the urging member, and thus the operation when the tray guide is switched from the second position to the first position can be easily performed with a small load.
Here, the cam unit may comprise: a rotatable cam, formed with a slot to which the first guide pin is idly fitted, and a cam groove having a bottom formed with a stepped portion; and a pin member, configured to be movable along the cam groove while being urged toward the bottom of the cam groove. The pin member may be anchored by the stepped portion when the tray guide is retained in the second position.
In this case, the configuration for switching the position of the tray guide by a so-called push-on operation can be easily obtained with a simple structure.
Meanwhile, the liquid ejecting apparatus may further comprise an ejector, adapted to eject the target medium to the outside of the liquid ejecting apparatus. The ejector may comprise: a first roller and a second roller, adapted to nip the target medium therebetween; and a frame member, supporting the second roller, and interlocked with the tray guide so as to be movable between a fourth position allowing the second roller to be brought into contact With the first roller and a fifth position separating the second roller from the first roller. The frame member may be moved from the fourth position to the fifth position when the tray guide is moved from the second position to the first position. The frame member may be moved from the fifth position to the fourth position when the tray guide is moved from the first position to the second position.
In this case, when liquid is ejected onto the medium, such as an optical disc or the like, a data area can be reliably prevented from being broken since the second roller is pressed into contact with a surface of the medium, onto which liquid is to be ejected. Further, a user does not need to perform a special operation, thereby implementing a user-friendly apparatus.
Here, the tray guide retainer may comprise: a second guide pin, projected outward from each of both widthwise ends of the frame member; a second groove, formed in the guide member so as to extend in a direction that the frame member moves, and adapted to movably receive the second guide pin; and a link member, linking the first guide pin and the second guide pin so as to interlock the frame member with the tray guide.
In this case, the tray guide and the frame member can be connected to each other while ensuring a degree of freedom in operation.
Here, the link member may be formed with a third groove adapted to movably receive the first guide pin and a fourth groove adapted to movably receive the second guide pin. The third groove may be an L-shaped groove having a first portion extending parallel with the transporting path and a second portion extending the direction that the frame member moves. The fourth groove may extend in the direction that the frame member moves.
In this case, the tray guide and the frame member are connected one to one by the third and fourth guide grooves formed in the link member. Further, with the third guide groove, a latch stroke of the cam can be ensured, when the tray guide is retained at the second position or when the retained state of the tray guide at the second position is released. That is, only the tray guide can be displaced, without displacing the frame member.
Meanwhile, the tray guide may comprise: a shaft member, extending in a direction perpendicular to a direction that the transporting path extends; and a pinion gear, provided on each of ends of the shaft member. The tray guide retainer may comprise racks each of which is adapted to mesh with the pinion gear and extends in a direction parallel to the direction that the transporting path extends.
In this case, the tray guide can maintain a stable posture so as not to obliquely move at the time of the sliding operation.
The tray guide may have a back face opposite to the supporting face and adapted to face an ejecting path through which the target medium is ejected to the outside of the liquid ejecting apparatus, when the tray guide is placed in the second position. The back face may be formed with ribs extending in a direction that the target medium is ejected and adapted to guide side edges of the target medium.
In this case, when the target medium is ejected, there is no case in which the side edges of the target medium is caught on the tray guide, and thus the target medium can be smoothly ejected.
The liquid ejecting apparatus may further comprise a scanner unit disposed above the transporting path.
According to the invention, there is also provided a liquid ejecting apparatus, comprising:
a liquid ejecting head, adapted to eject liquid toward a target medium;
an ejector, adapted to eject the target medium to the outside of the liquid ejecting apparatus via a transporting path, the ejector comprising a first roller and a second roller which are adapted to nip the target medium therebetween, and are configured such that the second roller is movable between a first position being brought into contact with the first roller and a second position being separated from the first roller;
a transporter, adapted to transport a tray on which the target medium is mounted toward a region facing the liquid ejecting head via the transporting path;
a tray guide, disposed in a downstream part of the transporting path relative to the ejector, and having a supporting face adapted to support the tray thereon; and
at least one regulator, disposed between the second roller and an end of the tray guide closer to the ejector, and operable to regulate a position of the tray in a direction orthogonal to the transporting path when the second roller is placed in the second position.
With this configuration, the target medium set on the tray can be reliably prevented from being brought into contact with the second roller. Further, the length of the tray does not need to be made large, and thus the liquid ejecting apparatus can be prevented from being enlarged or the installment space of the rear side of the liquid ejecting apparatus can be prevented from being expanded.
The second roller may be escaped from the transporting path when the second roller is placed in the second position. The regulator may project into the transporting path when the second roller is placed in the second position.
In this case, the regulator can be configured with a simple structure at low cost, and the target medium can be reliably prevented from being brought into contact with the second roller.
A plurality of regulators may be arranged in a widthwise direction of the tray guide. In this case, the target medium can be more reliably prevented from being brought into contact with the second roller.
The regulator may be arranged so as not to face the target medium mounted on the tray. In this case, the regulator is disposed at the position away from the target medium set on the tray. Therefore, the target medium can be prevented from being brought into contact with the second roller, such that there is no case in which the target medium is damaged.
The regulator may be retracted from the transporting path when the second roller is placed in the first position. In this case, when liquid is ejected onto the target medium such as normal paper or the like, there is no case in which the regulator interrupts the ejection of the target medium.
The tray guide may be movable between a third position connecting the supporting face with the transporting path to allow the transporter to transport the tray to the transporting path and a fourth position escaping the supporting face from the transporting path. The second roller may be moved from the first position to the second position when the tray guide is moved from the fourth position to the third position. The second roller may be moved from the second position to the first position when the tray guide is moved from the third position to the fourth position.
In this case, it is not necessary to remove the tray guide from the liquid ejecting apparatus and to manage separately, thereby implementing a user-friendly apparatus.
In addition, since the regulator is moved in accordance with the movement of the tray guide, operability can be enhanced. Further, since the regulator reliably projects into the transporting path when the tray is subjected to the transportation, the contact between the second roller and the tray can be reliably avoided.
According to the invention, there is also provided a liquid ejecting apparatus, comprising:
a liquid ejecting head, adapted to eject liquid toward a target medium;
a transporter, adapted to transport a tray on which the target medium is mounted toward a region facing the liquid ejecting head via a transporting path; and
a tray guide, disposed in a front side of the liquid ejecting apparatus, and having a supporting face adapted to support the tray thereon, the tray guide being movable between a first position connecting the supporting face with the transporting path to allow the transporter to transport the tray to the transporting path and a second position escaping the supporting face from the transporting path; and
a locker, operable to lock the tray guide at the first position.
With this configuration, even when the position switching operation of the tray guide is executed in a state in which the tray is supported, by locking the tray guide at the first position, the position of the tray guide does not change, and thus the target medium or the tray can be protected.
The locker may automatically lock the tray guide when the tray is mounted on the tray guide placed in the first position.
In this case, even when the position switching operation of the tray guide is executed in a state in which the tray is supported, the position of the tray guide does not change, and thus the target medium or the tray can be protected. Further, the tray guide is locked at the first position with no additional operation so that, a user-friendly apparatus can be implemented.
Here, the locker may comprise:
a locking member, comprising a first projection extending in a first direction and a second projection extending in a second direction opposite to the first direction, the locking member slidably provided on the tray guide such that the first projection is retractably projected into the supporting face;
an urging member, urging the locking member toward the supporting face; and
a frame member, disposed adjacent to a side end of the tray guide and formed with a first hole.
The first projection may be retracted from the supporting face by the tray mounted on the tray guide so that the locking member is slid against an urging force of the urging member, thereby inserting the second projection into the first hole. In this case, the locker can be configured with a simple structure at low cost.
The tray guide may be formed with a second hole opposing the first hole. The locking member may comprise a third projection being inserted into the second hole.
In this case, the tray guide and the frame member engage with each other to be close to each other. As a result, the tray guide can be tightly, not unsteadily, locked at the first position.
According to the invention, there is provided a liquid ejecting apparatus, comprising:
a liquid ejecting head, adapted to eject liquid toward a target medium;
an ejector, adapted to eject the target medium to the outside of the liquid ejecting apparatus via a transporting path, the ejector comprising:
a first roller and a second roller, adapted to nip the target medium therebetween; and
a frame member, supporting the second roller, and slidable between a first position allowing the second roller to be brought into contact with the first roller and a second position separating the second roller from the first roller; and
a plurality of urging members, arranged symmetrically with a longitudinal center of the frame member and urging the frame member toward the first position.
With this configuration, even when the sliding operation is obliquely performed, the frame member returns to the original posture by the urging members. As a result, the frame member can smoothly perform the sliding operation while maintaining the stable posture.
The urging members may be arranged at both longitudinal end portions of the frame member. In this case, the posture of the frame member can be more reliably stabilized.
The liquid ejecting apparatus may further comprise:
a transporter, adapted to transport a tray on which the target medium is mounted toward a region facing the liquid ejecting head via the transporting path; and
a tray guide, disposed in a downstream part of the transporting path relative to the ejector, and having a supporting face adapted to support the tray thereon, the tray guide being movable between a third position connecting the supporting face with the transporting path to allow the transporter to transport the tray to the transporting path and a fourth position escaping the supporting face from the transporting path,
The urging members may be provided on the tray guide such that the frame member is urged when the tray guide is placed in the fourth position.
In this case, when the tray guide is switched from the fourth position to the third position, the urging force operates to urge the tray guide toward the third position. Therefore, the position switching operation of the tray guide can be easily performed with small force.
Each of the urging members may comprise: a lever member, being slidable in a direction that the frame member slides; and a coiled spring, urging the lever member toward the frame member.
In this case, the urging members can be configured with a simple structure at low cost.
The above and other features and advantages of the present invention will become more apparent from the following description of the presently preferred exemplary embodiments of the invention taken in conjunction with the accompanying drawings, in which:
Embodiments of the invention will be described below in detail with reference to the accompanying drawings.
First, the overall configuration of an ink jet printer 1 (hereinafter, referred to as “printer”), which is an example of “a recording apparatus”, or “a liquid ejecting apparatus” according to one embodiment of the present invention will be described with reference to
The printer 1 has a scanner unit (not shown) in its upper portion, that is, serves as a scanner-integrated-type printer, such that an image read by the scanner unit can be recorded by a recording apparatus described below (hereinafter, the description of the scanner unit will be omitted). Accordingly, as described below, the printer 1 is studied in order to suppress the size of the apparatus in the heightwise direction to be small. Further, the printer 1 has an interface (not shown), which can be connected to an external host computer, and a slot (not shown) into which a recording medium, such as a memory card or the like, is installed. Then, the printer 1 also serves as a so-called stand-alone printer in which image data or the like held in the recording medium is directly read, and image data is directly recorded in the recording medium by the recording apparatus described below.
In addition, as shown in
As shown in
Further, in the present embodiment, a photo-stand paper (paper which is processed to be mounted on a mounting surface on a standing posture after printing, like a photograph layout: not shown) can be guided from the tray guide 40 to the medium transporting path, like the tray T, and the photo-stand paper has the same size as that of the tray T in the widthwise direction. Therefore, in the tray supporting face 40a of the tray guide 40, a so-called edge guide to be displaced in the widthwise direction does not need to be provided.
Next, in
Subsequently, the medium transporting path of the printer 1 will be described in detail primarily with reference to
The printer 1 has a automatic sheet feeder (ASF) 11 for setting paper P1 on an oblique posture in the rear side thereof and has paper feeding tray 31 for setting paper P2 on a horizontal posture in the bottom portion thereof. Hereinafter, when the paper P1 and the paper P2 do not need to be distinguished from each other, the paper P1 and the paper P2 are simply referred to as “paper P”.
The automatic sheet feeder 11 has a hopper 12, a feeding roller 13, and a separating roller 14. The hopper 12 is provided to support the paper P1 on the oblique posture and pivots to switch between a state that presses the paper P1 into contact with the feeding roller 13 and a state that moves the paper P1 away from the feeding roller 13. The feeding roller 13 is D-shaped in side view, and rotates so as to feed the uppermost paper P1 pressed into contact with the feeding roller 13 toward the downstream side. The separating roller 14 is provided to be pressed into contact with the feeding roller 13, and predetermined rotation-resistive force is transmitted thereto. When double feeding of the paper P1 does not occur and the paper P1 is fed one by one, the separating roller 14 is rotated by the feeding roller 13. When plural sheets of paper P1 exist between the separating roller 14 and the feeding roller 13, a frictional coefficient between the sheets of paper is low, and thus the rotation of the separating roller 14 stops. With the operation of the separating roller 14, subsequent sheets of paper P1, which are attracted by the uppermost paper P1 to be double-fed, do not progress from the feeding roller 13 toward the downstream side and remain in a vicinity of a point at which the separating roller is pressed into contact with the feeding roller 13, such that double feeding of the paper is prevented.
On the downstream side of the automatic sheet feeder 11, the transporter 2 that has a driving roller 20 and a follower roller 21, and transports the paper P or the tray T to a region opposite to an ink jet recording head 18 is provided. The driving roller 20 is formed of a shaft body, which is elongated in a primary scanning direction, and is driven to be rotated by a driving motor (not shown). The follower roller 21 is rotatably supported by follower roller holders 19, which are provided in parallel over the primary scanning direction, and is pressed into contact with the driving roller 20 to be rotated by the driving roller 20. The paper P fed from the automatic sheet feeder 11 or the paper feeding tray 31 in the bottom portion of the printer 1 is nipped by the driving roller 20 and the follower roller 21, and is transported to the region opposite to the ink jet recording head 18 on the downstream side by the rotation of the driving roller 20.
On the downstream side of the driving roller 20 and the follower roller 21, the ink jet recording head 18 and a platen 27 constituting a recording section are provided to vertically face each other. The ink jet recording head 18 is provided in the bottom portion of a carriage 15, and ink droplets are ejected onto the paper P or the optical disc D, together with a reciprocating operation of the carriage 15 in the primary scanning direction, such that recording is executed on a recording surface of the paper P or the optical disc D. The carriage 15 is provided to be guided in the primary scanning direction by a main guide shaft 17 and an auxiliary guide shaft 16, which extend in the primary scanning direction, and is driven to reciprocate by a driving motor (not shown).
Moreover, the printer 1 according to the present embodiment is configured to supply ink from an ink cartridge provided in a side bottom portion (not shown) in front of the apparatus separately from the carriage 15, not on the carriage 15, to the ink jet recording head 18 via an ink supply tube (not shown).
As shown in
In the concave portion 27a that is formed to extend in the primary scanning direction, island portions 27b are locally disposed over the primary scanning direction. With this configuration, ink ejected onto the front end and the rear end of the paper P, and portions distant from both side ends of the paper P having a predetermined size is discarded into the concave portion 27a, such that marginless printing is performed. In the concave portion 27a, an ink absorber (not shown) is provided to absorb ink to be discarded, and, in the bottom portion of the concave portion 27a, a hole (not shown) to be connected to the bottom face of the platen 27 is formed. Then, ink is guided to a waste liquid collector 28, which is provided in a lower portion of the platen 27, by the hole.
Next, on the downstream side of the ink jet recording head 18, an ejector 9 that has a first driving roller 23, a first follower roller 24, a second driving roller 25, and a second follower roller 26, is provided. The first driving roller 23 and the second driving roller 25 are driven to be rotated by a driving motor (not shown). Further, the first follower roller 24 is brought into contact with the first driving roller 23 to be rotated by the first driving roller 23, and the second follower roller 26 is brought into contact with the second driving roller 25 to be rotated by the second driving roller 25. Then, the paper P on which recording was performed is nipped by these rollers and is ejected to a stacker 30.
Here, the first follower roller 24 and the second follower roller 26 are rotatably provided in a roller supporting frame 36 (
That is, as the first follower roller 24 and the second follower roller 26 to be brought into contact with the printing surface of the paper P, a spur roller having a serrated circumference is used in order to prevent dot omission or ink transport. However, since the optical disc D has a data area just below the labeled surface (the printing surface), if the first follower roller 24 or the second follower roller 26, which has the spur roller, is brought into contact with the labeled surface of the optical disc D, the data area of the optical disc D may be damaged. Therefore, at the time of performing printing on the optical disc D, the roller supporting frame 36 is displaced to the release position, such that the data area of the optical disc D is not damaged (the detailed description thereof will be described below).
Moreover, hereinafter, the term “release position” is used to include a position of the roller supporting frame 36 when the first follower roller 24 and the second follower roller 26 move away from the first driving roller 23 and the second driving roller 25, respectively, and positions of the first follower roller 24 and the second driving roller 25 at that time. Similarly, the term “contact position” is used to include a position of the roller supporting frame 36 when the first follower roller 24 and the second follower roller 26 are brought into contact with the first driving roller 23 and the second driving roller 25, respectively, and positions of the first follower roller 24 and the second driving roller 25 at that time.
In a front end of an upper portion of the feeding tray 31 provided in the bottom portion of the apparatus, a pickup roller 33 is provided. The pickup roller 33 is supported by a pivotable support member 32 around a pivot shaft 32a and is driven to be rotated by a driving motor (not shown). Then, with the pivot operation of the support member 32, the displacement is performed between a position to be brought into contact with the paper P2 set on the paper feeding tray 31 and a position to be moved away from the paper P2, and the rotation is done in a state of being brought into contact with the paper P2, such that the uppermost paper P2 is fed toward the rear side of the apparatus (a left direction of
On the front end side of the feeding tray 31, an inverting roller 34 that is driven to be rotated by a driving motor (not shown) is provided, and a curved inversion feeding path of the paper P2 is formed around the inverting roller 34. At a position opposite to the inverting roller 34, a nipping roller 35 is displaceably provided between a position to be pressed into contact with the inverting roller 34 and a position to be moved away from the inverting roller 34. The paper P2 to be fed by the pickup roller 33 subsequently passes through a point that the inverting roller 34 is pressed into contact with the nipping roller 35, such that double feeding is prevented. Further, feeding force by the rotation of the inverting roller 34 is transmitted, and thus the paper P2 is further fed to the downstream side. Then, the paper P2 passes through the curved inversion feeding path around the inverting roller 34, is nipped by the driving roller 20 and the follower roller 21, like the paper P1 to be fed by the automatic sheet feeder 11, and is transported to the downstream side.
Next, the configurations of the tray guide retainers 50 and 51 will be described in detail with reference to
As shown in
Here, the tray guide retainer 50 has a cam unit 60, as shown in
As shown in
Moreover, on both sides of the roller supporting frame 36, second guide pins 36b (
Hereinafter, the individual parts will be separately described. As shown in
The shaft 43 is rotatably supported to extend in the direction perpendicular to the sliding direction of the tray guide 40 (the widthwise direction of the tray guide 40). Both ends of the shaft 43 are formed to project outward from both sides of the tray guide 40, like the first guide pins 41. Moreover, in the present embodiment, the end of the shaft 43 is idly inserted into a first guide groove 52d formed in the guide member 52, and has the same function as that of the first guide pin 41.
The pinion gear 44 is fitted to the end of the shaft 43 and, in the assembled state of the tray guide retainer 50, is interlocked with a rack 52e (see
In
In the assembled state of the tray guide retainer 50, the first guide pin 41 is idly inserted into the first guide groove 52c, the shaft 43 is idly inserted into the first guide groove 52d, and the second guide pin 36b formed in the roller supporting frame 36 is idly inserted into the second guide groove 52b. Then, as shown in
The link member 54 has a plate shape, like the guide member 52, and is interposed between the guide member 52 and the frame 55. Further, in the guide member 52, guide portions 52g and 52f are formed to extend in the transporting direction of the tray T. Then, the link member 54 is fitted between the guide portions 52g and 52f so as to slide while being guided in the transporting direction of the tray T. Moreover, in the guide member 52, reference numerals 52h and 52j denote stopper portions, and the stopper portions 52h and 52j regulate the slide range of the link member 54.
In addition, in the link member 54, a third guide groove 54d and a fourth guide groove 54a are formed. Here, the third guide groove 54d is a guide groove that has a slot 54b extending in the operating direction of the tray guide 40 (the position switching direction; In the present embodiment, the direction in which the tray guide 40 is pressed toward the rear side of the printer 1, that is, the horizontal direction) when the tray guide 40 is held at the second position and when the held state at the second position is released, and a slot 54c extending in a direction to approach or move away from the medium transporting path (in the present embodiment, the vertical direction). The third guide groove 54d has an L shape, which is formed by crossing the slots 54b and 54c to each other. Further, the fourth guide groove 54a is a guide groove which extends in a direction in which the first follower roller 24 (the second follower roller 26) approaches or moves away from the first driving roller 23 (the second driving roller 25).
In the assembled state of the tray guide retainer 50, the first guide pin 41 is idly inserted into the third guide groove 54d, and the second guide pin 36b is idly inserted into the fourth guide groove 54a. Accordingly, the tray guide 40 and the roller supporting frame 36 are connected to each other via the link members 54, and the roller supporting frame 36 is displaced, together with the tray guide 40. Moreover, at the time of the displacement operations of the tray guide 40 and the roller supporting frame 36, the first guide pin 41 and the second guide pin 36b moves in the first guide groove 52c and the second guide groove 52b, respectively, as described above with reference to
Next, referring to
Moreover, in the roller supporting frame 36, the torsional coiled springs 37 are provided in order to prevent elevation of the first follower roller 24 and the second follower roller 26 from the first driving roller 23 and the second driving roller 25, respectively (see
Subsequently, referring to
Then, at a position opposite to the heart cam 61 a rod 62 having a shaft hole 62c, into which the shaft 66 provided in the frame 55 is fitted, is provided. The rod 62 is provided to be pivotable about the shaft 66, and has a positioning pin 62a, which is urged in a direction to be pressed into contact with a bottom face of the cam groove 61a. Further, the rod 62 has a projection 62b, which projects in a direction opposite to the projecting direction of the positioning pin 62a. At a position opposite to the projection 62b, a rod guide 63 is provided. The rod guide 63 has a slot (not shown), which is formed to follow the trace of the projection 62b according to the pivot movement of the rod 62. The projection 62b is idly inserted into the groove via the spring 64 and the slider 65. Accordingly, the positioning pin 62a is urged toward the bottom face of the cam groove 61a, and then the positioning pin 62a is pressed into contact with the cam groove 61a and moves in the cam groove 61a according to the rotation operation of the heart cam 61.
Moreover, as shown in FIG 7, the position detector 57 is fitted to the rod guide 63. The position detector 57 has a pivotable lever 57a and, when the lever 57a is brought into contact with a detection face 61d formed on the circumference of the heart cam 61, is configured to detect the posture of the heart cam 61, that is, whether the tray guide 40 is at the first position or the second position.
The cam unit 60 having such a configuration is operable to hold the first guide pin 41, when the first guide pin 41 is idly inserted into the slot 61a formed in the heart cam 61, so as to hold the tray guide 40 at the second position, and to release the held state when the tray guide 40 held at the second position is pressed toward the rear side of the printer 1. Moreover, the detailed description of the operation of the cam unit 60 will be additionally given below.
In the shaft 52a formed in the guide member 52, a torsional coiled spring 58 is provided, and one end of the torsional coiled spring 58 is anchored by the first guide pin 41, and the other end thereof is anchored by a spring anchoring portion (not shown) formed in the frame 55. Accordingly, the first guide pin 41 is urged in a right direction of
The above description relates to the configuration of the tray guide retainer 50, and, hereinafter, the operations of the respective parts of the tray guide retainer 50 described above will be described in detail with reference to
First,
Further, in this state, the positioning pin 62a in the cam unit 60 is disposed at a lower position in the step shape formed in the bottom face of the heart-shaped cam groove 61a. Then, the cam groove 61a will be described in detail with reference to
The cam groove 61a has the bottom face in which plural steps (the vertical intervals: the direction perpendicular to the paper of
Hereinafter, as an example, a case in which the positioning pin 62a moves from a position (d) of the region RD to a position (a) of the region RA will be specifically described. Since the positioning pin 62a receives urging force of the spring 64 (
However, at the step between the region RD and the region RA, the position (a) is at the lower position, and the positioning pin 62a, which moves from the position (d) to the position (a), is pressed into contact with the stepped face between the region RD and the region RA by the rotation of the heart cam 61 in the clockwise direction of
Hereinafter, similarly, the vertical intervals among the individual regions are set such that the positioning pin 62a moves only from the region RA to the region RB, from the region RB to the region RC, and from the region RC to the region RD. Moreover, in each of the regions RB and RC, the bottom face is formed with a smooth slope face such that the bottom face is made higher as goes toward in the arrow direction of
Hereinafter, as shown in
Further, at the first position, the first guide pin 41 and the shaft 43 provided in the tray guide 40 are disposed in the first guide grooves 52c and 52d, which are formed so as to go obliquely upward from the rear side (the right side of
In addition, the second guide pin 36b provided in the roller supporting frame 36 is disposed in the second guide groove 52b, which is formed to go obliquely upward from the rear side of the apparatus to the front side of the apparatus, on the forefront side of the apparatus, and thus the roller supporting frame 36 is displaced upward, and the first follower roller 24 and the second follower roller 26 are disposed at the release positions to move away from the first driving roller 23 and the second driving roller 25.
If the tray guide 40 is pressed toward the rear side of the apparatus in order to be displaced from the first position to the second position, as shown in the change from
Further, at this time, the first guide pin 41 is disposed in the vertically extending slot 54c of the third guide groove 54d formed in the link member 54, and thus the tray guide 40 and the roller supporting frame 36 substantially has the one-to-one relationship through the link member 54. Therefore, according to the displacement operation of the tray guide 40, the link member 54 and the second guide pin 36b (that is, the roller supporting frame 36) also moves toward the rear side of the apparatus.
Then, the second guide pin 36b moves in the second guide groove 52b toward the rear side of the apparatus, and thus the roller supporting frame 36 is displaced in the downward direction (in the direction to approach the medium transporting path). That is, the first follower roller 24 and the second follower roller 26 are displaced to the contact positions to be brought into contact with the first driving roller 23 and the second driving roller 25, respectively. In addition, at this time, in the cam unit 60, the positioning pin 62a is displaced in the arrow direction of
Next, in a process that the tray guide 40 is further pressed toward the rear side of the apparatus, as shown in the change from
Then, the tray guide 40 is pressed toward the rear side of the apparatus to the maximum and, in this state, if the hand is escaped, the tray guide 40 returns to the front side of the apparatus by urging force of the torsional coiled spring 58. However, as described above, if the positioning pin 62a of the cam unit 60 moves from the position (d) to the position (a) of
At the second position (
In order to release the held state of the tray guide 40 at the second position, the tray guide 40 is further pressed toward the rear side of the apparatus. By doing so, as shown in the change from
As described above, the tray guide 40 that has the tray supporting face 40a for supporting the tray T, and is displaced between the first position at which the tray T is guided from the tray supporting face 40a to the medium transporting path and the second position at which the tray T is escaped from the medium transporting path is displaced between the first position and the second position when the transporting path of the tray T is laterally viewed, while the tray supporting face 40a maintains the posture along the transporting direction of the tray T (the horizontal posture in the present embodiment), as shown in
Further, at the second position, the tray guide 40 is escaped from the medium transporting path upward, and thus, at the time of ejecting the paper P, the path for ejecting the paper P can be prevented from being complicated, without being interrupted by the tray guide 40.
In addition, the tray guide retainer 50 presses the tray guide 40 toward the rear side of the apparatus so as to hold the tray guide at the second position, and further presses the tray guide 40 at the second position toward the rear side of the apparatus so as to release the held state at the second position. That is, with the so-called push-on operation, position switching is performed, and thus the position switching operation is simple, which makes it easy for the user to understand the position switching operation. Therefore, a user-friendly apparatus can be obtained. In addition, at the time of the switching operation from the second position to the first position, only if the tray guide 40 is pressed toward the rear side of the apparatus, and then the hand is separated, switching to the second position is performed by urging force of the torsional coiled spring 58, such that the operation can be easily performed with a small load.
Further, according to the configuration of the tray guide retainer 50, the first guide pin 41 provided in the tray guide 40 and the second guide pin 36b provided in the roller supporting frame 36 are connected to each other through the link members 54, and thus the connection between them can be performed while ensuring the degree of freedom of the operation. In addition, since the first guide pin 41 is idly inserted into the third guide groove 54d, which has the vertically extending slot 54c and the horizontally extending slot 54b, a latch stroke can be ensured by the horizontally extending slot 54b. Here, the “latch stroke” is a stroke of the tray guide 40 which is needed to trap the positioning pin 62a at the position (a) (
Moreover, in the present embodiment, the tray supporting face 40a is horizontal at the first position and the second position, and the tray guide 40 is displaced between the first position and the second position while the tray supporting face 40a maintains the horizontal state. The term “horizontal state” of the tray supporting face 40a does not necessarily mean the complete horizontal state, in terms of saving the space of the apparatus in the heightwise direction, That is, the posture may be close to the complete horizontal state, and its range can be suitably designed by an ordinary skilled person according to the configuration of the apparatus or the like.
Subsequently, other parts of the tray guide 40 and the tray guide retainer 50 will be described.
As described above with reference to
Accordingly, the racks 52e and 53e are formed in the guide members 52 and 53 on the left and right sides, and the pinion gears 44 are fitted to both ends of the shaft 43, which is rotatably supported by the tray guide 40, so as to be interlocked with the racks 52e and 53e, respectively. Therefore, at the time of the sliding operation of the tray guide 40, the left and right sides are in alignment, and the oblique movement is prevented, such that a smooth sliding operation can be performed.
Further, at the time of the sliding operation of the roller supporting frame 36, similarly, a problem of the oblique movement also occurs. Therefore, in the present embodiment, as shown in
Hereinafter, the detailed descriptions will be given. As shown in
As shown in
Specifically, as shown in the changes over
Here, as shown in
Further, in such a manner, the roller supporting frame 36 is pressed while being balanced by urging force, and thus, even when the tray guide 40 provided with the latch lever 70 obliquely moves to some extent, the sliding operation can be smoothly performed, without being influenced by the oblique movement. That is, even when the tray guide 40 and the roller supporting frame 36 are connected to each other via the link members 54 on the left and right sides in the one-to-one manner, there may be a case in which the roller supporting frame 36 does not receive uniform force from the left and right sides. In this case, however, the posture of the roller supporting frame 36 is balanced by urging force received from the latch levers 70, such that the sliding operation can be smoothly performed, without the oblique movement.
Moreover, as shown in
Next, a locker 75 for locking the tray guide 40 at the second position will be described with reference to
As shown in
Specifically, as shown in
On the other hand, in the guide member 52, a first hole 52k (see
Hereinafter, the operation of the locker 75 will be described. In a state in which the tray T is not set on the tray guide 40, the tray engagement 75a of the locker 75 is urged by an urging member (not shown) so as to project with respect to the transporting path (the tray supporting face 40a) of the tray T, as shown in
In this state, as shown in
In this state, if the tray T is set on the tray guide 40, the tray T engages with the tray engagement portion 75a, and then the locker 75 slides in a direction distant from the side end of the tray T. By doing so, as shown in
In particular, in the present embodiment, as the tray T is set on the tray guide 40 at the first position, the tray guide 40 is, so to speak, automatically locked. Therefore, the tray guide 40 can be retained at the first position with no additional special operation, and thus a user-friendly apparatus can be obtained. Further, the operation can be prevented from being forgotten, and thus the tray T or the disc D can be reliably protected.
Further, the locker 75 passes through the first hole 52k and the second hole 40c so as to extend over the first hole 52k and the second hole 40c facing each other, and then the tray guide 40 is retained at the first position, Therefore, the tray guide 40 and the guide member 52 can engage with each other at a position close to each other, and thus the tray guide 40 can be tightly, not unsteadily, retained at the first position.
In addition, in the present embodiment, the locker 75 is configured to press one side end of the tray T toward the other end. Therefore, when the tray T is set on the tray guide 40, the tray T is pressed toward an edge guide (which is denoted by reference numeral 40d in
Moreover, in the present embodiment, the locker 75 is configured to regulate the sliding operation of the tray guide 40, which slides along the transporting direction of the tray T. However, the present invention is not limited to the locker 75. For example, any member may be used as long as the member can regulate the sliding operation of the tray guide 40 at the first position.
Further, in the present embodiment, the sliding operation of the tray guide 40, which slides along the transporting direction of the tray T, is regulated, and then the tray guide 40 is held at the first position. Alternatively, in a tray guide, which is configured to be switched between a first position (a position for transporting the tray T) and a second position (an acceptance position for opening the medium transporting path) through rotation, the same advantages as those in the above described retainer can be obtained by regulating the rotation operation.
Next, a height regulator that regulates the heightwise position of the tray T from the tray supporting face 40a will be described with reference to
As shown in
Further, the regulating member 72 is configured such that a regulating portion 72b having a shape protruding toward the transporting path of the tray T is provided to project from a hole formed in the roller supporting frame 36 below the roller supporting frame 36 (toward the medium transporting path), and is urged by a torsional coiled spring 73 to rotate in a direction not to project below the roller supporting frame 36.
Further, in the vicinity of the downstream side of the second driving roller 25, the main frame 10 is provided above the transporting path of the tray T (see
That is,
On the other hand, as shown in
With the regulating portion 72b, when the roller supporting frame 36, that is, the first follower roller 24 and the second follower roller 26, is at the contact position, the elevation of the tray T toward the first follower roller 24 and the second follower roller 26 is regulated.
Accordingly, the elevation of the tray T from the tray supporting face 40a can be reliably prevented, that is, the optical disc D can be prevented from being brought into contact with the first follower roller 24 and the second follower roller 26, without increasing the longitudinal size of the tray T. That is, the optical disc D can be reliably prevented from being brought into contact with the first follower roller 24 and the second follower roller 26, while preventing the installment space of the rear side of the apparatus from being increased.
In particular, in the present embodiment, the tray guide 40 slides horizontally along the transporting direction of the tray T. Accordingly, when the tray guide 40 is at the first position, the gap between the second follower roller 26 and the upstream-side end of the tray supporting face 40a may be easily made large. Therefore, for example, even when a cap is provided in the tray guide 40 so as to prevent the elevation of the tray T, the tray T may be easily elevated. However, since the regulating member 72 is provided between the second follower roller 26 and the upstream-side end of the tray supporting face 40a, even when the tray guide 40 is configured to slide in the transporting direction of the tray T, the elevation of the tray T can be reliably prevented.
Moreover, as shown in
Further, in the present embodiment, the regulating member 72 is provided in the vicinity of the downstream side of the second follower roller 26, and thus the following advantages are obtained. That is, after the tray T is set on the tray guide 40, and the front end of the tray T is nipped by the driving roller 20 and the follower roller 21, the tray T is difficult to be elevated from the tray supporting face 40a. At this time, however, if the portion of the tray T protruding from the tray supporting face 40a toward the front side of the apparatus is compulsively pressed in the downward direction, the tray T is curved upward.
Here, if the regulating member 72 is provided on the upstream side of the first follower roller 24, before the curved tray T comes into contact with the regulating member 72, the optical disc D set on the tray T may be brought into contact with the first follower roller 24 or the second follower roller 26. In the present embodiment, however, since the regulating member 72 is provided on the downstream side of the second follower roller 26, even when the tray T is curved upward, the tray T or the optical disc D comes into contact with the regulating member 72, before the optical disc D set on the tray T is brought into contact with the first follower roller 24 or the second follower roller 26 Accordingly, the optical disc D set on the tray T can be reliably protected.
Further, in the present embodiment, the regulating member 72 is plurally provided in the widthwise direction of the tray T, as shown in
In addition, in the present embodiment, since the regulating members 72 are provided at a position distant from the optical disc D set on the tray T, more specifically, at positions corresponding to peripheries of both side ends of the tray T. Therefore, the optical disc D can be prevented from being brought into contact with the first follower roller 24 and the second follower roller 26, without damaging the optical disc D set on the tray T.
In addition, as described above, the regulating member 72 is configured to project toward the transporting path of the tray T when the first follower roller 24 and the second follower roller 26 are at the contact positions, and to be moved away from (not to project below the roller supporting frame 36) the transporting path of the tray T when the first follower roller 24 and the second follower roller 26 are at the release position. Therefore, when recording is performed on the paper P, the paper P can be smoothly ejected, without being interrupted by the regulating member 72.
Although the invention is described in its preferred from with a certain degree of particularity, obviously many changes and variations are possible therein. It is therefore to be understood that the present invention may be practiced than as specifically described herein without departing from scope and spirit thereof.
Number | Date | Country | Kind |
---|---|---|---|
2004-280159 | Sep 2004 | JP | national |
2004-280195 | Sep 2004 | JP | national |
2004-280725 | Sep 2004 | JP | national |
2004-280728 | Sep 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5384760 | Kumakura | Jan 1995 | A |
6148722 | Hagstrom | Nov 2000 | A |
6332680 | Ozawa | Dec 2001 | B1 |
6612762 | Sakurai et al. | Sep 2003 | B1 |
6871949 | Nakano et al. | Mar 2005 | B2 |
7547099 | Miyake et al. | Jun 2009 | B2 |
20030052956 | Katsuyama | Mar 2003 | A1 |
20040141787 | Inokuchi et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
1 380 433 | Jan 2004 | EP |
1 389 535 | Feb 2004 | EP |
2003112458 | Apr 2003 | JP |
2003-211757 | Jul 2003 | JP |
2004-074667 | Mar 2004 | JP |
2004-130774 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20060181566 A1 | Aug 2006 | US |