1. Technical Field
The present invention relates to a liquid ejecting apparatus such as, for example, an ink jet printer.
2. Related Art
Generally, an ink jet printer is widely known as a liquid ejecting apparatus ejecting a liquid on a target. With the ink jet printer, printing is performed by ejecting ink (liquid) toward paper (target) from nozzles on a recording head (liquid ejecting head). With such a printer, a cap member is made to abut the recording head to surround the nozzles, that is, so-called capping is performed so that printing failure in which the ink within the nozzles dries during a printing pause or during non-use does not occur.
Further, among such printers, there is a printer that adjusts the distance between the recording head and the paper by adjusting the height position of a carriage (moving body) on which the recording head is supported. With such a printer, the carriage can be moved in the height direction to adjust the height position of the carriage. Therefore, the carriage is lifted up by the biasing force when the cap member is made to abut the recording head, and it is not possible to make the cap member adhere sufficiently closely to the recording head.
Accordingly, as with the printer described in JP-A-8-90782, increasing the capping pressure by biasing the carriage toward the cap member using an elastic member when performing capping of the nozzle head can be considered.
Incidentally, in a case where a printer that can adjust the height position of the carriage as described above is configured so that the carriage is biased toward the cap member by the elastic member of the printer of JP-A-8-90782 when the carriage is lifted up by the cap member during the capping of the recording head, there is the following problem. That is, there is a problem in that in a case where the biasing force of the elastic member is weak, the cap member cannot be made to adhere sufficiently closely with the recording head.
An advantage of some aspects of the invention is that it provides a liquid ejecting apparatus that can make a cap member adhere sufficiently closely with a liquid ejecting head.
According to an aspect of the invention, there is provided a liquid ejecting apparatus including: a moving body supporting a liquid ejecting head that can eject a liquid on a target from nozzles and configured to be movable in a scanning direction; a cap member made to abut the liquid ejecting head to surround the nozzles along with a biasing force from a perpendicular direction that is orthogonal to the scanning direction; and a pressing member arranged to oppose the cap member with the moving body therebetween, and pressing the moving body to the cap member side against the biasing force that acts on the moving body along with the abutting of the cap member against the liquid ejecting head, in which the sum of the weight of the moving body itself and the pressing force with which the pressing member presses the moving body is equal to or greater than the biasing force that acts on the moving body by the abutting of the cap member.
According to the aspect of the invention, since the sum of the weight of the moving body itself and the pressing force with which the pressing member presses the moving body is equal to or greater than the biasing force that acts on the moving body by the abutting of the cap member, the cap member can be made to adhere sufficiently closely to the liquid ejecting head.
It is preferable that, in the liquid ejecting apparatus according to the aspect of the invention, the moving body be configured to be slidable via a slide member to smoothly slide and move over a sliding face extending in the scanning direction, and the pressing member press the moving body at a position overlapping a sliding area of the slide member on the sliding face in a perpendicular direction.
According to the aspect of the invention, it is possible for the pressing member to apply a pressing force effectively on the moving body.
It is preferable that, in the liquid ejecting apparatus according to the aspect of the invention, the slide member include a plurality of sliding contact units lined up along the scanning direction with gaps therebetween in sliding contact with the sliding face, and an action point of the pressing force by the pressing member on the moving body be at a position overlapping an area between sliding contact units positioned at both ends of each of the sliding contact units in a perpendicular direction.
According to the aspect of the invention, it is possible for the pressing force applied on the moving body by the pressing member to be received evenly by each sliding contact unit of the slide member.
It is preferable that, in the liquid ejecting apparatus according to the aspect of the invention, the pressing member include a flat pressing face in contact with the moving body when the moving body is pressed.
According to the aspect of the invention, since the pressing member presses a flat pressing face in a state of being in face contact with the moving body, it is possible for the moving body to be pressed stably by the pressing member.
It is preferable that, in the liquid ejecting apparatus according to the aspect of the invention, the pressing member include a guide face leading the moving body to the pressing face when engaged with the moving body in the scanning direction.
According to the aspect of the invention, when the pressing member is engaged with the moving body, the moving body can be guided to the pressing face smoothly by the guide face.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
An embodiment in which the liquid ejecting apparatus according to an aspect of the invention is realized as an ink jet printer will be described below in accordance with the drawings. Further, in the following description, “front and back direction”, “left and right direction”, and “up and down direction” respectively indicates the front and back direction, the left and right direction, and the up and down direction indicated in each drawing by arrows. Here, in the arrows indicating the up direction, the right direction, and the front direction in the drawings, arrows with “•” within a “◯” (drawings in which the distal end of the arrow is seen from the front) indicate arrows pointing from the back of the paper to the front, and arrows with “x” within a “◯” (drawings in which the back of the arrow is seen from the back) indicate arrows pointing from the front of the paper to the back.
As illustrated in
A main guide member 16 extending in the left and right direction is provided across the top of the support base 13 in the main body frame 12. The main guide member 16 includes a belt-like main guide unit 16a extending to be parallel to the horizontal plane and an auxiliary guide unit 16b bending the front end rim portion of the main guide 16a upward at a right angle.
A sub guide member 17 with an L-shaped cross-section extending in the left and right direction is provided above the main guide member 16 of the main body frame 12. The sub guide member 17 includes a horizontal belt-like horizontal portion 17a and an auxiliary guide unit 17b bending the front side half of the horizontal portion 17a downward at a right angle. Furthermore, on the main guide member 16 and the sub guide member 17, a carriage 18 as a moving body is supported by cantilever at the back end portion side to be movable in the left and right direction.
As illustrated in
Meanwhile, an auxiliary sliding contact unit 23 in sliding contact with the back face of the sub guide 17b due to the weight of the carriage 18 itself is formed on the front face on the upper end portion of the supported portion 21. Therefore, the auxiliary guide unit 17b not only regulates the movement of the carriage 18 to the front but also permits movement of the carriage 18 in the left and right direction and the up and down direction. Accordingly, the carriage 18 can move reciprocally in the left and right direction while being guided by the main guide member 16 and the sub guide member 17.
A portion of the carriage 18 is coupled with an endless timing belt 27 fitted between a driving pulley 25 and a driven pulley 26 respectively provided at both left and right end portions on the back wall inner face of the main body frame 12. The output axis of a carriage motor 28 provided on the main body frame 12 is coupled with the driving pulley 25. Therefore, the carriage 18 is moved reciprocally in the left and right direction along the main guide member 16 and the sub guide member 17 by the driving of the carriage motor 28.
As illustrated in
A plurality of nozzles 24 respectively configuring a plurality of (four in the present embodiment) nozzles rows are opened on the lower face of the recording head 19. Furthermore, printing is performed by the ink being respectively ejected from the opening of each nozzle 24 configuring each nozzle row onto the paper P supplied onto the support base 13. Here, an area in which recording on the paper P with the greatest width on the support base 13 by the recording head 19 is possible is a printing area PA as a liquid ejecting area.
A cartridge holder 31 is provided on the left end portion within the main body frame 12. A plurality of (four in the present embodiment) ink cartridges 32 containing inks of different colors from one another are fitted on the cartridge holder 31 to be respectively freely detachable. The cartridge holder 31 is respectively connected to each valve unit 30 on the carriage 18 via ink supply tubes 33.
Furthermore, in a state in which each ink cartridge 32 is fitted on the cartridge holder 31, each ink cartridge 32 is respectively in communication with each valve unit 30 via each ink supply tube 33.
As illustrated in
Convex portions 37 protruding upward are respectively provided on the upper face of each sliding contact portion 36. A cam member 38 as a position adjustment mechanism extending in the left and right direction is placed over each convex portion 37 to be across between each convex portion 37. While an upper face 38a of the cam member 38 is a horizontal face, a pair of left and right cam units 39 are formed on the lower face of the cam member 38. Each convex portion 37 is respectively in sliding contact with each cam unit 39.
Each cam unit 39 respectively includes four horizontal cam faces 39a to 39d lined up so that the height from the sliding face 35 gradually decreases from the left side toward the right side. Each of the cam faces 39a to 39d in order from the left side toward the right side is a first cam face 39a, a second cam face 39b, a third cam face 39c, and a fourth cam face 39d. The first cam face 39a and the second cam face 39b, the second cam face 39b and the third cam face 39c, and the third cam face 39c and the fourth cam face 39d are respectively connected via gentle inclined faces.
A pair of left and right leg portions 40 protruding on the lower face of the supported portion 21 of the carriage 18 respectively abut positions on the upper face 38a of the cam member 38 opposing each convex portion 37 with the cam member 38 therebetween. The cam member 38 can slide and move in the left and right direction with respect to each convex portion 37 and each leg portion 40. Furthermore, the cam member 38 can adjust the height position of the carriage 18 by changing the abutting position of each convex portion 37 with respect to each cam unit 39 by sliding and moving in the left and right direction.
An engagement pin 41 protruding toward the back is provided on the left end portion on the back face of the cam member 38. A cam move plate 42 that can engage with the engagement pin 41 in the left and right direction when the carriage 18 moves in the left and right direction is provided at a position on the back side of the main guide member 16 on the left end portion within the main body frame 12. The cam move plate 42 is configured to be rotated by a rotation mechanism 43 between an engagement position engaging with the engagement pin 41 and a non-engagement position not engaging with the engagement pin 41 when the carriage 18 moves in the left and right direction.
Furthermore, the cam member 38 slides and moves in the right direction by the movement force of the carriage 18 by moving the carriage 18 in the left direction in a state in which the cam move plate 42 is rotated at the engagement position and causing the engagement pin 41 to be engaged with the cam move plate 42 from the right side. On the other hand, the cam member 38 slides and moves in the left direction by the movement force of the carriage 18 by moving the carriage 18 in the right direction in a state in which the cam move plate 42 is rotated at the engagement position and causing the engagement pin 41 to be engaged with the cam move plate 42 from the left side.
Here, in a case where each convex portion 37 of the slide member 34 respectively abuts each first cam face 39a positioned at the highest position out of the cam faces 39a to 39d of the cam member 38 as illustrated by the solid line in
That is, the height position of the carriage 18 is adjusted by moving in the up and down direction following the movement of the cam member 38 in the up and down direction along with the movement of the cam member 38 in the left and right direction. In such a case, since the recording head 19 is supported by the carriage 18, the distance between the recording head 19 and the support base 13, that is, the distance between the recording head 19 and the paper P on the support base 13, is adjusted by the adjustment of the height position of the carriage 18.
The distance between the recording head 19 and the paper P when each convex portion 37 of the slide member 34 respectively abuts each first cam face 39a of the cam member 38 and when each convex portion 37 of the slide member 34 respectively abuts each second cam face 39b of the cam member 38 is a first distance.
On the other hand, the distance between the recording head 19 and the paper P when each convex portion 37 of the slide member 34 respectively abuts each third cam face 39c of the cam member 38 and when each convex portion 37 of the slide member 34 respectively abuts each fourth cam face 39d of the cam member 38 is a second distance longer than the first distance. Here, the distance between the recording head 19 and the paper P is more frequently set to the first distance than to the second distance.
As illustrated in
The maintenance unit 50 includes a bottomed square box-shaped case 51 and a cap member 52 positioned approximately in the center portion of the case 51 which rises when moving toward the maintenance area MA of the carriage 18. The cap member 52 includes a bottomed square box-shaped cap 57 abutting the recording head 19 to surround each nozzle 24 in the maintenance area MA with a biasing force from the lower side of the perpendicular direction (up and down direction) orthogonal to the scanning direction (left and right direction) and a substantially box-shaped cap retaining member 55 retaining the cap 57 via an elastic member (not shown).
Further, the maintenance unit 50 includes a tube pump 53 for suctioning within the cap 57 via a flexible tube and a pump motor 54 that is the driving source of the tube pump 53.
Two penetration grooves 56 are formed on a front wall 51a of the case 51 with a gap in the left and right direction. Of the two penetration grooves 56, that on the left side is placed at a lower position than that on the right side. Further, two penetration grooves 56 are also respectively formed on a back wall 51b of the case 51 at positions corresponding to the two penetration grooves 56 formed on the front wall 51a. Therefore, a total of four penetration grooves 56 are formed in the case 51.
Each penetration groove 56 includes a lower side flat portion 56a extending linearly and horizontally from left to right, an inclined face portion 56b extending straight from the right end of the lower side flat portion 56a diagonally upward to the right, and an upper side flat portion 56c extending linearly and horizontally from the right end of the inclined face portion 56b to the right. Furthermore, in each penetration groove 56, the lower side flat portion 56a, the inclined face portion 56b, and the upper side flat portion 56c are in communication with one another.
A total of four support bars 58 extending in the front and back direction to penetrate the respective penetration grooves 56 are provided on the cap retaining member 55 to correspond to the respective penetration grooves 56. Furthermore, the respective support bars 58 penetrating the penetration grooves 56 are slidable within the penetration grooves 56. Further, a substantially rectangular engagement plate 55a engaging with the right face of the carriage 18 when the carriage 18 moves from the printing area PA toward the maintenance area MA from the left toward the right direction is provided on the right end portion of the cap retaining member 55.
Further, the cap retaining member 55 is not only constantly biased toward the left side by a pulling coil spring 59 (refer to
Furthermore, when the carriage 18 moves from the printing area PA to the maintenance area MA from the left toward the right direction, by the right face of the carriage 18 engaging with the engagement plate 55a of the cap retaining member 55, the cap retaining member 55 moves together with the carriage 18 to the right from the point of engagement.
That is, the cap retaining member 55 (cap member 52) rises by each support bar 58 respectively sliding from the left of each penetration groove 56 to the right, passing from the lower side flat portion 56a through the inclined face portion 56b and moving to the upper side flat portion 56c by abutting the right face of the carriage 18 and moving from left to right against the biasing force of the pulling coil spring 59. That is, the cap retaining member 55 (cap member 52) rises using the moving force of the carriage 18 by the carriage 18 pressing and moving the engagement plate 55a from left to right within the maintenance area MA.
At this time, the cap 57 gradually rises to approach the recording head 19 along with the rise of the cap retaining member 55. Furthermore, the cap 57 abuts the recording head 19 to surround each nozzle 24 at the stage when each support bar 58 reaches the upper side flat portion 56c of each penetration groove 56. That is, the recording head 19 is capped by the cap 57.
Here, since the biasing force that the carriage 18 receives from the pulling coil spring 59 increases as the carriage 18 moves to the right side since engaging with the engagement plate 55a of the cap retaining member 55, the load of the movement increases the further the carriage 18 moves to the right side.
Further, when the tube pump 53 is driven in a state in which the cap 57 abuts the recording head 19 to surround each nozzle 24 (state illustrated in
Further, the position of the carriage 18 when the recording head 19 opposes the cap 57 in the up and down direction in a state in which the cap member 52 is lowered (state in which each support bar 58 is respectively positioned at the lower side flat portion 56a within each penetration groove 56) is a head opposing position (flushing position). Furthermore, when periodically performing flushing during printing in which the ink is forcibly discharged from the recording head 19 into the cap 57, the carriage 18 is moved from the printing area PA to the head opposing position.
That is, the flushing during the printing is performed in a state in which the carriage 18 is moved to the head opposing position (state illustrated in
As illustrated in
In such a case, in a case where the carriage 18 is moved from the printing area PA to the head opposing position, the engagement member 61 is placed at a position that can engage with the carriage 18 between the printing area PA and the head opposing position. That is, the engagement member 61 is placed on the movement path of the carriage 18.
As illustrated in
A pressing face 63 that is parallel and flat with respect to the horizontal face is formed in the center portion of the lower end of the engagement member 61 in the left and right direction. A guide face 64 inclined to rise higher the further the guide face 64 is from the pressing face 63 in the left and right direction is formed on both left and right sides of the pressing face 63 at the lower end of the engagement member 61. Each guide face 64 is not only adjacent to be continuous with the pressing face 63 but is also inclined at an angle of approximately 30 degrees with respect to the horizontal face.
A pair of left and right compression coil springs 65 biased toward the lower side of the engagement member 61 in the perpendicular direction are fitted between the engagement member 61 and the attachment fitting 62. A locking portion 61a locked with respect to the attachment fitting 62 so that the engagement member 61 does not move to the lower side from a predetermined position due to the biasing force of the compression coil springs 65 is provided on the engagement member 61. Therefore, in a case where the carriage 18 is in the printing area PA, the engagement member 61 is always still at the predetermined position while receiving the biasing force of the compression coil springs 65.
Furthermore, in a case where the carriage 18 moves to the capping position and is pushed up by the cap member 52 and the abutting portion 67 abuts the engagement member 61, the engagement member 61 presses the abutting face 67a to the lower side that is the cap member 52 side using the pressing face 63 based on the biasing force of each compression coil spring 65.
That is, the engagement member 61 presses the abutting portion 67 toward the lower side based on the biasing force of each compression coil spring 65 in a state in which the pressing face 63 and the abutting face 67a are in face contact. In this regard, the engagement member 61 functions as a pressing member. In such a case, the engagement member 61 presses the abutting portion 67 toward the lower side at a position overlapping the sliding area of the slide member 34 on the sliding face 35 in the perpendicular direction.
Furthermore, in such a case, the action point of the pressing force on the abutting portion 67 by the engagement member 61 is at a position overlapping an area between the pair of left and right sliding contact portions 36 in the perpendicular direction. That is, the engagement member 61 transmits the biasing force of each compression coil spring 65 to the abutting portion 67 at a position overlapping the area between the pair of left and right sliding contact portions 36 in the perpendicular direction. Here, the width of the pressing face 63 in the left and right direction is narrower than the width of the abutting face 67a in the left and right direction.
As illustrated in
On the other hand, as illustrated in
Further, the upper limit position of the cap member 52 when the cap member 52 rises along with the movement of the carriage 18 to the capping position is always fixed regardless of whether the distance between the recording head 19 and the paper P is the first distance or the second distance. Therefore, the pressing force applied from the engagement member 61 when the carriage 18 is at the capping position is also always fixed.
Next, the size of the pressing force applied from the engagement member 61 (biasing force of the compression coil springs 65) when the carriage 18 is at the capping position will be described.
As illustrated in
In order to correct the posture of the carriage 18 tilted to the right side to be horizontal, it is necessary for the value of a pressing force Fz of the engagement member 61 pressing the carriage 18 at the capping position to satisfy the following Formula 1 and Formula 2. That is, it is necessary for the value of the pressing force Fz to satisfy Formula 1 from the balance of the force in the up and down direction and to satisfy Formula 2 from the balance of the rotation momentum.
Fz≧Cz−Mg (Formula 1)
Fz=Cz−Mg+H×Z1/D1+Cx×Z2/D1 (Formula 2)
In such a case, Cz is the biasing force acting on the carriage 18 toward the upper side in the perpendicular direction along with the abutting of the capping member 52 with the recording head 19 from the lower side in the perpendicular direction, and Mg is the weight of the carriage 18 itself. Further, H is the transport force by the timing belt 27, Cx is the biasing force of the pulling coil spring 59, D1 is the distance in the left and right direction from the center of rotation U to the Cz action point, the Mg action point, and the Fz action point. Furthermore, Z1 is the distance in the up and down direction from the center of rotation U to the H action point, and Z2 is the distance in the up and down direction from the center of rotation U to the Cx action point.
From Formula 1 described above, it can be said that the sum of the weight Mg of the carriage 18 itself and the pressing force Fz with which the engagement member 61 presses the carriage 18 at the capping position is equal to or greater than the biasing force Cz acting on the carriage 18 toward the upper side of the perpendicular direction along with the abutting of the cap member 52 with the recording head 19 from the lower side of the perpendicular direction.
Furthermore, if the pressing force Fz is a value satisfying Formula 1 and Formula 2 described above, in a case where capping of the recording head 19 is performed by the cap member 52, the cap member 52 is sufficiently closely adhered to the recording head 19 by the pressing force Fz acting on the carriage 18. In such a case, since the posture of the carriage 18 is also corrected to be horizontal by the pressing force Fz, capping failure of the recording head 19 by the cap member 52 is also suppressed.
Here, considering the load on the carriage motor 28 (refer to
Next, the electrical configuration of an ink jet printer 11 will be described.
As illustrated in
The control unit 70 is respectively electrically connected to the memory card interface 71, the operation unit 72, a linear encoder 73 detecting the movement amount of the carriage 18, the recording head 19, and a rotation mechanism 43. Further, the control unit 70 is respectively electrically connected to the carriage motor 28 and the pump motor 54 via a motor driver 74.
Furthermore, the control unit 70 respectively controls the driving of the recording head 19 and the rotation mechanism 43 based on signals respectively transmitted from the operation unit 72 and the linear encoder 73, and respectively controls the driving of each motor 28 and 54 via the motor driver 74. Further, the control unit 70 ascertains the position of the carriage 18 by computing the movement amount of the carriage 18 by counting pulse signals from the linear encoder 73 transmitted as the carriage 18 moves.
Further, the control unit 70 includes a storage unit 75 configured by a ROM, a RAM, a non-volatile memory, or the like. Various pieces of information such as the number of printed sheets input from the operation unit 72, image data read from the memory card (not shown), various control programs, and the like are respectively stored in the storage unit 75.
Next, the action of the ink jet printer 11 will be described.
Case where Distance Between Paper P and Recording Head 19 is First Distance
As illustrated in
At this time, since the carriage 18 is not engaged (collided) with the engagement member 61 at the head opposing position x3, the carriage 18 moves to the head opposing position x3 while maintaining the first speed V1 and stops (the movement speed V is 0). That is, until the carriage 18 moves from at least the printing area PA to the head opposing position x3 side, the carriage 18 does not decelerate and the movement speed V of the carriage 18 is maintained to be the first speed V1. In such a case, deceleration begins before the head opposing position x3 so that the carriage 18 can stop at the head opposing position x3.
In such a manner, since the carriage 18 is moved to the head opposing position x3 for performing flushing at the first speed V1 that is the same as during printing, a decrease in the printing throughput due to the periodic flushing during the printing is suppressed.
Further, in a case where cleaning is performed, the carriage 18 is moved from the head opposing position x3 to a capping position x4. At this time, there is a load on the carriage 18 due to the cap member 52 in the movement of the carriage 18 from the head opposing position x3 to the capping position x4. Therefore, the carriage 18 is moved from the head opposing position x3 to the capping position x4 at a second speed V2 (speed that is approximately one eighth of the first speed V1 in the present embodiment) that is slower than the first speed V1.
As a result, while the biasing force Cx of the pulling coil spring 59 acts on the carriage 18 further to the lower side from the center of rotation U via the engagement plate 55a toward the left, the transport force H by the timing belt 27 based on the driving force of the carriage motor 28 acts on the carriage 18 further to the upper side from the center of rotation U toward the right. Therefore, the carriage 18 tends to adopt a posture tilted to the right side.
However, since the capping of the recording head 19 is performed by the cap member 52 at this time, the carriage 18 is pushed up from the lower side by the cap member 52 and pressed by the engagement member 61 from the upper side toward the lower side. Therefore, the posture of the carriage 18 is corrected to a horizontal state.
In so doing, since the cap member 52 abuts the recording head 19 linearly and the recording head 19 is pressed against the cap member 52 via the carriage 18 by the engagement member 61, the cap member 52 and the recording head 19 are sufficiently closely adhered. In such a case, capping failure of the recording head 19 by the cap member 52 due to the tilt of the carriage 18 is also suppressed. Cleaning of the recording head 19 is then performed by driving the tube pump 53.
Here, even in a case where the carriage 18 is moved from the printing area PA to the capping position x4, since there is a load on the carriage 18 between the head opposing position x3 and the capping position x4 due to the cap member 52, the carriage 18 is moved to the capping position x4 at the second speed V2 after momentarily being stopped at the head opposing position x3.
Case Where Distance Between Paper P and Recording Head 19 is Second Distance
As illustrated in
At this time, since the carriage 18 is engaged (collided) with the engagement member 61 at a position x7 before reaching the head opposing position x3, the carriage 18 moves to the head opposing position x3 at the second speed V2 by decelerating from the first speed V1 to the second speed V2 before engaging with the engagement member 61 (between a position x5 and the position x7). That is, the carriage 18 moves to the head opposing position x3 at the second speed V2 by decelerating from the first speed V1 to 0 (stopped state) immediately before engaging with the engagement member 61 (position x6) and accelerating from 0 to the second speed V2.
In such a case, a portion (area from the position x5 to the position x2) of a deceleration area GA (area from the position x5 to the position x6) that is the area in which the movement speed V of the carriage 18 decelerates from the first speed V1 to 0 is included in the printing area PA (area from the position x1 to the position x2). Furthermore, in such a case, deceleration begins before the head opposing position x3 so that the carriage 18 can stop at the head opposing position x3.
Therefore, in a case where the carriage 18 moves from the printing area PA to the head opposing position x3, the timing at which the carriage 18 is decelerated is earlier than a case where the distance between the paper P and the recording head 19 described above is the first distance.
In such a case, the movement speed V of the carriage 18 at the position x7 where the abutting portion 67 of the carriage 18 and the engagement member 61 engage (oppose above and below in a state of contact) is slower than the movement speed V at a position that equates to the position x7 where the abutting portion 67 of the carriage 18 and at least a portion of the engagement member 61 are opposing above and below in a case where the distance between the paper P and the recording head 19 described above is the first distance.
In such a manner, since the carriage 18 is moved to the head opposing position x3 for performing flushing at the second speed V2 that is slower than the first speed V1 during the printing, the impact when the carriage 18 and the engagement member 61 engage (collide) is decreased compared to a case where the carriage 18 is moved to the head opposing position x3 at the first speed V1. Therefore, since the ink within each nozzle 24 escaping due to the impact of the engagement (collision) between the carriage 18 and the engagement member 61 is suppressed, the occurrence of ink ejection failure such as dot omission is decreased.
Incidentally, if the carriage 18 is moved to the head opposing position x3 while still at the first speed V1 in order to perform periodic flushing, the ink within each nozzle 24 escapes due to the impact of the engagement (collision) between the carriage 18 and the engagement member 61, inviting ink ejection failure such as dot omission.
Further, in a case where cleaning is to be performed, the carriage 18 is moved from the head opposing position x3 to the capping position x4. At this time, in the movement of the carriage 18 from the head opposing position x3 to the capping position x4, there is a load on the carriage 18 due to the cap member 52 in addition to a load due to the engagement member 61. Therefore, the carriage 18 is moved from the head opposing position x3 to the capping position x4 while still at the second speed V2.
Then, as described above, while the biasing force Cx of the pulling coil spring 59 acts on the carriage 18 via the engagement plate 55a toward the left further to the lower side of the center of rotation U, the transport force H by the timing belt 27 based on the driving force of the carriage motor 28 acts on the carriage 18 toward the right further to the upper side from the center of rotation U. Therefore, the carriage 18 tends to adopt a posture tilted to the right side.
However, since the capping of the recording head 19 is performed by the cap member 52 at this time, the carriage 18 is pushed up from the lower side by the cap member 52 and pressed by the engagement member 61 from the upper side toward the lower side. Therefore, the posture of the carriage 18 is corrected to a horizontal state.
In so doing, since the cap member 52 abuts the recording head 19 linearly and the recording head 19 is pressed against the cap member 52 via the carriage 18 by the engagement member 61, the cap member 52 and the recording head 19 are sufficiently closely adhered. In such a case, capping failure of the recording head 19 by the cap member 52 due to the tilt of the carriage 18 is also suppressed. Cleaning of the recording head 19 is then performed by driving the tube pump 53.
Here, in a case where the carriage 18 is moved from the printing area PA to the capping position x4, since there is a load on the carriage 18 between the position x6 and the capping position x4 due to at least one of the engagement member 61 and the cap member 52, the carriage 18 is moved from the position x6 to the capping position x4 at the second speed V2.
Here, the action when the abutting portion 67 of the carriage 18 and the engagement member 61 engage along with the movement of the carriage 18 to the capping position x4 will be described.
Now, in a case where the distance between the paper P and the recording head 19 is the second distance, as illustrated in
Furthermore, when the carriage 18 reaches the head opposing position x3, as illustrated in
Furthermore, when the carriage 18 reaches the capping position x4, as illustrated in
The following effects can be obtained through the embodiments described in detail above.
(1) In a case where the carriage 18 is moved to the capping position, the sum of the weight Mg of the carriage 18 itself and the pressing force Fz with which the engagement member 61 presses the carriage 18 to the lower side in the perpendicular direction is set to be equal to or greater than the biasing force Cz acting on the carriage 18 toward the upper side in the perpendicular direction along with the abutting of the cap member 52 with the recording head 19 from the lower side in the perpendicular direction. Therefore, when capping of the recording head 19 is performed at the capping position by the cap member 52, the carriage 18 is pressed down by the engagement member 61 from the upper side toward the lower side with a sufficient pressing force Fz against the biasing force Cz with which the carriage 18 is pressed up from the lower side by the cap member 52. In so doing, since the recording head 19 and the cap member 52 press against each other, the close adhesion force between the recording head 19 and the cap member 52 can be increased. Therefore, even if the height position of the carriage 18 supporting the recording head 19 is adjustable, the cap member 52 can be sufficiently closely adhered to the recording head 19.
Incidentally, in a case where the sum of the weight Mg of the carriage 18 itself and the pressing force Fz of the engagement member 61 is less than the biasing force Cz of the cap member 52, when capping of the recording head 19 is performed by the cap member 52, the carriage 18 is only pressed up from the lower side by the biasing force Cz of the cap member 52. That is, the carriage 18 is unilaterally pressed up by the cap member 52. Therefore, since the force with which to press down the cap member 52 onto the recording head 19 is missing, the cap member 52 cannot be sufficiently closely adhered to the recording head 19.
(2) Since the engagement member 61 presses the carriage 18 at a position overlapping the sliding area of the sliding member 34 on the sliding face 35 in the perpendicular direction, a pressing force can be effectively applied on the carriage 18 by the engagement member 61.
(3) Since the action point of the pressing force by the engagement member 61 on the abutting portion 67 of the carriage 18 is at a position overlapping an area between the pair of left and right sliding contact portions 36 in the perpendicular direction, the pressing force applied by the engagement member 61 on the abutting portion 67 of the carriage 18 can be received evenly by each sliding contact portion 36 of the slide member 34. Therefore, the carriage 18 can be stably supported by the slide member 34.
(4) Since the engagement member 61 presses the abutting portion 67 in a state in which the pressing face 63 that is horizontal and flat with respect to the abutting portion 67 of the carriage 18 is in face contact, the carriage 18 can be stably pressed by the engagement member 61.
(5) Since the engagement member 61 includes the guide face 64 leading the abutting portion 67 to the pressing face 63 when engaged with the abutting portion 67 of the carriage 18 in the left and right direction (scanning direction), the abutting portion 67 can be led to the pressing face 63 smoothly by the guide face 64. In such a case, since the guide face 64 of the engagement member 61 is inclined, the impact when the abutting portion 67 of the carriage 18 engages (collides with) the guide face 64 can be lessened.
(6) In a case where the carriage 18 moves from the printing area PA to the head opposing position x3, the timing at which the carriage 18 is decelerated is earlier in a case where the distance between the paper P and the recording head 19 is the second distance than the case of the first distance. Therefore, since the timing at which the carriage 18 is decelerated is earlier in a case where the carriage 18 and the engagement member 61 are engaged than in a case where the carriage 18 and the engagement member 61 are not engaged, the impact when the carriage 18 and the engagement member 61 engage can be reduced.
(7) In a case where the carriage 18 moves from the printing area PA to the head opposing position x3, since the movement speed of the carriage 18 at a position opposing the engagement member 61 is slower when the distance between the paper P and the recording head 19 is the second distance than in the case of the first distance, the impact when the carriage 18 and the engagement member 61 engage can be reduced.
(8) In a case where the carriage 18 is decelerated in a state in which the distance between the paper P and the recording head 19 is the second distance, since the movement speed is decelerated from the first speed V1 to 0 before being accelerated to the second speed V2 that is slower than the first speed V1, the control when decelerating the carriage 18 can be performed easily by the control unit 70.
(9) In a case where the distance between the paper P and the recording head 19 is the second distance, a portion of the deceleration area GA that is the area in which the movement speed of the carriage 18 is decelerated from the first speed V1 to 0 is included in the printing area PA. Therefore, compared to a case where none of the deceleration area GA is included in the printing area PA, the space needed for securing the deceleration area GA can be decreased, which contributes to the miniaturization of the ink jet printer 11.
(10) In a case where the distance between the paper P and the recording head 19 is the first distance, the carriage 18 and the engagement member 61 do not engage at the head opposing position x3. Therefore, in a case where the distance between the paper P and the recording head 19 is the first distance, when the carriage 18 is moved from the printing area PA to the head opposing position x3 to perform flushing during printing, the carriage 18 is moved to the head opposing position x3, without decelerating, at the first speed V1 which is the same speed as during the printing. Therefore, since the carriage 18 can be moved swiftly from the printing area PA to the head opposing position x3, a decrease in the throughput of the printing due to the periodic flushing performed during the printing can be suppressed.
(11) When capping of the recording head 19 is performed at the capping position by the cap member 52, since the carriage 18 is pressed to the cap member 52 side by the engagement member 61, capping of the recording head 19 by the cap member 52 can be performed regardless of the distance between the paper P and the recording head 19.
(12) When capping of the recording head 19 is performed at the capping position by the cap member 52, the posture of the carriage 18 can be stabilized by carriage 18 being pressed by the engagement member 61 to the cap member 52 side. Therefore, switching triggers for performing switching actions of various members can be arranged in the maintenance area MA through engagement with the carriage 18. As a result, space within the main body frame 12 can be saved, contributing to the miniaturization of the ink jet printer 11.
Here, the embodiments described above may be changed to the following different embodiments.
The entire disclosure of Japanese Patent Application No.: 2011-188623, filed Aug. 31, 2011 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2011-188623 | Aug 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4045802 | Fukazawa et al. | Aug 1977 | A |
5801725 | Neese et al. | Sep 1998 | A |
6010204 | Morioka et al. | Jan 2000 | A |
20060098041 | Lim | May 2006 | A1 |
20110063367 | Murayama et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
08-090782 | Apr 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20130050333 A1 | Feb 2013 | US |