The present application is based on, and claims priority from JP Application Serial Number 2021-032342, filed Mar. 2, 2021, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a liquid ejecting head and to a liquid ejecting apparatus equipped with such a liquid ejecting head.
Some liquid ejecting heads known in the art drive pressurizing devices such as piezoelectric elements to apply pressure to the liquid contained in a pressure chamber, thereby discharging the liquid to the outside via nozzles. For example, JP-A-2018-103418 discloses a liquid ejecting head that includes: a nozzle array; and two pressure chambers that lead to a nozzle and are arranged side by side in a direction intersecting the nozzle array.
If a plurality of pressure chambers leading to a nozzle are arranged along a nozzle array in contrast to the above liquid ejecting head, bubbles may be generated and remain around a bulkhead disposed inside a communicating passage via which the pressure chambers communicate with each other. In this case, the liquid ejecting head might fail to discharge the liquid efficiently.
According to an aspect of the present disclosure, a liquid ejecting head includes: a nozzle array including a plurality of nozzles via which liquid is to be discharged, the nozzles being arrayed in a first direction; a nozzle passage that leads to a predetermined nozzle out of the plurality of nozzles and that extends in a second direction intersecting the first direction; a first pressure chamber in which pressure is applied to the liquid; a second pressure chamber in which pressure is applied to the liquid and which is disposed adjacent to the first pressure chamber in the first direction; a first communicating passage via which the first pressure chamber communicates with an interior of the nozzle passage and which extends in a third direction intersecting both the first direction and the second direction at substantially right angles; and a second communicating passage via which the second pressure chamber communicates with the interior of the nozzle passage and which extends in the third direction. As viewed from the second direction, an inner wall surface of the first communicating passage positioned on a side of the second communicating passage includes a first inclined surface that extends in a fourth direction intersecting both the first direction and the third direction.
According to another aspect of the present disclosure, a liquid ejecting apparatus includes: the above liquid ejecting head; and a controller that controls a liquid ejecting operation of the liquid ejecting head.
Some embodiments of the present disclosure will be described below with reference to the accompanying drawings. It should be noted that the sizes and scales of components in each drawing may be different from actual ones. Those embodiments are preferred, concrete examples with appropriate technical limitations. Therefore, the present disclosure is not limited to the embodiments unless otherwise specified.
With reference to
As illustrated in
The liquid ejecting apparatus 100 further includes a controller 90, a moving mechanism 91, a transport mechanism 92, and a circulation mechanism 94. The controller 90, which includes: a processing circuit such as a central processing unit (CPU) or a field-programmable gate array (FPGA); and a memory circuit such as semiconductor memory, controls the operations of components constituting the liquid ejecting apparatus 100.
The moving mechanism 91 feeds the medium P in the +Y direction under the control of the controller 90. Hereinafter, any of the ±Y directions, which are opposite to each other, are referred to as the Y-axial direction.
The transport mechanism 92 moves a plurality of liquid ejecting heads 1 in the ±X directions, which are opposite to each other, under the control of the controller 90. Hereinafter, any of the ±X directions is referred to as the X-axial direction. The X-axial direction intersects the Y-axial direction, for example, at right angles. The transport mechanism 92 includes: a storage case 921; and an endless belt 922 to which the storage case 921 is fixed. The storage case 921 houses the plurality of liquid ejecting heads 1 arranged side by side in the X-axial direction, with their long sides extending in the Y-axial direction. In addition to the liquid ejecting heads 1, the liquid container 93 may further house the storage case 921.
The circulation mechanism 94 supplies the inks contained in the liquid container 93 to the liquid ejecting heads 1 via supply passages 53 (see
The controller 90 controls an ink ejecting operation of each liquid ejecting head 1. More specifically, the controller 90 transmits, to the liquid ejecting heads 1, drive signals COM for driving the liquid ejecting heads 1 and control signals SI for controlling the liquid ejecting heads 1. In accordance with the drive signals COM and under the control of the control signals SI, the liquid ejecting heads 1 discharges the inks in the −Z direction via a predetermined number of nozzles N (see
The liquid ejecting heads 1 discharge the inks via a predetermined number of nozzles N in relation to the feeding of the medium P by the moving mechanism 91 and the reciprocating movement of the liquid ejecting heads 1 by the transport mechanism 92. In this way, the liquid ejecting heads 1 place the inks on the surface of the medium P, thereby forming a desired image thereon. In this embodiment, the liquid ejecting apparatus 100 may be of a serial type that forms an image by causing the liquid ejecting heads 1 to reciprocate relative to the medium P.
As illustrated in
On the +Z-directional side with respect to the communicating board 2, the pressure chamber substrate 3, the vibration plate 4, the piezoelectric elements PZ mounted on the vibration plate 4, the reservoir forming substrate 5, the sealing member, and the wiring substrate 8 are disposed. On the −Z-directional side with respect to the communicating board 2, the nozzle substrate 60 and the compliance sheets 61 and 62 are disposed. All of the components constituting the liquid ejecting head 1 may be sheet members with their long sides extending in substantially the Y-axial direction. Those components may be bonded together with glue.
As illustrated in
The communicating board 2 is mounted on the +Z-directional-side surface of the nozzle substrate 60. The communicating board 2 may be a sheet member on which ink passages are formed. As illustrated in
Each of the supply passage 21 and the ejection passage 27 in the communicating board 2 is a through-hole formed so as to extend in the Y-axial direction. The junction passages 22 are arrayed in the Y-axial direction. Likewise, ones of the coupling passages 23 which are positioned closer to the −X-directional side are arrayed in the Y-axial direction; ones of the communicating passages 24 which are positioned closer to the −X-directional side are arrayed in the Y-axial direction; the nozzle passages 25 are arrayed in the Y-axial direction; the remaining ones of the communicating passage 24, which are positioned closer to the +X-directional side, are arrayed in the Y-axial direction; the remaining ones of the coupling passages 23, which are positioned closer to the +X-directional side, are arrayed in the Y-axial direction; and the junction passages 26 are arrayed in the Y-axial direction. All of the junction passages 22, the nozzle passages 25, and the junction passages 26 are formed in the −Z-directional-side surface of the communicating board 2. In this case, each of the coupling passages 23 and the communicating passages 24 is a through-hole. The communicating board 2 may be manufactured in the same manner as the nozzle substrate 60 described above. More specifically, the communicating board 2 may be manufactured by subjecting a monocrystalline silicon substrate to a semiconductor manufacturing technique. However, the communicating board 2 may be manufactured as appropriate from any other known material with any other known method. In this embodiment, one junction passage 22 branches into two coupling passages 23; however, one junction passage 22 may branch into any other number of coupling passages 23 arrayed in the Y-axial direction. This example is also applicable to each junction passage 26.
The pressure chamber substrate 3 is mounted on the +Z-directional-side surface of the communicating board 2. The pressure chamber substrate 3 is a sheet member in which a plurality of pressure chambers CV are formed. As illustrated in
The vibration plate 4 is mounted on the +Z-directional-side surface of the pressure chamber substrate 3. The vibration plate 4 may be an elastically deformable sheet member. The +Z-directional-side surface of the vibration plate 4 is provided with the piezoelectric elements PZ related to the respective pressure chambers CV. Each piezoelectric element PZ, which is elongated in the X-axial direction, is a passive element that deforms in response to a drive signal COM. The plurality of piezoelectric elements PZ are arrayed in two rows in the Y-axial direction in relation to the pressure chambers CV. When the vibration plate 4 vibrates in response to the deforming of a certain piezoelectric element PZ, the inner pressure of the pressure chamber CV related to the piezoelectric element PZ varies, forcing the ink to the outside via the corresponding nozzle N.
The reservoir forming substrate 5 is mounted on the +Z-directional-side surface of the communicating board 2. The reservoir forming substrate 5 may be a member having a long side extending in the Y-axial direction, in which ink passages are formed. More specifically, the reservoir forming substrate 5 includes a supply passage 53 and an ejection passage 54 (see
As illustrated in
The reservoir forming substrate 5 further includes an aperture 50, in which the pressure chamber substrate 3, the vibration plate 4, the wiring substrate 8, and the sealing member (not illustrated) are mounted. The reservoir forming substrate 5 may be manufactured by subjecting a resin material to injection molding. However, the reservoir forming substrate 5 may be manufactured as appropriate from any other known material with any other known method.
As illustrated in
Next, with reference to
For better understanding of the basic passage configuration of the liquid ejecting head 1 according to this embodiment, the description will be focused on a section within the +Y-directional-side area. The basic passage configuration in this section includes four pressure chambers CV that lead to a nozzle N and are arrayed in two rows in the Y-axial direction in which the nozzle array Ln is formed. Out of these pressure chambers CV, two are disposed adjacent to each other within the −X-directional-side area, and the others are disposed adjacent to each other within the +X-directional-side area.
In this embodiment, the Y-axial direction corresponds to the first direction; the X-axial direction corresponds to a second direction; and the Z-axial direction corresponds to a third direction. In the description below, one of the Y-axial direction and the first direction, one of the X-axial direction and the second direction, and one of the Z-axial direction and the third direction will be used as appropriate.
A concrete description of the basic passage configuration in this embodiment will be given from the −X-directional to +X-directional side. This basic passage configuration includes: a junction passage 22 that is coupled to the supply passage 21 and extends in the X-axial direction; and two coupling passages 23 that are coupled to the junction passage 22 and each extend in the Z-axial direction (third direction). Out of the two coupling passages 23, one positioned closer to the +Y-directional side is referred to as a first coupling passage 231, and the other, which is positioned closer to the −Y-directional side of the first coupling passage 231, is referred to as a second coupling passage 232.
The interior of the first coupling passage 231 communicates with a pressure chamber CV extending in the X-axial direction (second direction). The pressure chamber CV with which the interior of the first coupling passage 231 communicates is referred to as a first pressure chamber CV1. The interior of the first coupling passage 231 communicates with the −X-directional area of the first pressure chamber CV1. Likewise, the interior of the second coupling passage 232 communicates with a pressure chamber CV positioned adjacent to the first pressure chamber CV1 in the Y-axial direction (first direction), more specifically, on the −Y-directional side and extends in the X-axial direction (second direction). The pressure chamber CV with which the interior of the second coupling passage 232 communicates is referred to as a second pressure chamber CV2. The interior of the second coupling passage 232 communicates with the −X-directional area of the second pressure chamber CV2.
The first pressure chamber CV1 communicates with the interior of a communicating passage 24 extending in the Z-axial direction (third direction). The communicating passage 24, the interior of which communicates with the first pressure chamber CV1, is referred to as a first communicating passage 241. The interior of the first communicating passage 241 communicates with the +X-directional area of the first pressure chamber CV1. Likewise, the second pressure chamber CV2 communicates with the interior a communicating passage 24 extending in the Z-axial direction (third direction). The communicating passage 24, the interior of which communicates with the second pressure chamber CV2, is referred to as a second communicating passage 242. The interior of the second communicating passage 242 communicates with the +X directional area of the second pressure chamber CV2.
Both of the first communicating passage 241 and the second communicating passage 242 are coupled to a nozzle passage 25 extending in the X-axial direction (second direction). The nozzle passage 25 extends in the X-axial direction (second direction), which intersects the Y-axial direction (first direction). In this case, the X-axial direction may intersect the Y-axial direction at any given angles, such as right angles, within the X-Y plane. Both of the first communicating passage 241 and the second communicating passage 242 are coupled to the −X-directional side of the nozzle passage 25.
As viewed from the Z-axial direction, the nozzle N is positioned at substantially the center, in the X-axial and Y-axial directions, of the nozzle passage 25 having a substantially rectangular shape. The “substantially the center” described herein does not necessarily have to be a perfect center and may be a location that contains some potential errors but can be permitted to be the center.
It can be said that the first communicating passage 241 via which the first pressure chamber CV1 communicates with the interior of the nozzle passage 25 extends in the Z-axial direction (third direction), which intersects both the Y-axial direction (first direction) and the X-axial direction (second direction) at substantially right angles. Likewise, the second communicating passage 242 via which the second pressure chamber CV2 communicates with the interior of the nozzle passage 25 extends in the Z-axial direction (third direction).
The nozzle passage 25 is coupled to two other communicating passages 24, both of which extend in the Z-axial direction (third direction). Out of the two communicating passages 24, one positioned closer to the +Y-directional side is referred to as a third communicating passage 243, and the other, which is positioned closer to the −Y directional-side of the third communicating passage 243, is referred to as a fourth communicating passage 244. Both of the third communicating passage 243 and the fourth communicating passage 244 are coupled to the +X-directional side of the nozzle passage 25.
The interior of the third communicating passage 243 communicates with a pressure chamber CV extending in the X-axial direction. The pressure chamber CV with which the interior of the third communicating passage 243 communicates is referred to as a third pressure chamber CV3. The interior of the third communicating passage 243 communicates with the −X directional area of the third pressure chamber CV3. Likewise, the interior of the fourth communicating passage 244 communicates with the pressure chamber CV extending in the Z-axial direction (third direction). The pressure chamber CV with which the interior of the fourth communicating passage 244 communicates is referred to as a fourth pressure chamber CV4. The interior of the fourth communicating passage 244 communicates with the −X directional area of the fourth pressure chamber CV4.
The third pressure chamber CV3 is positioned adjacent to the first pressure chamber CV1 in the X-axial direction (second direction), more specifically, on the +X-directional side of the first pressure chamber CV1. The fourth pressure chamber CV4 is positioned adjacent to the third pressure chamber CV3 in the Y-axial direction (first direction), more specifically, on the −Y-directional side of the third pressure chamber CV3.
It can be said that the third communicating passage 243 via which the third pressure chamber CV3 communicates with the interior of the nozzle passage 25 extends in the Z-axial direction (third direction), which intersects both the Y-axial direction (first direction) and the X-axial direction (second direction) at right angles. Likewise, the fourth communicating passage 244 via which the fourth pressure chamber CV4 communicates with the interior of the nozzle passage 25 extends in the Z-axial direction (third direction).
The third pressure chamber CV3 communicates with the interior of a coupling passage 23 extending in the Z-axial direction (third direction). The coupling passage 23, the interior of which communicates with the third pressure chamber CV3, is referred to as a third coupling passage 233. The interior of the third coupling passage 233 communicates with the +X-directional area of the third pressure chamber CV3. Likewise, the fourth pressure chamber CV4 communicates with the interior of the coupling passage 23 extending in the Z-axial direction (third direction). The coupling passage 23, the interior of which communicates with the fourth pressure chamber CV4, is referred to as a fourth coupling passage 234. The interior of the fourth coupling passage 234 communicates with the +X-directional area of the fourth pressure chamber CV4.
Both of the third coupling passage 233 and the fourth coupling passage 234 are coupled to a junction passage 26 extending in the X-axial direction. The junction passage 26 is coupled to the ejection passage 27.
As viewed from the Z-axial direction, the layout of the junction passage 22, the first coupling passage 231, the second coupling passage 232, the first communicating passage 241, the second communicating passage 242, the nozzle passage 25, the third coupling passage 233, the fourth coupling passage 234, and the junction passage 26 in this embodiment is substantially symmetric with respect to the nozzle N. The “substantially symmetric” does not necessarily have to be “perfectly symmetric” and may contain some potential error caused by distortion during etch forming as long as the error is within a permissible range.
The +Z-directional-side surface of the vibration plate 4 is provided with a first piezoelectric element PZ1 and a second piezoelectric element PZ2. The first piezoelectric element PZ1 faces the first pressure chamber CV1 in the +Z direction and extends in the X-axial direction; the second piezoelectric element PZ2 faces the second pressure chamber CV2 in the +Z direction and extends in the X-axial direction. Likewise, the +Z-directional-side surface of the vibration plate 4 is provided with a third piezoelectric element PZ3 and a fourth piezoelectric element PZ4. The third piezoelectric element PZ3 faces the third pressure chamber CV3 in the +Z direction and extends in the X-axial direction; the fourth piezoelectric element PZ4 faces the fourth pressure chamber CV4 in the +Z direction and extends in the X-axial direction.
The passage in the liquid ejecting head 1 includes, as constituting elements or units, a plurality of basic passage configurations described above, which are arrayed at predetermined intervals in the Y-axial direction, in accordance with the number of nozzles N.
As illustrated in
The wiring substrate 8 includes a driver circuit 81 mounted thereon which drives the piezoelectric elements PZ. The driver circuit 81 selectively transmits the drive signals COM to the piezoelectric elements PZ under the control of the control signals SI. As illustrated in
The wiring substrate 8 includes: a main unit 82 on which the driver circuit 81 is mounted; and a connection end 83 that is angled at approximately 90° and coupled to the vibration plate 4. When the wiring substrate 8 is mounted on the vibration plate 4, the connection end 83 is substantially parallel to the vibration plate 4, but the main unit 82 is substantially vertical to the vibration plate 4.
In this embodiment, each liquid ejecting head 1 is provided with the sealing member (not illustrated), which protects a plurality of piezoelectric elements PZ and mechanically reinforces both the pressure chamber substrate 3 and the vibration plate 4. This sealing member has a recess in which the piezoelectric elements PZ are arranged. In addition, the sealing member is bonded to the +Z-directional-side surface of the vibration plate 4 with glue, for example, inside the aperture 50 of the reservoir forming substrate 5.
In this embodiment, as illustrated in
The ink that has flown through the first pressure chamber CV1 flows into the nozzle passage 25 via the first communicating passage 241, whereas the ink that has flown through the second pressure chamber CV2 flows into the nozzle passage 25 via the second communicating passage 242. After having flown into the nozzle passage 25, part of the ink flows into the third pressure chamber CV3 via the third communicating passage 243, whereas the remaining part of the ink flows into the fourth pressure chamber CV4 via the fourth communicating passage 244.
The ink that has flown through the third pressure chamber CV3 flows into the junction passage 26 via the third coupling passage 233, whereas the ink that has flown through the fourth pressure chamber CV4 flows into the junction passage 26 via the fourth coupling passage 234. After having flown into the junction passage 26, the ink flows through the ejection passage 27 and the ejection passage 54 in this order and is discharged to the outside via the ejection port 52.
When the first piezoelectric element PZ1 is driven in response to the drive signal COM, part of the ink filled in the first pressure chamber CV1 flows through the first communicating passage 241 and the nozzle passage 25 in this order and is then discharged to the outside via the nozzle N. Likewise, when the second piezoelectric element PZ2 is driven in response to the drive signal COM, part of the ink filled in the second pressure chamber CV2 flows through the second communicating passage 242 and the nozzle passage 25 in this order and is then discharged to the outside via the nozzle N.
When the third piezoelectric element PZ3 is driven in response to the drive signal COM, part of the ink filled in the third pressure chamber CV3 flows through the third communicating passage 243 and the nozzle passage 25 in this order and is then discharged to the outside via the nozzle N. Likewise, when the fourth piezoelectric element PZ4 is driven in response to the drive signal COM, part of the ink filled in the fourth pressure chamber CV4 flows through the fourth communicating passage 244 and the nozzle passage 25 in this order and is then discharged to the outside via the nozzle N.
In this embodiment, when discharging the ink via the nozzle N, the driver circuit 81 may transmit drive signals COM having substantially the same waveform to the first piezoelectric element PZ1 to the fourth piezoelectric element PZ4 related to the nozzle N. However, for the purpose of maintaining the performance of ejecting ink via the nozzle N, the driver circuit 81 may transmit drive signals COM having different waveforms.
In this embodiment, each liquid ejecting head 1 discharges the ink from four pressure chambers CV (first pressure chamber CV1, second pressure chamber CV2, third pressure chamber CV3, and fourth pressure chamber CV4) to the outside via a nozzle N. In this case, each liquid ejecting head 1 can improve the ink ejecting performance by increasing the amount of ink to be discharged via a nozzle N. This configuration can discharge ink appropriately, especially when the ink is viscous or made up of large-diameter particles, for example, as opposed to a configuration in which ink is discharged from a single pressure chamber via a nozzle N.
In this embodiment, as illustrated in
As illustrated in
As viewed from the X-axial direction (second direction), as illustrated in
As viewed from the X-axial direction (second direction), as illustrated in
In this embodiment, as illustrated in
As illustrated in
As viewed from the X-axial direction (second direction), as illustrated in
As viewed from the X-axial direction (second direction), as illustrated in
In this embodiment, as illustrated in
The protective film 75 includes: a first layer 751 formed on the outer surface of the bulkhead 71; and a second layer 752 formed on the outer surface of the first layer 751. The first layer 751 may be made of an oxide of silicon (Si), whereas the second layer 752 may be made of an oxide (TaOx) of tantalum (Ta).
In this embodiment, the communicating board 2 provided with the bulkhead 71 may have a base material made of unoxidized silicon (Si) such as monocrystalline silicon, as described above. The first layer 751 may be made of an oxide of silicon (Si) such as silicon dioxide (SiO2) or silicon monoxide (SiO). The second layer 752 may be made of an oxide (TaOx) of tantalum (Ta) such as tantalum oxide (TaO3) or tantalum pentoxide (Ta2O5). Alternatively, the second layer 752 may be made of an oxide of hafnium (HfOx), diamond-like carbon (DLC), or aluminum oxide (AL2O3), instead of an oxide of tantalum (TaOx).
In this embodiment, the first layer 751 may be formed by subjecting a silicon substrate of the bulkhead 71 to a thermal oxidation process. More specifically, the silicon substrate, such as a silicon wafer, may be placed inside a baking furnace. In this case, the inner atmosphere of the baking furnace may be adjusted to an oxygen atmosphere. Then, the silicon substrate may be subjected to a thermal process at 200° C., for example. As a result, oxygen in the baking furnace may be bonded to the silicon contained in the silicon substrate to form the first layer 751 on the outer surface of the silicon substrate of the bulkhead 71. In this case, the thickness of the first layer 751 may be in the range from 1 to 100 nm.
The second layer 752 may be formed on the outer surface of the first layer 751 through atomic layer deposition (ALD). More specifically, the silicon substrate on which the first layer 751 has been formed in the above manner may be removed from the baking furnace, and then may be placed inside an ALD deposition apparatus, in which tantalum may be applied to the outer surface of the first layer 751 so that the second layer 752 may be formed on the outer surface of the first layer 751. In this case, the thickness of the second layer 752 may be in the range from 1 to 50 nm. Alternatively, the second layer 752 may be formed by another thin-film forming method, such as plasma chemical vapor deposition (CVD), instead of ALD. In this way, the bulkhead 71 on which the first layer 751 and the second layer 752 are stacked in this order is formed.
With reference to
Each of the supply passage 21 and the supply passage 53 stores ink to be supplied to the passage including the plurality of basic passage configurations. Each of the ejection passage 27 and the ejection passage 54 stores ink that has not been used by the liquid ejecting head 1 and will be discharged via the passage including the plurality of basic passage configurations.
Each of the supply passage 53 and the ejection passage 54 is coupled to the circulation mechanism 94, which supplies the ink to the liquid ejecting head 1 via the supply passage 53 and collects the ink discharged from the liquid ejecting head 1 via the ejection passage 54, for the sake of resupplying the ink to the liquid ejecting head 1 via the supply passage 53. The circulation mechanism 94 includes a first supply pump 941, a second supply pump 942, a storage container 943, a collecting passage 944, and a supply passage 945.
The first supply pump 941 is used to supply the ink contained in the liquid container 93 to the storage container 943, which is a sub-tank that temporarily stores the ink supplied from the liquid container 93. The collecting passage 944 is coupled to both the ejection passage 54 and the storage container 943. Via the ejection passage 54 and the collecting passage 944, the ink is collected in the storage container 943.
The ink stored in the liquid container 93 is supplied to the storage container 943 by the first supply pump 941. In addition, the ink that has been discharged from the liquid ejecting head 1 via the passages in each basic passage configuration, the ejection passage 54, and the collecting passage 944 is supplied to the storage container 943 via the collecting passage 944. The second supply pump 942 is used to force the ink stored in the storage container 943 into the liquid ejecting head 1. The supply passage 945 is coupled to both the supply passage 53 and the storage container 943. Via the supply passage 945 and the supply passage 53, the ink stored in the storage container 943 is supplied to the liquid ejecting head 1.
Some effects of the first embodiment described above effects will be described below.
According to this embodiment, a liquid ejecting head 1 is provided with a bulkhead 71 that extends in both the −Z direction and the X-axial direction. The bulkhead 71 is disposed within a space that leads to a nozzle passage 25 and is defined between a first communicating passage 241 and a second communicating passage 242, both of which extend in the Z-axial direction (third direction). An inner wall surface of the first communicating passage 241 positioned on a side of the second communicating passage 242 includes a first inclined surface 711, which extends in a fourth direction D4 diagonally intersecting the Y-axial direction (first direction) and the Z-axial direction (third direction). Likewise, an inner wall surface of the second communicating passage 242 positioned on a side of the first communicating passage 241 includes a second inclined surface 712, which extends in a fifth direction D5 diagonally intersecting the Y-axial direction (first direction), the Z-axial direction (third direction), and the fourth direction D4.
The above configuration, when a first piezoelectric element PZ1 is driven, discharges part of ink filled in a first pressure chamber CV1 via the first communicating passage 241, the nozzle passage 25, and a nozzle N in this order. Likewise, when a second piezoelectric element PZ2 is driven, the configuration discharges part of ink filled in a second pressure chamber CV2 via the second communicating passage 242, the nozzle passage 25, and the nozzle N in this order. If the end of the bulkhead 71 is disposed in substantially parallel with the X-Y plane, bubbles generated in the ink flowing through the first communicating passage 241 and the second communicating passage 242 may remain around the bulkhead 71. This configuration, however, successfully causes bubbles in the ink to move smoothly in the +Z direction, thereby allowing the liquid ejecting head 1 to continue to discharge liquid efficiently.
The bulkhead 71 may include: a first inclined surface 711 that extends in the fourth direction D4; and a second inclined surface 712 that extends in the fifth direction D5. This configuration successfully causes bubbles in the ink to uniformly move between the first communicating passage 241 and the second communicating passage 242.
In the liquid ejecting head 1, the inner wall surface of the first communicating passage 241 positioned on the side of the second communicating passage 242 may include a first communicating-passage inner wall surface 713 that extends in the Z-axial direction (third direction). The first communicating-passage inner wall surface 713 is joined to the first inclined surface 711. This configuration helps bubbles in the ink move smoothly in the +Z direction.
In the liquid ejecting head 1, the first inclined surface 711 may be joined to the second inclined surface 712. This configuration helps bubbles in the ink uniformly move between the first communicating passage 241 and the second communicating passage 242.
The liquid ejecting head 1 may further include a third pressure chamber CV3, a fourth pressure chamber CV4, a third communicating passage 243, and a fourth communicating passage 244. The liquid ejecting head 1 may be provided with a bulkhead 72 that extends in both the −Z direction and the X-axial direction (second direction). The bulkhead 72 may be disposed within a space that leads to the nozzle passage 25 and is defined between the third communicating passage 243 and the fourth communicating passage 244, both of which extend in the Z-axial direction (third direction). An inner wall surface of the third communicating passage 243 positioned on a side of a fourth communicating passage 244 may include a third inclined surface 721 that extends in the fourth direction D4. Likewise, an inner wall surface of the fourth communicating passage 244 positioned on a side of a third communicating passage 243 may include a fourth inclined surface 722 that extends in the fifth direction D5.
The above configuration, when a third piezoelectric element PZ3 is driven, discharges part of ink filled in the third pressure chamber CV3 via the third communicating passage 243, the nozzle passage 25, and the nozzle N in this order. Likewise, when a fourth piezoelectric element PZ4 is driven, the configuration discharges part of ink filled in the fourth pressure chamber CV4 via the fourth communicating passage 244, the nozzle passage 25, and the nozzle N in this order. If the end of the bulkhead 72 is disposed in substantially parallel with the X-Y plane, bubbles generated in the ink flowing through the third communicating passage 243 and the fourth communicating passage 244 may remain around the bulkhead 72. This configuration, however, successfully causes bubbles in the ink to move smoothly in the +Z direction, thereby allowing the liquid ejecting head 1 to continue to discharge liquid efficiently.
In the liquid ejecting head 1, an angle between the Y-axial direction (first direction) and each of the fourth direction D4 and the fifth direction D5 may be approximately 60°. This configuration helps bubbles in the ink move smoothly in the +Z direction. Alternatively, an angle between the Y-axial direction (first direction) and each of the fourth direction D4 and the fifth direction D5 may be in a range from 30 to 70°. This configuration can also produce substantially the same effect.
In the liquid ejecting head 1, a protective film 75 may be formed on an outer surface of the bulkhead 71. More specifically, the protective film 75 may be formed on the first inclined surface 711, the second inclined surface 712, the first communicating-passage inner wall surface 713, and the second communicating-passage inner wall surface 714. Moreover, the protective film 75 may include: a first layer 751; and a second layer 752 formed on an outer surface of the first layer 751. The first layer 751 may be made of an oxide of silicon, whereas the second layer 752 may be made of an oxide of tantalum.
The above configuration helps to protect the bulkhead 71 from damage. Thus, forming the protective film 75 in the above manner helps to protect a portion between the first inclined surface 711 and the second inclined surface 712 by rounding this portion, especially when the first inclined surface 711 is joined to the second inclined surface 712 at an acute angle. Consequently, it is possible to improve the resistance of the bulkheads 71 and 72 to ink and the strength of the bond between layers.
In the liquid ejecting head 1, the first layer 751 may be made of an oxide of silicon, whereas the second layer 752 may be made of an oxide of hafnium, diamond-like carbon, or aluminum oxide. This configuration also helps to protect a portion between the first inclined surface 711 and the second inclined surface 712 by rounding this portion, especially when the first inclined surface 711 is joined to the second inclined surface 712 at an acute angle. Consequently, it is possible to improve the resistance of the bulkheads 71 and 72 to ink and the strength of the bond between layers.
According to this embodiment, the liquid ejecting apparatus 100 includes: the above liquid ejecting head 1; and a controller 90 that controls an ink ejecting operation of the liquid ejecting head 1.
The above configuration is provided with the liquid ejecting head 1 that causes bubbles in ink to move smoothly in the +Z direction, and thus provides a liquid ejecting apparatus 100 that can continue to discharge liquid efficiently.
The end of the bulkhead 71A in the second embodiment which protrudes in the −Z direction has a different shape from that of the bulkhead 71 in the first embodiment. Other components in the second embodiment are substantially the same as those in the first embodiment. The description below will be mainly focused on a configuration different from that of the first embodiment, and the others will not be described. In
As illustrated in
In this embodiment, the end of the bulkhead 71A is provided with the first inclined surface 711A that extends in the fourth direction D4, the second inclined surface 712A that extends in the fifth direction D5, and the nozzle-passage inner wall surface 251. Further, in this embodiment, the nozzle-passage inner wall surface 251 of the bulkhead 71A extends in the X-axial direction (second direction) and is joined to both the first inclined surface 711A and the second inclined surface 712A. In this case, the nozzle-passage inner wall surface 251 is substantially parallel to the X-Y plane.
Some effects of the second embodiment described above will be described below.
According to the second embodiment, a bulkhead 71A of a liquid ejecting head 1A is provided with a nozzle-passage inner wall surface 251, which extends in the X-axial direction (second direction) and is joined to both a first inclined surface 711A and a second inclined surface 712A. This configuration, even if ink flowing through a first communicating passage 241 and a second communicating passage 242 generates bubbles, successfully causes these bubbles to move smoothly in the +Z direction along both the first inclined surface 711A and the second inclined surface 712A of the bulkhead 71A without leaving the bubbles around the nozzle-passage inner wall surface 251, which extends in the X-axial direction (second direction).
The end of the bulkhead 71B in the third embodiment which protrudes in the −Z direction has a different shape from that of the bulkhead 71 in the first embodiment. Other components in the second embodiment are substantially the same as those in the first embodiment. The description below will be mainly focused on a configuration different from that of the first embodiment, and the others will not be described. In
As illustrated in
Some effects of the third embodiment described above will be described below.
According to the third embodiment, a bulkhead 71B in a liquid ejecting head 1B includes a first communicating-passage inner wall surface 713B, a second communicating-passage inner wall surface 714B, and a first inclined surface 711B that is joined to both the first communicating-passage inner wall surface 713B and the second communicating-passage inner wall surface 714B. This configuration, even if ink flowing through a first communicating passage 241 and a second communicating passage 242 generates bubbles, successfully causes these bubbles to move smoothly in the +Z direction along the first inclined surface 711B.
As illustrated in
The liquid ejecting head 1C includes a first communicating passage 241 and a second communicating passage 242, both of which extend in the Z-axial direction (third direction). As viewed from the X-axial direction, the first communicating passage 241 has a first communicating-passage outer wall surface 2411 as its outer surface, whereas the second communicating passage 242 has a second communicating-passage outer wall surface 2421 as its outer surface.
As viewed from the X-axial direction, the nozzle passage 25C that extends in the Y-axial direction (first direction) has a first nozzle-passage outer wall surface 252 as its +Y-directional outer surface and also has a second nozzle-passage outer wall surface 253 as its −Y-directional outer surface.
In this embodiment, the first nozzle-passage outer wall surface 252 is evenly joined to the first communicating-passage outer wall surface 2411 without any step therebetween in the X-axial direction. Likewise, the second nozzle-passage outer wall surface 253 is evenly joined to the second communicating-passage outer wall surface 2421 without any step therebetween in the X-axial direction.
Some effects of the fourth embodiment described above will be described below.
According to the fourth embodiment, a liquid ejecting head 1C includes a first nozzle-passage outer wall surface 252 and a second nozzle-passage outer wall surface 253. The first nozzle-passage outer wall surface 252 is evenly joined to a first communicating-passage outer wall surface 2411 without any step therebetween in the X-axial direction. Likewise, the second nozzle-passage outer wall surface 253 is evenly joined to a second communicating-passage outer wall surface 2421 without any step therebetween in the X-axial direction. This configuration, when ink flows from a first pressure chamber CV1 into the first communicating passage 241, successfully causes this ink to smoothly flow into the nozzle passage 25C. Likewise, when ink flows from a second pressure chamber CV2 into the second communicating passage 242, the configuration successfully causes this ink to smoothly flow into the nozzle passage 25C.
In the first to fourth embodiments described above, each of the liquid ejecting heads 1, 1A, 1B, and 1C includes, as basic passage components, four pressure chambers CV that lead to a nozzle N and are arrayed in two rows in the Y-axial direction, or in an extension direction of a nozzle array Ln. Out of these pressure chambers CV, two are positioned within a −X-directional area, and the others are positioned within a +X-directional area. The pressure chambers CV within the −X-directional area are positioned adjacent to the respective pressure chambers CV within the +X-directional area. However, the present disclosure is not limited to such a configuration. Alternatively, a liquid ejecting head may be modified such that two of the pressure chambers CV arrayed in a row within the −X-directional area and one of the other pressure chambers CV array in a row within the +X-directional area lead to a nozzle N. Alternatively, a liquid ejecting head may be modified such that three of the pressure chambers CV arrayed in a row within the −X-directional area and three of the other pressure chambers CV arrayed in a row within the +X-directional area lead to a nozzle N. Alternatively, a liquid ejecting head may be modified such that only two of the pressure chambers CV arrayed in a row within the −X-directional area lead to a nozzle N. Alternatively, a liquid ejecting head may be modified such that only three of the pressure chambers CV arrayed in a row within the −X-directional area lead to a nozzle N. In short, a liquid ejecting head has only to be configured such that a plurality of pressure chambers CV arrayed in the Y-axial direction (first direction) may lead to a nozzle N.
In the first embodiment described above, the protective film 75 is formed on the outer surface of the bulkhead 71. More specifically, the protective film 75 may be formed on the first inclined surface 711, the second inclined surface 712, the first communicating-passage inner wall surface 713, and the second communicating-passage inner wall surface 714. However, the present disclosure is not limited to such a configuration. Alternatively, the protective film 75 may be formed only on the first inclined surface 711. This configuration also helps to protect the first inclined surface 711 from damage.
In the first to fourth embodiments described above, the liquid ejecting apparatus 100 is of a serial type in which the liquid ejecting head 1, 1A, 1B, and 1C, respectively, reciprocate across the width of a medium P. However, the present disclosure is not limited to such a configuration. Alternatively, a liquid ejecting apparatus according to a modification may be of a line type in which a plurality of nozzles N are arrayed across the width of a medium P.
Number | Date | Country | Kind |
---|---|---|---|
2021-032342 | Mar 2021 | JP | national |