This application claims priority to Japanese Patent Application No. 2017-057638 filed on Mar. 23, 2017. The entire disclosure of Japanese Patent Application No. 2017-057638 is hereby incorporated herein by reference.
The present invention relates to a technique to eject liquid such as ink.
Liquid ejecting heads have been proposed which eject liquid, such as ink, through nozzles to form images on recording media. For example, JP-A-2014-051008 discloses a liquid ejecting head including: a piezoelectric element which is driven by a drive signal; a pressure chamber which is filled with liquid inside and changes internal pressure in accordance with the drive by the piezoelectric element; a nozzle which communicates with the pressure chamber and ejects the liquid filling the pressure chamber, in accordance with the change in the pressure within the pressure chamber; and an integrated circuit, such as a switch circuit, which switches between supply and shut-off of the drive signal to the pressure chamber.
The aforementioned drive signal has a large amplitude. Supplying the drive signal therefore causes the switch circuit to generate heat. Specifically, the switch circuit increases in temperature when supplying the drive signal to the piezoelectric element. When the temperature of the switch circuit increases and exceeds the upper limit operating temperature of the switch circuit, the switch circuit sometimes fails to operate stably.
In a liquid ejecting head which includes nozzles arranged at high density in order to form an image with a resolution of 300 dots per inch (dpi) or higher, for example, the switch circuit needs to be highly integrated. The increase in temperature of the switch circuit becomes a more major problem due to an increase in the amount of current per unit area, an increase in impedance due to miniaturization of the switch circuit, reduction in heat exhausting performance due to integration, and the like. In some cases, the switch circuit is provided within the liquid ejecting head, which is close to the piezoelectric element, in order to drive the liquid ejecting head including nozzles arranged at a high density without being much influenced by external noise and the like, for example. In such a case, the switch circuit is exposed to the air outside of the liquid ejecting head through a small area, making it difficult to efficiently dissipate heat generated from the switch circuit. The switch circuit therefore tends to relatively increase in temperature. In the above-described cases, the operation of the switch circuit is more likely to be unstable due to the increase in temperature of the switch circuit beyond the upper limit operating temperature thereof.
An advantage of some aspects of the invention is provision of the technique concerning a liquid ejecting head including a switch circuit to reduce the likelihood that the switch circuit becomes hot.
A liquid ejecting head according to an aspect of the invention includes at least one piezoelectric element driven with a drive signal; a switch circuit which is provided on a circuit substrate and switches between supply and shut-off of the drive signal to the at least one piezoelectric element; a pressure chamber which is filled with liquid and changes pressure inside in accordance with the drive by the at least one piezoelectric element; at least one nozzle which ejects the liquid filling the pressure chamber, in response to a change in the pressure within the pressure chamber; and a reserve chamber which reserves the liquid to be supplied to the pressure chamber, in which the at least one piezoelectric element is provided in a sealed space defined by a plurality of members including the circuit substrate, the reserve chamber includes a first flow channel and a second flow channel, a first end of the first flow channel communicates with a first end of the second flow channel, a second end of the first flow channel communicates with a second end of the second flow channel, and the circuit substrate and switch circuit are provided between the first flow channel and the second flow channel.
According to the aforementioned invention, the circuit substrate in which the switch circuit is mounted is located between the first flow channel and the second flow channel. The heat generated at the switch circuit can be therefore dissipated through the liquid within the first flow channel and the second flow channel. According to the invention, therefore, the likelihood that the switch circuit becomes hot is lower than that in the case where the switch circuit is provided at a position other than between the first flow channel and the second flow channel.
Preferably, in the aforementioned liquid ejecting head, at least a part of the circuit substrate is provided between the reserve chamber and the pressure chamber.
According to the aforementioned aspect, the circuit substrate provided for the switch circuit is located between the reserve chamber and the pressure chamber. It is therefore possible to efficiently dissipate heat generated in the switch circuit through the liquid within the reserve chamber and the pressure chamber.
Preferably, in the aforementioned liquid ejecting head, the liquid circulates from the first end of the first flow channel through the second end of the first flow channel, the second end of the second flow channel, and the first end of the second flow channel to the first end of the first flow channel.
According to the aforementioned aspect, the liquid within the reserve chamber circulates. This allows heat generated in the switch circuit to be efficiently dissipated through the liquid within the first flow channel and the second flow channel.
Preferably, in the aforementioned liquid ejecting head, the switch circuit generates heat when switching between supply and shut-off of the drive signal to the at least one piezoelectric element, and the circuit substrate is provided so that the heat generated in the switch circuit propagates to the liquid within the first flow channel and the liquid within the second flow channel.
According to the aforementioned aspect, heat generated in the switch circuit is efficiently dissipated through the first flow channel and the second flow channel.
Preferably, the aforementioned liquid ejecting head includes a plurality of the nozzles, in which the plurality of nozzles are provided at a density of 300 nozzles or more per inch.
According to the aforementioned aspect, at image formation, for example, it is possible to form an image of a high resolution with the liquid ejected from the liquid ejecting head.
Preferably, in the aforementioned liquid ejecting head, the at least one piezoelectric element is driven so that the liquid filling the pressure chamber is ejected through the at least one nozzle 30000 times or more per second.
According to the aforementioned aspect, at image formation, for example, it is possible to form an image at high speed with the liquid ejected from the liquid ejecting head.
Preferably, in the aforementioned liquid ejecting head, when the at least one piezoelectric element is driven, the temperature of the switch circuit is higher than the temperature of the liquid within the reserve chamber, and the heat generated from the switch circuit propagates to the liquid within the reserve chamber to prevent an increase in temperature of the switch circuit.
According to the aforementioned aspect, it is possible to efficiently dissipate heat generated in the switch circuit through the liquid within the first flow channel and the second flow channel.
Preferably, in the aforementioned liquid ejecting head, at least a part of the switch circuit is located between the at least one piezoelectric element and the reserve chamber.
According to the aforementioned aspect, the distance between the switch circuit and piezoelectric element can be made shorter than that in the case where the reserve chamber is located between the switch circuit and piezoelectric element, for example. Accordingly, the switch circuit and piezoelectric element can be electrically connected with a shorter wire, thus reducing the amount of heat generated when the wire transmits the drive signal.
Preferably, in the aforementioned liquid ejecting head, at least a part of the reserve chamber overlaps both of at least a part of the at least one piezoelectric element and at least a part of the switch circuit in a plan view.
According to the aforementioned aspect, the reserve chamber is formed so as to include space over the piezoelectric element and switch circuit. It is therefore possible to secure the capacity of the reserve chamber more easily than in the case where the reserve chamber is formed so as not to include the space over the piezoelectric element and switch circuit.
Preferably, in the aforementioned liquid ejecting head, the switch circuit is provided on a surface of the circuit substrate opposite to the sealed space.
According to the aforementioned aspect, the switch circuit and the piezoelectric element can be electrically connected with a shorter wire than that in the case where the switch circuit is provided other than the surface of the circuit substrate opposite to the sealed space. This can reduce the amount of heat generated when the wire transmits the drive signal.
Preferably, the aforementioned liquid ejecting head includes a plurality of the piezoelectric elements; and a wire member which is provided at an end of the circuit substrate in a direction where the plurality of piezoelectric elements are arranged and is electrically connected to the switch circuit.
According to the aforementioned aspect, the wire member and circuit substrate are connected at an end of the circuit substrate. The space to place the wire member can be smaller than that in the case where the wire member and circuit substrate are connected at the center of the circuit substrate, thus enabling miniaturization of the liquid ejecting head.
A liquid ejecting apparatus according to a preferred aspect of the invention includes the liquid ejecting head according to each aspect illustratively shown above. A preferred example of the liquid ejecting apparatus is a printing apparatus that ejects ink. However, the application of the liquid ejecting apparatus according to the invention is not limited to printing.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, a description is given of embodiments for carrying out the invention with reference to the drawings. In the drawings, the dimensions and scale of each component may be appropriately made different from actual ones. The following embodiments are preferable specific examples of the invention and are given various technically preferred limitations. The scope of the invention is not limited by the embodiments unless it is particularly noted in the following description that the invention is limited.
Hereinafter, a description is given of a liquid ejecting apparatus 100 according to a first embodiment with reference to
1. Summary of Liquid Ejecting Apparatus
As illustratively shown in
As illustratively shown in
The controller 20 includes: a processing circuit such as a central processing unit (CPU) or a field programmable gate array (FPGA), for example; and a memory circuit such as a semiconductor memory. The controller 20 controls each component of the liquid ejecting apparatus 100. In the first embodiment, the transporting mechanism 22 transports the medium 12 in a +Y direction under the control by the controller 20. In the following description, the +Y direction and a −Y direction, which is the opposite direction to the +Y direction, are collectively referred to as a Y-axis direction in some cases.
The moving mechanism 24 reciprocates the plurality of liquid ejecting heads 26 in a +X direction and a −X direction, which is the opposite direction to the +X direction, under the control by the controller 20. Herein, +X direction refers to a direction which intersects (typically orthogonally) with the +Y direction, in which the medium 12 is transported. In the following description, the +X and −X directions are sometimes collectively referred to as an X-axis direction. The moving mechanism 24 includes: a substantially box-shaped transporter (a carriage) 242, which accommodates the plurality of liquid ejecting heads 26; and an endless belt 244, to which the transporter 242 is fixed. The liquid container 14 can be mounted on the transporter 242 together with the liquid ejecting heads 26.
Each of the plurality of liquid ejecting heads 26 is supplied with ink from the liquid container 14. Each of the plurality of liquid ejecting heads 26 is also supplied with a drive signal Com and a control signal SI from the controller 20. The drive signal Com is a signal to drive the liquid ejecting head 26, and the control signal SI is a signal to control the liquid ejecting head 26. Each of the plurality of liquid ejecting heads 26 is driven through the drive signal Com under the control by the control signal SI to eject ink through some or all of 2M nozzles (ejecting ports) in a +Z direction (M is a natural umber not less than 1).
Herein, the +Z direction is a direction which intersects (typically orthogonally) with the +X and +Y directions. In the following directions, the +Z direction and a −Z direction, which is the opposite direction to the +Z direction, are collectively referred to as a Z-axis direction. Each of the liquid ejecting heads 26 ejects ink through some or all of the 2M nozzles in conjunction with transportation of the medium 12 by the transporting mechanism 22 and reciprocation of the transporter 242 so that the ejected ink adheres to the surface of the medium 12, thereby forming a desired image on the surface of the medium 12.
2. Structure of Liquid Ejecting Head
As illustratively shown in
The 2M nozzles N may be arranged in a so-called staggered manner so that the m-th nozzle N1, which is located at the m-th position from the end on the −Y side among the M nozzles N1 (included in the line L1), and the m-th nozzle N2, which is located at the m-th position from the end on the −Y side among the M nozzles N2 (included in the line L2), are positioned at different locations in the Y-axis direction.
As illustratively shown in
The nozzle plate 52 is a plate-shaped member in which the 2M nozzles N are formed. The nozzle plate 52 is provided on the face F1 of the flow channel substrate 32 using an adhesive, for example.
Each nozzle N is a through-hole provided in the nozzle plate 52. The nozzle plate 52 is produced by processing a silicon (Si) single crystal substrate using a semiconductor manufacturing technique, including etching, for example. Any publicly-known materials and processes can be employed to manufacture the nozzle plate 52.
The first embodiment assumes that the M nozzles N corresponding to each of the lines L1 and L2 are provided at a density of 300 nozzles or more per inch in the nozzle plate 52. The M nozzles N corresponding to each of the lines L1 and L2 are provided at a density of at least 100 nozzles per inch in the nozzle plate 52 and are preferably provided at a density of 200 nozzles or more per inch.
The flow channel substrate 32 is a plate-shaped member that forms a flow channel for ink. As illustratively shown in
In the flow channel substrate 32, 2M flow channels 322 and 2M flow channels 324 (an example of a communicating flow channel) are formed corresponding one-to-one to the 2M nozzles N. As illustratively shown in
As illustratively shown in
As illustratively shown in
The flow channel substrate 32 and pressure chamber substrate 34 are produced by processing a silicon (Si) single-crystal substrate using a semiconductor manufacturing technique, for example. Any publicly-known materials and processes can be employed to manufacture the flow channel substrate 32 and pressure chamber substrate 34.
As illustratively shown in
As understood from
As illustratively shown in
As described above, the piezoelectric elements 37 deform (are driven) upon supply of the drive signal Com. The vibration unit 36 vibrates with the deformation of the piezoelectric elements 37. When the vibration unit 36 vibrates, the pressure within the pressure chambers C fluctuates. When the pressure within each pressure chamber C fluctuates, the ink filling the pressure chamber C is ejected through the corresponding flow channel 324 and nozzle N. The first embodiment assumes that the drive signal Com can drive the piezoelectric elements 37 so that ink is ejected from each nozzle N at least 30000 times per second.
Each pressure chamber C, the flow channel 322, nozzle N, and piezoelectric element 37 corresponding to the pressure chamber C, and the vibration unit 36 function as an ejecting section that ejects ink filling the pressure chamber C.
The protection member 38 illustratively shown in
As illustratively shown in
On the face G2, which is the surface of the protection member 38 on the −Z side, an integrated circuit 62 (an example of a switch circuit) is provided. The protection member 38 functions as a circuit substrate on which the integrated circuit 62 is mounted.
The integrated circuit 62 switches between supply and shut-off of the drive signal Com to each piezoelectric element 37 under the control by the control signal SI. In the first embodiment, the drive signal Com is generated by the controller 20. However, the invention is not limited to this mode. The drive signal Com may be generated in the integrated circuit 62.
As illustratively shown in
As illustratively shown in
As illustratively shown in
The housing 40 illustratively shown in
In the first embodiment, the housing 40 is made of a material separate from the flow channel substrate 32 and pressure chamber substrate 34. The housing 40 is formed by injection molding for a resin material, for example. Any publicly-known materials and processes can be employed to manufacture the housing 40. The material of the housing 40 can be preferably synthetic fiber such as poly(p-phenylene benzobisoxazole) (Zylon (registered trademark)) or a resin material such as a liquid crystal polymer, for example.
As illustratively shown in
In a face F2, which is the surface of the housing 40 on the −Z side, two feed ports 43 are provided, through which the ink supplied from the liquid container 14 is introduced to the reservoir Q. One of the two feed ports 43 (hereinafter, sometimes referred to as an feed port 431) communicates with the flow channel RB1 while the other feed port 43 (hereinafter, sometimes referred to as a feed port 432) communicates with the flow channel RB2.
As illustratively shown in
As understood from
As understood in
As understood in
As indicated by dashed arrows in
The ink supplied from the liquid container 14 to the feed port 432 flows into the flow channel RA2 through the flow channels RB22 and RB21. A part of the ink having flown into the flow channel RA2 is supplied to the pressure chamber C corresponding to the nozzle N2 through the corresponding flow channels 326 and 322. The ink having filled the pressure chamber C corresponding to the nozzle N2 flows through the corresponding flow channels 324 in the +Z direction to be ejected through the nozzle N2.
As illustratively shown in
In the first embodiment, the flow channels RA1 and RB11 are an example of a first flow channel, and the flow channels RA2 and RB21 are an example of a second flow channel. In the first embodiment, in other words, ink within the reservoir Q is able to circulate from a first end of the first flow channel to the first end of the first flow channel through the second end of the first channel, a second end of the second channel, and a first end of the second channel.
As illustratively shown in
As illustratively shown in
3. Effect of First Embodiment
Generally, the drive signal Com for driving the piezoelectric elements 37 has a large amplitude. When supplying the drive signal Com to the piezoelectric elements 37, the integrated circuit 62 therefore generates heat. When the piezoelectric elements 37 are driven at a high frequency (a large number of times per unit time) particularly like in the first embodiment, the integrated circuit 62 generates a large amount of heat. Moreover, when the ejecting sections, including the nozzles N and piezoelectric elements 37, are provided with a high density in the liquid ejecting head 26, like in the first embodiment, the integrated circuit 62 generates a large amount of heat per unit area. When the integrated circuit 62 is reduced in size for miniaturization of the liquid ejecting head 26, the amount of heat per unit area generated by the integrated circuit 62 is increased. Moreover, when the protection member 38, on which the integrated circuit 62 is provided, is mounted over the ejecting sections like in the first embodiment, the integrated circuit 62 and protection member 38 are not exposed to the air outside of the liquid ejecting head 26 (alternatively the integrated circuit 62 and protection member 38 are exposed to the air outside of the liquid ejecting head 26 through a small area). The efficiency of heat dissipation from the integrated circuit 62 is therefore reduced, so that the integrated circuit 62 becomes hot sometimes.
On the other hand, in the first embodiment, the integrated circuit 62 and protection member 38 are provided between the flow channels RB11 and RB21. In the first embodiment, therefore, heat generated from the integrated circuit 62 is dissipated through the ink within the reservoir Q even when the integrated circuit 62 and protection member 38 are not directly exposed to the air outside of the liquid ejecting head 26.
In the first embodiment, moreover, the flow channel RA forms a circulation route of: “the flow channel RA1→the flow channel RA3→the flow channel RA2→the flow channel RA4→the flow channel RA1”.
In the first embodiment, heat generated from the integrated circuit 62 can be efficiently dissipated through the ink within the reservoir Q, compared with the configuration of the reservoir Q not including a circulation route of ink.
In the first embodiment, the integrated circuit 62 and protection member 38 are provided between the reservoir Q and pressure chambers C. Accordingly, heat generated from the integrated circuit 62 can be efficiently dissipated through the ink within the reservoir Q and ink within the pressure chambers C in the first embodiment.
In the first embodiment, the reservoir Q includes the flow channels RB12 and RB22, where the reservoir Q overlaps at least a part of the protection member 38 and at least a part of the integrated circuit 62 in a plan view. In the first embodiment, it is therefore possible to easily implement both miniaturization of the liquid ejecting head 26 and an increase in capacity of the reservoir Q compared with the configuration where the reservoir Q does not overlap the protection member 38 and integrated circuit 62 in a plan view.
In the first embodiment, the piezoelectric elements 37 are accommodated in the accommodation spaces 382, which are formed on the face G1 of the protection member 38, and the integrated circuit 62 is provided on the face G2 of the protection member 38. In other words, the piezoelectric elements 37 are accommodated in the rear surface of the substrate where the integrated circuit 62 is formed. Accordingly, the integrated circuit 62 and piezoelectric elements 37 can be electrically connected with shorter wires in the first embodiment than in the case where the piezoelectric elements 37 are provided in a place different from the rear surface of the substrate where the integrated circuit 62 is formed. This can prevent the waveform of the drive signal Com from being disturbed due to the resistance and capacitance components of the wires in the first embodiment. Moreover, reduction in the resistance of the wires can reduce the amount of heat generated by the wires.
In the first embodiment, the wire member 64 is provided in the region E at an end of the protection member 38. Accordingly, the space to mount the wire member 64 can be reduced compared with a case where the wire member 64 extends in the region from the end of the protection member 38 to the center thereof. Accordingly, in the first embodiment, it is possible to implement both miniaturization of the liquid ejecting head 26 and an increase in the capacity of the reservoir Q.
In the first embodiment, the vibration absorbers 54 and 46 absorb fluctuations in the pressure within the reservoir Q. This can reduce the likelihood that ink ejecting characteristics (the amount of ink ejected, ink ejecting speed, and ink ejecting direction, for example) would change due to propagation of the fluctuations in the pressure within the reservoir Q to the pressure chambers C.
Hereinafter, a description is given of a liquid ejecting apparatus according to a second embodiment with reference to
The liquid ejecting apparatus according to the second embodiment includes the same configuration as that of the liquid ejecting apparatus 100 illustrated in
As illustratively shown in
The flow channel substrate 32A is a plate-shaped member that forms a flow channel for ink. As illustratively shown in
The housing 40A includes the same configuration as that of the housing 40 illustrated in
As illustratively shown in
The flow channel RD includes: a flow channel RD1, which communicates with the flow channel RC1; a flow channel RD2, which communicates with the flow channel RC2; a flow channel RD3, which connects the flow channels RD1 and RD2; and a flow channel RD4, which connects the flow channels RD1 and RD2.
The flow channel RD1 is an opening elongated in the Y-axis direction and includes flow channels RD11 and RD12. The flow channel RD11 communicates with the flow channel RC1; and the flow channel RD12 communicates with the feed port 431. The flow channel RD2 is an opening which is located on the +X side of the flow channel RD1 and is elongated in the Y-axis direction. The flow channel RD2 includes: a flow channel RD21, which communicates with the flow channel RC2; and a flow channel RD22, which communicates with the feed port 432. The flow channel RD3 is an opening formed so as to connect an end of the flow channel RD1 on the −Y side, which is located in a region YD1 (see
As indicated by dashed arrows in
The ink supplied from the liquid container 14 to the feed port 432 flows into the flow channel RC2 through the flow channels RD22 and RD21. A part of the ink having flown into the flow channel RC2 is supplied to the pressure chamber C corresponding to the nozzle N2 through the corresponding flow channels 326 and 322. The ink having filled the pressure chamber C corresponding to the nozzle N2 flows through the corresponding flow channel 324 in the +Z direction, for example, to be ejected through the nozzle N2.
As illustratively shown in
In the second embodiment, the flow channels RC1 and RD11 are an example of the first flow channel, and the flow channels RC2 and RD21 are an example of the second flow channel. In the second embodiment, in other words, ink within the reservoir QA can circulate from a first end of the first flow channel to the first end of the first flow channel through the second end of the first channel, a second end of the second channel, and a first end of the second channel.
As illustratively shown in
Hereinafter, a description is given of a liquid ejecting apparatus according to a third embodiment with reference to
The liquid ejecting apparatus according to the third embodiment includes the same configuration as that of the liquid ejecting apparatus 100 illustrated in
As illustratively shown in
The flow channel substrate 32B is a plate-shaped member that forms a flow channel for ink. As illustratively shown in
The flow channel RE includes: a flow channel RE1, which is provided corresponding to the line L1; a flow channel RE2, which is provided corresponding to the line L2; a flow channel RE3, which connects the flow channels RE1 and RE2; a flow channel RE4, which connects the flow channels RE1 and RE2; and a flow channel RE5, which connects the flow channels RE3 and RE4.
The flow channel RE1 is an opening elongated in the Y-axis direction similarly to the flow channel RA1. The flow channel RE2 is an opening which is located on the +X side of the flow channel RE1 and is elongated in the Y-axis direction similarly to the flow chart RA2. The flow channel RE3 is an opening which is formed so as to connect an end of the flow channel RE1 on the −Y side, which is located in a region YE1 (see
The flow channel RE, which is provided for the flow channel substrate 32B, is different from the flow channel RA (see
In the third embodiment, the flow channel RE5 is located between the nozzles N1 and nozzles N2 in a plan view.
The pressure chamber substrate 34B includes: 2M openings 342, corresponding one-to-one to the 2M nozzles N; a flow channel RF, which communicates with the flow channel RE5; and the 2M flow channels 343, which are provided corresponding one-to-one to the 2M openings 342 in order to connect the 2M openings 342 and flow channel RF. The pressure chamber substrate 34B includes the same configuration as that of the pressure chamber substrate 34 (illustrated in
In the third embodiment, the flow channel RF is located between the nozzles N1 and nozzles N2 in a plan view.
As illustratively shown in
As illustratively shown in
As indicated by dashed arrows in
Ink supplied from the liquid container 14 to the feed port 432 flows into the flow channel RE2 through the flow channels RB22 and RB21. A part of the ink having flown into the flow channel RE2 is supplied to the pressure chamber CB corresponding to the nozzle N2, through the corresponding flow channels 326 and 322 and communicating port K1. The ink having filled the pressure chamber CB corresponding to the nozzle N2 flows through one or both of the corresponding communicating ports K2 and K3. The ink having flown through the communicating port K2 of the pressure chamber CB corresponding to the nozzle N2 flows through the flow channel 324 in the +Z direction to be ejected through the nozzle N2. The ink having flown out through the communicating port K3 of the pressure chamber CB corresponding to the nozzle N2 flows to the flow channel RE5 through the corresponding flow channel 343 and the flow channel RF.
As illustratively shown in
In the third embodiment, moreover, the liquid ejecting head 26B includes circulation routes of: “the flow channel RE5→the flow channel RE3 or RE4→the flow channel RE1 or RE2→the flow channel RE4 or RE3→the flow channel RE5”; and “the flow channel RE1→the flow channel RE3→the flow channel RE2→the flow channel RE4→the flow channel RE1”.
As illustratively shown in
In the third embodiment, the ink flows from the communicating port K1 to at least one of the communicating ports K2 and K3 in each pressure chamber CB. The protection member 38 is provided over the ejecting sections including the pressure chambers CB. In the third embodiment, therefore, heat generated from the integrated circuit 62 can be dissipated through the ink within the pressure chambers CB.
In the third embodiment, the flow channels RE1 and RB11 are an example of the first flow channel, and the flow channels RE2 and RB21 are an example of the second flow channel.
In the third embodiment, the communicating port K1 is an example of an inlet port through which the ink within the reservoir QB flows to each pressure chamber CB. The communicating port K2 is an example of a supply port through which ink within each pressure chamber CB is supplied to the flow channel 324. The communicating port K3 is an example of an outlet port through which ink within each pressure chamber CB flows to the reservoir QB.
Hereinafter, a description is given of a liquid ejecting apparatus according to a fourth embodiment with reference to
The liquid ejecting apparatus according to the fourth embodiment includes the same configuration as that of the liquid ejecting apparatus 100 illustrated in
As illustratively shown in
The flow channel substrate 56 is a plate-shaped member that forms a flow channel for ink. The flow channel substrate 56 is produced by processing a silicon (Si) single crystal substrate using a semiconductor manufacturing technique, for example. Any publicly-known materials and processes can be employed to manufacture the flow channel substrate 56.
On the face F3 of the flow channel substrate 56 on the +Z side, the nozzle plate 52 and vibration absorbers 54 are provided. The face F4 of the flow channel substrate 56 on the −Z side is joined to the face F1 of the flow channel substrate 32A.
As illustratively shown in
The flow channel RG includes a flow channel RG1, a flow channel RG2, and a flow channel RG3. The flow channel RG2 is an opening elongated in the X-axis direction. The flow channel RG2 communicates with the flow channel RC1, which is provided in the flow channel substrate 32A, in a region XG1 at the end on the −X side and communicates with the flow channel RC2, which is provided in the flow channel substrate 32A, in a region XG2 as the end on the +X side. The flow channel RG3 is an opening which is located on the +Y side of the flow channel RG2 and is elongated in the X-axis direction. The flow channel RG3 communicates with the flow channel RC1 in the region XG1 while communicating with the flow channel RC2 in the region XG2. The flow channel RG1 is an opening elongated in the Y-axis direction and connects the flow channels RG2 and RG3. In the fourth embodiment, the flow channel RG1 is located between the nozzles N1 and N2 in a plan view.
In the fourth embodiment, the flow channels RB, RC, and RG function as a reservoir QC, which reserves ink to be supplied to the 2M pressure chambers C.
As illustratively shown in
As illustratively shown in
As indicated by dashed arrows in
Ink supplied from the liquid container 14 to the feed port 432 flows into the flow channel RC2 through the flow channels RB22 and RB21. A part of the ink having flown into the flow channel RC2 is supplied to the pressure chamber C corresponding to the nozzle N2, through the corresponding flow channels 326 and 322 and communicating port K1. The ink having filled the pressure chamber C corresponding to the nozzle N2 flows into the corresponding flow channel 562 through the corresponding communicating port K2 and flow channel 324. The ink within the flow channel 562 flows to one or both of the nozzle N2 and communicating port K3. The ink having flown out through the communicating port K3 of the flow channel 562 flows into the flow channel RG1 through the corresponding flow channel 564.
As illustratively shown in
In the fourth embodiment, the liquid ejecting head 26C includes a circulation route of “the flow channel RC1→the flow channel RG2→the flow channel RC2→the flow channel RG3→the flow channel RC1”, for example.
As illustratively shown in
In the fourth embodiment, at least a part of the ink within each pressure chamber C and corresponding communicating flow channel flows through the communicating ports K1 and K2 to the communicating port K3. The protection member 38 is provided over the ejecting sections including the pressure chambers C. In the fourth embodiment, therefore, heat generated from the integrated circuit 62 can be dissipated through the ink within the pressure chambers C.
In the third embodiment, the flow channels RC1 and RB11 are an example of the first flow channel, and the flow channels RC2 and RB21 are an example of the second flow channel.
In the third embodiment, the communicating port K1 is an example of an inlet port through which the ink within the reservoir QC flows to each pressure chamber C. The communicating port K2 is an example of a supply port through which ink within each pressure chamber C is supplied to the flow channel 324 and the flow channel 562. The communicating port K3 is an example of an outlet port through which ink within each the flow channel 562 flows to the reservoir QC.
Hereinafter, a description is given of a liquid ejecting apparatus according to a fifth embodiment with reference to
The liquid ejecting apparatus according to the fifth embodiment includes the same configuration as that of the liquid ejecting apparatus 100 illustrated in
As illustratively shown in
The flow channel substrate 58 is a plate-shaped member that forms a flow channel for ink. The flow channel substrate 58 is produced by processing a silicon (Si) single crystal substrate using a semiconductor manufacturing technique, for example. Any publicly-known materials and processes can be employed to manufacture the flow channel substrate 58.
On the face F5 of the flow channel substrate 58 on the +Z side, the nozzle plate 52 and vibration absorbers 54 are provided. The face F6 of the flow channel substrate 58 on the −Z side is joined to the face F1 of the flow channel substrate 32A.
As illustratively shown in
As illustratively shown in
As indicated by dashed arrows in
Ink supplied from the liquid container 14 to the feed port 432 flows into the flow channel RC2 through the flow channels RB22 and RB21. A part of the ink having flown into the flow channel RC2 is supplied to the pressure chamber C corresponding to the nozzle N2, through the corresponding flow channels 326 and 322 and communicating port K1. The ink having filled the pressure chamber C corresponding to the nozzle N2 flows into the corresponding flow channel 582 through the corresponding communicating port K2 and flow channel 324. The ink within the flow channel 582 flows to one or both of the nozzle N2 and communicating port K3. The ink having flown out through the communicating port K3 of the flow channel 582 flows into the pressure chamber C corresponding to the nozzle N1 through the flow channel 584 and the flow channels 582 and 324 corresponding to the nozzles N1. The ink within the flow channel 582 flows to one or both of the nozzle N2 and communicating port K3. The ink having flown out through the communicating port K3 of the flow channel 582 flows into the pressure chamber C corresponding to the nozzle N1 through the flow channel 584 and the flow channels 582 and 324 corresponding to the nozzle N1.
As illustratively shown in
In order to cause ink to flow along these routes, the controller 20 may displace in the +Z direction, the piezoelectric element 37 corresponding to one of the paired nozzles N which communicate through each flow channel 584 while displacing in the −Z direction, the piezoelectric element 37 corresponding to the other nozzle N.
The liquid ejecting head 26D according to the fifth embodiment includes the configuration in which both of the paired flow channels 582 connected by each flow channel 584 communicate with the nozzles N. However, the invention is not limited to such a mode. The liquid ejecting head 26D may have a configuration in which only the nozzle N corresponding to one of the paired flow channels 582 connected by each flow channel 584 is provided while the nozzle N corresponding to the other flow channel 582 is not provided.
As described above, in the fifth embodiment, at least a part of the ink in the liquid ejecting head 26D flows through the communicating ports K1 and K2 to the communicating port K3 in each pressure chamber C and the communicating flow channel corresponding thereto. Moreover, the protection member 38 is provided over the ejecting section including the pressure chamber C. In the fifth embodiment, heat generated from the integrated circuit 62 can be dissipated through ink in the pressure chambers C.
In the fifth embodiment, the communicating port K1 is an example of the inlet port through which the ink within the reservoir QD flows to each pressure chamber C. The communicating port K2 is an example of the feed port through which the ink within each pressure chamber C is fed to the flow channels 324 and 582. The communicating port K3 is an example of the outlet port through which the ink within the flow channel 582 flows to the reservoir QD via the pressure chamber C.
In the fifth embodiment, the pressure chambers C provided corresponding to the nozzles N1 are an example of the first pressure chamber. The flow channels 326 and 322 connecting each of the pressure chambers C provided corresponding to the nozzles N1 to the flow channel RC1, are an example of a first connecting flow channel. The pressure chambers C provided corresponding to the nozzles N2 are an example of the second pressure chamber. The flow channels 326 and 322 connecting each of the pressure chambers C provided corresponding to the nozzles N2 to the flow channel RC2, are an example of a second connecting flow channel.
Modification
The embodiments illustratively described above can be variously modified. Some specific modifications are illustratively described below. Optionally selected two or more of the following modifications can be properly combined without conflicting with each other.
Modification 1
Each of the reservoirs (reservoirs Q, QA, QB, and QC) according to the aforementioned first to fourth embodiments may include a liquid mover, such as a pump, which causes ink to flow along the circulation route within the reservoir.
Modification 2
Each of the reservoirs and feed ports 43 according to the aforementioned first to fourth embodiments and modification 1 may include a structure in which ink flows along the circulation route within the reservoir.
In the first embodiment, for example, the flow channel RB11 may be designed to have an inclination with respect to the Z axis direction so that ink having flown from the flow channel RB11 to the flow channel RA1 travels through the flow channel RA1 in the −Y direction. The flow channel RB21 is designed to have an inclination opposite to that of the flow channel RB11 with respect to the Z-axis direction so that ink having flown from the flow channel RB21 to the flow channel RA2 travels through the flow channel RA2 in the +Y direction (see
In the second embodiment, for example, the feed port 431 may be designed to have an inclination with respect to the Z axis direction so that ink flowing from the feed port 431 to the flow channel RD1 travels through the flow channel RD1 in the −Y direction. The feed port 432 may be designed to have an inclination opposite to that of the feed port 431 with respect to the Z-axis direction so that ink flowing from the feed port 432 to the flow channel RD2 travels through the flow channel RD2 in the +Y direction (see
In the third embodiment, for example, the flow channel RB11 may be designed to have an inclination with respect to the Z-axis direction so that ink flowing from the flow channel RB11 to the flow channel RE1 travels through the flow channel RE1 in the −Y direction. The flow channel RB21 may be designed to have an inclination opposite to that of the flow channel RB21 with respect to the Z-axis direction so that ink flowing from the flow channel RB21 to the flow channel RE2 travels through the flow channel RE2 in the +Y direction (see
In the fourth embodiment, for example, the flow channel RB11 may be designed to have an inclination with respect to the Z-axis direction so that ink flowing from the flow channel RB11 to the flow channel RC1 travels through the flow channel RC1 in the −Y direction. The flow channel RB21 may be designed to have an inclination opposite to that of the flow channel RB11 with respect to the Z-axis direction so that ink flowing from the flow channel RB21 to the flow channel RC2 travels through the flow channel RC1 in the +Y direction (see
Modification 3
The liquid ejecting apparatuses illustratively shown in the aforementioned embodiments and modifications are serial-type liquid ejecting apparatuses each of which reciprocates the transporter 242 with the liquid ejecting head mounted. The invention is not limited to such a mode. The liquid ejecting apparatuses may be line-type liquid ejecting apparatuses each of which includes a plurality of nozzles N across the entire width of the medium 12.
Modification 4
In the configurations illustratively shown in the aforementioned embodiments and modifications, the vibration absorbers 46 and 54 are both provided. However, when fluctuations in the pressure within the reservoirs do not cause a particular problem, for example, one or both of the vibration absorbers 46 and 54 can be omitted. The liquid ejecting heads employing the configuration in which one or both of the vibration absorbers 46 and 54 are omitted can be manufactured at lower cost than those employing the configuration in which both of the vibration absorbers 46 and 54 are provided.
Modification 5
In the aforementioned embodiments and modifications, the piezoelectric elements 37 are illustratively shown as the elements (driving elements) that apply pressure within the pressure chambers C (or pressure chambers CB). However, the invention is not limited to such a mode. For example, the driving elements can be heat generating elements which are heated to generate bubbles within the pressure chambers for changing the pressure within the pressure chambers. Each heat generating elements includes a heat generator which generates heat upon supply of the drive signal. As understood from the above-described examples, the driving elements are collectively represented as elements that eject liquid within the pressure chambers through the nozzles N (typically elements that apply pressure within the pressure chambers). Any operation type (piezoelectric/thermal type) and any configurations are available.
Modification 6
Each of the liquid ejecting apparatuses illustratively shown in the above embodiments and modifications is applicable to various types of devices such as facsimile and copying devices in addition to devices for printing. Moreover, The applications of the liquid ejecting apparatus of the present invention are not limited to printing. Liquid ejecting apparatuses which eject solvents of color materials are used as manufacturing apparatuses to form color filters for liquid-crystal display apparatuses, for example. Liquid ejecting apparatuses which eject solutions of conducting materials are used as manufacturing apparatuses to form wires and electrodes of wiring substrates.
Number | Date | Country | Kind |
---|---|---|---|
2017-057638 | Mar 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8740365 | Uezawa | Jun 2014 | B2 |
20120167823 | Gardner et al. | Jul 2012 | A1 |
20150165767 | Owaki et al. | Jun 2015 | A1 |
20160059555 | Tamura et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2014-051008 | Mar 2014 | JP |
Entry |
---|
The Extended European Search Report for the corresponding European Patent Application No. 18163234.0 dated Aug. 2, 2018. |
Number | Date | Country | |
---|---|---|---|
20180272697 A1 | Sep 2018 | US |