1. Technical Field
The present invention relates to a technique for ejecting liquid such as ink.
2. Related Art
In the related art, a liquid ejecting head which ejects liquid such as ink which is filled in a pressure chamber from nozzles has been proposed. For example, in JP-A-2013-129191, a structure in which liquid is supplied to a pressure chamber from a common liquid chamber in which a liquid chamber hollow portion which is formed on the communicating substrate, and a liquid chamber forming hollow portion of a unit case which is fixed to the communicating substrate are caused to communicate with each other is disclosed.
In order to achieve miniaturization of a liquid ejecting head, it is necessary to reduce the wall thickness of the unit case. However, there is a problem in that it is difficult to secure mechanical strength of the liquid ejecting head due to the reduction of the wall thickness.
An advantage of some aspects of the invention is to improve mechanical strength of constituents forming a space storing liquid
An advantage of some aspects of the invention is to provide a liquid ejecting head which includes a head main body in which a plurality of nozzles ejecting liquid are arranged along a first direction; a housing fixed to the head main body; a liquid storage chamber that includes a space formed in the housing, and stores the liquid supplied to the nozzles; an introducing port of the liquid communicating with the liquid storage chamber; and a plurality of beam-shaped units that are stretched over an inner wall face of the space in the housing, in which the plurality of beam-shaped units are provided with intervals such that a plurality of flow paths are arranged in the first direction from the introducing port, and in which among the plurality of flow paths, a first flow path far away from the introducing port in the first direction has a flow path width in the first direction smaller than that of a second flow path close to the introducing port. In the above described configuration, since the beam-shaped unit is provided in the housing, it is possible to improve mechanical strength of the housing compared to a configuration in which the beam-shaped unit is not provided. In addition, since among the plurality of flow paths, the first flow path far away from the introducing port has the flow path width in the first direction smaller than that of the second flow path, the flow rate in the first flow path is increased, and the gap between the inner wall face of the first flow path and the bubble is reduced. Accordingly, it is possible to easily discharge the bubble through the first flow path. Meanwhile, since the second flow path close to the introducing port has the flow path width in the first direction larger than that of the first flow path, it is possible to secure the flow rate of the liquid.
In a preferable aspect of the invention, the liquid storage chamber includes a first space on an upstream side of the plurality of beam-shaped units, and a second space on a downstream side of the plurality of beam-shaped units, and the flow path width of the first flow path in a second direction intersecting the first direction is smaller than a height of the first space in a third direction orthogonal to both the first direction and the second direction. In the above described aspect, since the flow path area of the first flow path is reduced compared to the configuration in which the flow path width of the first flow path in the second direction is larger than the height of the first space, it is possible to increase the flow rate of the liquid passing through the first flow path. Accordingly, it is possible to promote the discharge of the bubble through the first flow path. Since the height greater than the first flow path width is secured in the first space, there is an advantage in that the flow rate of the liquid flowing in a space on the upstream side of the beam-shaped unit is easily secured.
In a preferable aspect of the invention, the flow path width of the first flow path in the first direction is smaller than the height of the first space in the third direction. In the above described aspect, since both the flow path width in the first direction and the flow path width in the second direction of the first flow path far away from the introducing port are reduced, the flow path area of the first flow path is reduced. Accordingly, the effect in which it is possible to promote the discharge of the bubble by the suppression of the gap between the bubble and the inner wall face of the first flow path, and by the increase of the flow rate of the liquid is particularly remarkable.
In a preferable aspect of the invention, the liquid storage chamber includes, from the introducing port, a portion parallel to a plane including the first direction and the second direction, and a portion orthogonal to the plane, and the beam-shaped unit is formed in the orthogonal portion in the liquid storage chamber. In the above described aspect, when the liquid flows from the parallel portion to the orthogonal portion in the liquid storage chamber, since the liquid passes through the flow path formed by the beam-shaped unit, at this time, it is possible to easily discharge the bubble in the first flow path far away from the introducing port while the flow rate of the liquid is secured.
In a preferable aspect of the invention, there is provided a liquid ejecting apparatus that includes the liquid ejecting head according to each of the above exemplified aspects. A preferable example of the liquid ejecting apparatus is a printing apparatus which ejects ink; however, a use of the liquid ejecting apparatus according to the invention is not limited to printing.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
The control device 22 integrally controls each element of the printing apparatus 10. The transport mechanism 24 transports the medium 12 in the Y direction (an example of a first direction) under control of the control device 22. Each liquid ejecting head 100 ejects ink onto the medium 12 from a plurality of nozzles under control of the control device 22. The plurality of liquid ejecting heads 100 are mounted on the carriage 26. The control device 22 causes the carriage 26 to reciprocate in the X direction (an example of a second direction) which intersects the Y direction. A desired image is formed on the surface of the medium 12 when each liquid ejecting head 100 ejects ink onto the medium 12 in parallel with transporting of the medium 12 using the transport mechanism 24 and repeated reciprocating of the carriage 26. In addition, hereinafter, a direction which is perpendicular to an X-Y plane (for example, plane parallel to surface of medium 12) will be denoted by a Z direction. An ink ejecting direction (typically, vertical direction) using each liquid ejecting head 100 corresponds to the Z direction (an example of a third direction).
As illustrated in
As exemplified in
The nozzle plate 52 is a plate-shaped member on which the plurality of nozzles N are formed, and is provided on the second face F2 of the flow path substrate 32 using an adhesive, for example. Each nozzle N is a through hole through which ink passes. The nozzle plate 52 is manufactured by processing a single crystal substrate of silicon (Si) using a semiconductor manufacturing technology (for example, etching). However, when manufacturing the nozzle plate 52, it is possible to arbitrarily adopt a well-known material or manufacturing method.
The flow path substrate 32 is a plate-shaped member for forming a flow path of ink. A space R1, a plurality of supply holes 322 and a plurality of communicating holes 324 are formed in the flow path substrate 32. The space R1 is an opening which is formed in a long shape along the Y direction in a planar view (that is, when viewed in Z direction), and the supply holes 322 and the communicating holes 324 are through holes (opening which is formed over the first face F1 and second face F2) which are formed in each nozzle N. The plurality of supply holes 322 are arranged in the Y direction, and the plurality of communicating holes 324 are also formed in the Y direction, similarly. Arrangements of the plurality of supply holes 322 are located between arrangements of the plurality of communicating holes 324 and the space R1. In addition, as illustrated in
As exemplified in
On the other hand, an end portion on the positive side of the pressure chamber space 342 in the X direction overlaps one supply hole 322 of the flow path substrate 32 in a planar view. As is understood from the above descriptions, since the supply hole 322 functions as a diaphragm flow path which causes the space R1 and the pressure chamber space 342 to communicate at a predetermined flow path resistance, it is not necessary to form a diaphragm flow path in the pressure chamber substrate 34. Therefore, a simple rectangular pressure chamber space 342 of which a width is maintained at a predetermined flow path width is formed in the pressure chamber substrate 34 according to the embodiment over the entire length in the X direction. That is, the diaphragm flow path in which a flow path area is partially constricted is not formed in the pressure chamber substrate 34. Accordingly, it is possible to reduce a size of the pressure chamber substrate 34 compared to a configuration in which the diaphragm flow path is formed in the pressure chamber substrate 34, and to realize miniaturization of the liquid ejecting head 100.
The flow path substrate 32 and the pressure chamber substrate 34 are manufactured by processing a single crystal substrate of silicon (Si) using a semiconductor manufacturing technology, for example, similarly to the above described nozzle plate 52. However, when manufacturing the flow path substrate 32 and the pressure chamber substrate 34, it is possible to arbitrarily adopt a well-known material or manufacturing method.
As exemplified in
As is understood from
As exemplified in
The housing 40 is a case for storing ink which is supplied to the plurality of pressure chambers SC. The surface of the housing 40 on the positive side in the Z direction (hereinafter, also referred to as “bonding face”) is fixed to the first face F1 of the flow path substrate 32 using an adhesive, for example. The housing 40 is formed of a material which is different from that of the flow path substrate 32 or the pressure chamber substrate 34. For example, it is possible to manufacture the housing 40 using injection molding, using a resin material, for example. However, when manufacturing the housing 40, it is possible to arbitrarily adopt a well-known material or manufacturing method.
As exemplified in
The top face portion 42 of the housing 40 is a portion which is located on a side opposite to the flow path substrate 32 by interposing the space R2 therebetween. A space which is surrounded with the side face portion 44 and the top face portion 42 corresponds to the space R2. As exemplified in
As exemplified in
As exemplified in
Meanwhile, as exemplified in
As illustrated in
The surface of the beam-shaped unit 48 on the flow path substrate 32 side is an inclined face which is inclined to the first face F1 (X-Y plane) of the flow path substrate 32. Specifically, the surface of the beam-shaped unit 48 on the flow path substrate 32 side includes a pair of inclined faces (planar face or curved face) 482 which are located on the positive side and the negative side in the Y direction by having a ridgeline 481 along the X direction as a boundary. That is, a horizontal width (dimension in Y direction) of the beam-shaped unit 48 gradually decreases from the negative side to the positive side in the Z direction.
The plurality of beam-shaped units 48 are provided at a position which is separated from the first face F1 of the flow path substrate 32 on the negative side in the Z direction (side opposite to flow path substrate 32), and the surfaces (upper faces) of the plurality of beam-shaped units 48 on the negative side in the Z direction are located on approximately the same plane (so-called flush surface) as the inner wall face (the surface on a side opposite to the compliance unit 46) of the first portion r1 of the space R2. The space R2 of the housing 40 is divided into a space (first portion r1) on the upstream side of the plurality of beam-shaped units 48 and a space (space on the downstream side of the beam-shaped unit 48 in the second portion r2) on the downstream side of the plurality of beam-shaped units 48, by the plurality of beam-shaped units 48. In addition, the plurality of beam-shaped units 48 are disposed with intervals such that a plurality of flow paths P having the Z direction as the flow path direction are arranged on the negative side and the positive side in the Y direction from the introducing port 43. Accordingly, as indicated by arrows in
As described above, in the embodiment, since the beam-shaped unit 48 is disposed in the space R2 of the housing 40, it is possible to improve the mechanical strength of the housing 40. Meanwhile, if the flow paths P are divided by the beam-shaped units 48, performances of discharging bubbles may be decreased. Thus, in the embodiment, the dimensions of respective flow paths P formed by the beam-shaped units 48 are set as follows. That is, if among the plurality of flow paths P formed by the beam-shaped units 48, the flow paths P far away from the introducing port 43 in the Y direction (first direction) are set as first flow paths, and the flow paths P close to the introducing port 43 are set as second flow paths, a flow path width W of each flow path P is set such that the first flow path has a flow path width W in the Y direction smaller than that of the second flow path. The flow path width W corresponds to an interval between two beam-shaped units 48 that are adjacent in the Y direction.
Specifically, as illustrated in
In the embodiment, both the flow path width W in the X direction and a flow path width D in the Y direction of each flow path P are smaller than a height H in the Z direction (third direction) of the first portion r1 on the upstream side of the beam-shaped unit 48. The flow path width D corresponds to an interval between the pair of inner wall faces 472 facing each other in the space R2, and can be called a length of the beam-shaped unit 48 in the X direction.
In the configuration in which the flow path width W′ in the Y direction of the flow path P is large as in the comparative example of
Meanwhile, in the embodiment of
In consideration of the view point of promoting the discharge of the bubble B by suppressing the formation of the gap, a configuration in which all the plurality of flow paths P have small flow path widths W can be assumed. However, in such a configuration in which the flow path widths W are small, the flow rate of the ink from the space R1 to the space R2 is limited, and as a result, the supply of the ink to each pressure chamber SC may be insufficient. In consideration of such a circumstance, in the embodiment, the configuration is adopted in which the flow path P close to the introducing port 43 has the flow path width W larger than that of the flow path P far away from the introducing port 43. That is, the flow path width W of the flow path P close to the introducing port 43 (that is, at a position where the bubble B is unlikely to stay) is sufficiently secured while the flow path width W of the flow path P on the downstream side (end portion side in the Y direction) where the bubble B easily stays is reduced. Accordingly, it is possible to easily discharge the bubble in the flow path P far from the introducing port 43 while securing the flow rate of the ink in the flow path P close to the introducing port 43.
In the embodiment, the flow path width D in the Y direction of the flow path P is smaller than the height H in the Z direction (third direction) of the first portion r1 on the upstream side of the beam-shaped unit 48. According to such a configuration, since the flow path area of the flow paths P is reduced compared to the configuration in which the flow path width D is larger than the height H, it is possible to increase the flow rate of the ink passing through the flow path P. In addition, it is possible to promote the discharge of the bubble B through the flow path P. Since the height H greater than the flow path width D is secured in the first portion r1, there is an advantage in that the flow rate of the ink flowing in a space (the first portion r1) on the upstream side of the beam-shaped unit 48 is easily secured.
In the embodiment, the flow path width W5 of the flow path P in the X direction as well as the flow path width D of the flow path P in the Y direction is smaller than the height H of the first portion r1 in the Z direction. That is, both the flow path width D in the Y direction and the flow path width W5 in the X direction of the flow path P far away from the introducing port 43 are reduced, and thus the flow path area of the flow path P can be reduced. Accordingly, the effect in which it is possible to promote the discharge of the bubble B by the suppression of the gap between the bubble B and the inner wall face of the flow path P, and by the increase of the flow rate of the ink is particularly remarkable.
The flow path width W5 of the flow path P in the X direction is smaller than the height H of the first portion r1 and the flow path width D in the Y direction may be greater than the height H. Even in such a configuration, it is possible to promote the discharge of the bubble B by increasing the flow rate of the ink flowing through the flow path P while the flow rate of the ink flowing through the first portion r1 is secured. In the embodiment, the case in which all the flow paths P have the same height H in the Z direction (third direction) of the first portion r1 on the upstream side of the beam-shaped unit 48 is described, but the heights H of the first portion r1 may be different from each other depending on the position of the flow path P. For example, the height H of the first portion r1 corresponding to the flow path P farthest from the introducing port 43 may be smaller than the heights H of other flow paths P. Specifically, a configuration in which the flow path width D of the flow path P in the Y direction and the flow path width W5 of the flow path P in the X direction are smaller than the height H of the flow path P farthest from the introducing port 43 is preferable.
In the embodiment, the space R2 of the liquid storage chamber SR includes the first portion r1 parallel to the X-Y plane and the second portion r2 orthogonal to the plane from the introducing port 43, and the beam-shaped unit 48 is formed in the second portion r2 orthogonal to the plane. According to such a configuration, when the ink flows from the first portion r1 to the second portion r2 in the space R2 of the liquid storage chamber SR, since the ink passes through the flow path P formed by the beam-shaped unit 48, at this time, it is possible to easily discharge the bubble B in the flow path P far away from the introducing port 43 while the flow rate of the liquid is secured.
In the embodiment, since the liquid storage chamber SR and the pressure chamber SC communicate through the supply hole 322 (diaphragm flow path) which is formed in the flow path substrate 32, it is possible to reduce a size of the pressure chamber substrate 34 compared to a configuration in which the diaphragm flow path is formed in the pressure chamber space 342. Accordingly, it is possible to realize miniaturization of the liquid ejecting head 100. In addition, since the compliance unit 54 is provided in the vicinity of the pressure chamber SC so as to face the pressure chamber SC by interposing the communicating hole 324, there is an advantage that it is possible to efficiently absorb a pressure change which is propagated to the liquid storage chamber SR from each pressure chamber SC through the communicating hole 324 using the compliance unit 54. Meanwhile, in a configuration in which the flow path substrate 32 is reduced in size in order to miniaturize the liquid ejecting head 100, it is difficult to sufficiently secure an area of the compliance unit 54, and a possibility that a pressure change in the liquid storage chamber SR may not be sufficiently suppressed using only the compliance unit 54 is also assumed. According to the embodiment, since the compliance unit 46 is provided in the housing 40, in addition to the compliance unit 54 of the flow path substrate 32, there is an advantage that it is possible to effectively suppress a pressure change in the liquid storage chamber SR even when the flow path substrate 32 is miniaturized compared to a configuration in which the compliance unit 46 is not provided.
Meanwhile, it is necessary to miniaturize the housing 40, as well, in order to miniaturize the liquid ejecting head 100; however, when the plate thickness of the side face portion 44 or the top face portion 42 is reduced in order to miniaturize the housing 40, there is a possibility that a mechanical strength of the housing 40 may be insufficient. According to the embodiment, since the beam-shaped unit 48 is provided in the housing 40, there is an advantage that it is possible to maintain the mechanical strength of the housing 40 even in a configuration in which the plate thickness of each unit is reduced in order to miniaturize the housing 40.
Each embodiment which is exemplified above can be variously modified. Specific modification example will be described below. Two or more examples which are arbitrarily selected from the following examples can be appropriately combined in a range of not conflicting each other.
(1) In each embodiment described above, a case where the space R2 of the liquid storage chamber SR where the beam-shaped unit 48 is provided is configured to be divided into the first portion r1 and the second portion r2 intersecting in different directions is described. However, the first portion r1 and the second portion r2 may be integrally configured so as to communicate with each other in the same direction without intersecting each other.
(2) In each embodiment described above, one housing 40 is provided with respect to one flow path substrate 32; however, it is also possible to provide one housing with respect to a plurality of the flow path substrates 32.
(3) In each embodiment described above, the compliance unit 46 is provided on the top face portion 42 of the housing 40; however, it is possible to provide the compliance unit on the side face portion 44 of the housing 40. In this case, it is possible to provide the compliance unit 46 on both the top face portion 42 and the side face portion 44 of the housing 40.
(4) The element (driving element) which applies a pressure into the pressure chamber SC is not limited to the piezoelectric element 37 which is exemplified in each embodiment which is described above. For example, it is also possible to use a heating element which causes a pressure change by generating bubbles in the inside of the pressure chamber SC using heating, as a driving element. As is understood from the above examples, the driving element is comprehensively expressed as an element for ejecting liquid (typically, element which applies pressure into pressure chamber SC), and an operation method (piezoelectric method or heating method) or specific configuration thereof does not matter.
(5) In each embodiment which is described above, a serial head in which the carriage 26 on which the plurality of liquid ejecting heads 100 are mounted moves in the X direction is exemplified; however, it is also possible to apply the invention to a line head in which a plurality of liquid ejecting heads 100 are arranged in the X direction.
(6) The printing apparatus 10 which is exemplified in each embodiment which is described above can be adopted to various devices such as a fax machine or a copy machine, in addition to a device which is exclusive to printing. Originally, a use of the liquid ejecting apparatus in the invention is not limited to printing. For example, a liquid ejecting apparatus which ejects a solution of a coloring material is used as a manufacturing device which forms a color filter of a liquid crystal display device. In addition, a liquid ejecting apparatus which ejects a solution of a conductive material is used as a manufacturing device which forms wiring or an electrode of a wiring substrate.
The entire disclosure of Japanese Patent Application No. 2015-188416, filed Sep. 25, 2015 is expressly incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-188416 | Sep 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20130127956 | Watanabe et al. | May 2013 | A1 |
20150258789 | Togashi | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
2000-108352 | Apr 2000 | JP |
2013-129191 | Jul 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20170087834 A1 | Mar 2017 | US |