Field of the Invention
The present invention relates to a configuration for promptly supplying liquid in a liquid ejecting head.
Description of the Related Art
In a liquid ejecting apparatus such as an inkjet printing apparatus, there is demand for a stable supply of liquid to an ejecting head that ejects the liquid as droplets. Particularly, in a color inkjet printing apparatus that uses multiple ink colors, a supply channel for guiding ink to ejecting elements is provided independently for each ink color, and prompt supply is demanded for each.
Meanwhile, in a serial inkjet printing apparatus, an on-carriage method and an off-carriage method may be adopted as the method of supplying ink to a print head. The on-carriage method refers to a format of mounting an ink tank that supplies ink to an ejecting head on a carriage that moves inside the apparatus together with the ejecting head. On the other hand, the off-carriage method refers to a method of affixing a main ink tank at a designated location in the apparatus, and supplying ink through a flexible tube to an ejecting head that moves together with the carriage. In the case of a comparatively large-scale printing apparatus, the on-carriage method has a risk of imposing too great a load on the carriage bearing a high-capacity ink tank, and thus the off-carriage method is often adopted.
Japanese Patent Laid-Open No. 2012-45805 discloses an ink supply configuration for the off-carriage method.
A joint needle unit 300 is made up of a flat plate, and integrally supports multiple joint needles 302 formed approximately perpendicularly to the flat face. Additionally, by having positioning pins 301a and 301b arranged on the joint needle unit 300 engage with positioning openings 401a and 401b on the sub tank side, the multiple joint needles 302 are also inserted into joint openings 402 on the sub tank side. As a result, ink supplied from tubes is made to enter the liquid chambers. Japanese Patent Laid-Open No. 2012-45805 discloses a configuration that increases the positioning accuracy of the individual joint needles and decreases the risk of ink leakage by providing features to the layout of the positioning units 401a and 401b and the multiple joint needles 302.
However, although the configuration of Japanese Patent Laid-Open No. 2012-45805 achieves increased positional accuracy of the joint needles in the plane of the joint unit, or in other words a direction perpendicular to the direction of joint needle insertion, the configuration of Japanese Patent Laid-Open No. 2012-45805 does not consider the force produced in the direction of joint needle insertion and removal. For this reason, if the number of ink colors to handle is increased, and the force produced in the direction of joint needle insertion and removal becomes larger, there is a risk of damage to comparatively weak portions, such as the coupling face of the sub tank and the ejecting head, and a risk of seal rupture.
The present invention has been devised in order to solve the above problems. Thus, an objective thereof is to provide a configuration of a liquid ejecting head enabling a stable, continuous ink supply with the off-carriage method, even if force operates in the direction of joint needle insertion and removal.
According to a first aspect of the present invention, there is provided a liquid ejecting head removably attachable to a printing apparatus provided with a joint needle for supplying liquid and a positioning member for positioning, the liquid ejecting head comprising: an ejecting head unit configured to eject liquid; and a sub tank unit configured to connect and supply liquid to the ejecting head unit through a connection face, wherein a joint opening that accepts insertion of the joint needle and a positioning opening that engages with the positioning member are provided on one side of the sub tank unit, and the joint opening is arranged at a position closer to the connection face than the positioning opening.
According to a second aspect of the present invention, there is provided a liquid ejecting apparatus including a liquid ejecting head removably attachable to a printing apparatus provided with a joint needle for supplying liquid and a positioning member for positioning, and a carriage on which the liquid ejecting head is mounted, the liquid ejecting head comprising: an ejecting head unit configured to eject liquid; and a sub tank unit configured to connect and supply liquid to the ejecting head unit through a connection face, wherein a joint opening that accepts insertion of the joint needle and a positioning opening that engages with the positioning member are provided on one side of the sub tank unit, and the joint opening is arranged at a position closer to the connection face than the positioning opening, and by causing the carriage to move relative to a print medium while causing the liquid ejecting head to eject ink according to print data, an image is printed onto the print medium.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
The ink housed in each main tank 240 is supplied through a flexible tube 230 provided for each ink color to a liquid ejecting head (hereinafter designated the inkjet (IJ) head) 100 that is removably mounted onto a carriage 310. The carriage 310 is guided and supported by a shaft 320, and is able to move back and forth along the X direction. Additionally, by repeatedly alternating between a primary scan, in which the IJ head 100 mounted onto the carriage 310 moves in the X direction while ejecting ink in the −Z direction according to print data, and a conveying operation in which the print medium is conveyed in the Y direction, an image is successively formed on the print medium. An amount of ink equal to the ink consumed by the ejecting operations is continuously supplied to the IJ head via the tube 230 and joint needle unit 510 which are able to follow the movements of the carriage 310.
On the −Y side of each sub tank unit 150, a joint cover 140 that receives joint needles 213 discussed later is disposed. On the joint cover 140, joint openings 180 for accepting the insertion of the joint needles 213 are formed in a group of six at designated positions. On the inner side of each joint opening 180, a ring-shaped needle seal 133 that accepts the insertion of and holds a joint needle 213 is disposed. The joint cover 140 collectively holds six needle seals 133 into which the joint needles 213 are inserted directly, and fulfills a role of preventing the joint needles 213 from falling out.
In the exemplary embodiment, the positioning opening 111 on one side is a round hole of approximately the same diameter as the positioning pin 501 of the joint needle unit 500. The positioning opening 112 on the other side is an elongated hole or slot having a minor axis diameter of approximately the same diameter as the positioning pin 502 of the joint needle unit 500. This creates a mechanism in which, by joining together with the positioning pins 501 and 502 facing the positioning openings 111 and 112, each joint needle 213 also engages with each corresponding joint opening 180, and the respective parts formed on the same plane become fixed at designated positions.
At this point,
In the inkjet printing apparatus of the exemplary embodiment, referring to
When the joint needle 213 is inserted, a force F is produced in the Y direction due to friction. Such force F produces a moment of force M that attempts to rotate the sub tank unit 150 fixed in the carriage 310. This moment of force M readily affects the weakest portion of the components, namely, the coupling between the ejecting head unit 110 and the sub tank unit 150.
For this reason, if at least a certain moment of force M is maintained for a certain period, there is a risk that the sub tank unit 150 will be pulled away from the joint seal 160, the sealing action of the joint seal 160 will be lost, and air may intrude into the ink supply channels or ink inside the supply channels may leak out. Furthermore, if air intrudes into the ink supply channels, the ink supply may become discontinuous and normal ejecting operations may not be performed, leading to image degradation. In addition, if such an air leak occurs, it is difficult to completely remove the intruding air even if an ejecting head recovery process is performed by a maintenance unit provided in the main apparatus, leading to increased concerns about the need to replace the IJ head 100 itself.
However, the magnitude of the moment of force M received by the coupling depends on the distance in the Z direction from the coupling (that is, the joint seal 160) to the joint needle 213. In other words, by decreasing the distance from the joint seal 160 to the joint needle 213 compared to the past like in the exemplary embodiment (B<A), the moment of force (Mb=FB) may be made smaller compared to the past (Ma=FA). As a result, the risk of loss of the seal action by the joint seal 160 and concerns about air intrusion and ink leakage may be reduced.
In other words, according to the exemplary embodiment, in a configuration that couples a joint needle unit supporting multiple joint needles to a sub tank, the positions of the joint needle couplings are placed as close to the joint seal as possible. Consequently, even if external force is produced due to coupling, the force exerted on the weakest portion of the IJ head may be minimized.
Note that although the ejecting head unit 110, the sub tank unit 150, and the joint seal 160 are joined by being screwed together in the above, the joining method is not limited to the above configuration. These three members may also be joined via an adhesive agent or by welding. Also, it is not strictly necessary to provide the joint seal 160 as a separate member.
Furthermore, in the exemplary embodiment described above, two sub tank units 150, two joint seals 160, and two joint covers 140 are provided with respect to one ejecting head unit 110, but the present invention is not limited to such a configuration. A configuration in which one sub tank unit 150, one joint seal 160, and one joint cover 140 are provided is also acceptable, and a configuration in which three or more of each are provided is also acceptable. Furthermore, multiple ejecting head units may also be provided.
Moreover, the present invention still functions effectively for an ejecting head that ejects ink of only one color. In this case, the number of sub tank liquid chambers and the number of joint needles inserted into the sub tank become one each.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2015-104548, filed May 22, 2015, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-104548 | May 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4928126 | Asai | May 1990 | A |
5666146 | Mochizuki | Sep 1997 | A |
5805187 | Sasaki | Sep 1998 | A |
6042216 | Garcia et al. | Mar 2000 | A |
6582068 | Ishizawa | Jun 2003 | B2 |
6715865 | Yamaguchi et al. | Apr 2004 | B2 |
6824243 | Yamaguchi et al. | Nov 2004 | B2 |
6905197 | Suenaga | Jun 2005 | B2 |
6913351 | Yamaguchi et al. | Jul 2005 | B2 |
6957883 | Yamaguchi et al. | Oct 2005 | B2 |
7070267 | Yamaguchi et al. | Jul 2006 | B2 |
8113637 | Yokouchi | Feb 2012 | B2 |
8113639 | Kimura | Feb 2012 | B2 |
8550606 | Ikebe et al. | Oct 2013 | B2 |
8888258 | Kondou | Nov 2014 | B2 |
8967779 | Tsukahara | Mar 2015 | B2 |
9061497 | Okubo | Jun 2015 | B2 |
9156263 | Kodoi et al. | Oct 2015 | B2 |
9174454 | Tsujiuchi et al. | Nov 2015 | B2 |
20120050418 | Tsujiuchi | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2000-238280 | Sep 2000 | JP |
2003-001843 | Jan 2003 | JP |
2005-074923 | Mar 2005 | JP |
2006-082318 | Mar 2006 | JP |
2012-045805 | Mar 2012 | JP |
2012-071586 | Apr 2012 | JP |
Entry |
---|
Notification of Reasons for Refusal dated Feb. 19, 2019, in Japanese Patent Application No. 2015-104548. |
Number | Date | Country | |
---|---|---|---|
20160339711 A1 | Nov 2016 | US |