1. Technical Field
The present invention relates to a liquid ejecting method, a liquid ejecting head, and a liquid ejecting apparatus.
2. Related Art
A liquid ejecting apparatus such as an ink jet printer includes a liquid ejecting head including nozzles for ejecting a liquid, a pressure chamber for providing a pressure variation to the liquid such that the liquid is ejected from the nozzles, and a supply unit for supplying the liquid stored in a reservoir to the pressure chamber. In this liquid ejecting head, the size of a liquid channel in the head is determined on the basis of a liquid having viscosity close to that of water (See JP-A-2005-34998).
Recently, a liquid having viscosity higher than that of a general ink attempts to be ejected using an ink jet technology. In addition, if the liquid having the high viscosity is ejected by a head having the existing shape, the ejection of the liquid becomes unstable. For example, flight deflection of the liquid occurs or shortage of the ejection amount of the liquid occurs.
An advantage of some aspects of the invention is that the ejection of a liquid having viscosity higher than that of a general ink becomes stable.
According to an aspect of the invention, there is provided a liquid ejecting method, including ejecting a liquid from a liquid ejecting head, wherein: the viscosity of the liquid is in a range from 6 mPa·s to 15 mPa·s, the liquid ejecting head includes: nozzles which eject the liquid; a pressure chamber which applies a pressure variation to the liquid in order to eject the liquid from the nozzles; and a supply unit which communicates with the pressure chamber and supplies the liquid to the pressure chamber, the volume of the supply unit is more than ⅕ of the volume of the pressure chamber and is less than ½ of the volume of the pressure chamber, and the channel length of the pressure chamber is equal to or more than the channel length of the supply unit and is equal to or less than twice of the channel length of the supply unit.
The other features of the invention will become apparent from the description of the present specification and the accompanying drawings
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
At least the following will become apparent from the description of the specification and the accompanying drawings.
That is, it will become apparent that a liquid ejecting method, including ejecting a liquid from a liquid ejecting head, wherein: the viscosity of the liquid is in a range from 6 mPa·s to 15 mPa·s, the liquid ejecting head includes: nozzles which eject the liquid; a pressure chamber which applies a pressure variation to the liquid in order to eject the liquid from the nozzles; and a supply unit which communicates with the pressure chamber and supplies the liquid to the pressure chamber, the volume of the supply unit is more than ⅕ of the volume of the pressure chamber and is less than ½ of the volume of the pressure chamber, and the channel length of the pressure chamber is equal to or more than the channel length of the supply unit and is equal to or less than twice of the channel length of the supply unit, can be realized.
According to this liquid ejecting method, it is possible to optimize the movement of the liquid in the supply unit. As a result, it is possible to stabilize the ejection of the liquid having high viscosity.
In the liquid ejecting method, the cross-sectional area of the supply unit may be in a range from ⅓ of the cross-sectional area of the pressure chamber to the cross-sectional area of the pressure chamber.
According to this liquid ejecting method, it is possible to suppress the shortage of the supply of the liquid to the pressure chamber.
In the liquid ejecting method, the inertance of the nozzles may be smaller than that of the supply unit.
According to this liquid ejecting method, it is possible to efficiently eject the liquid by the pressure vibration applied to the liquid.
In the liquid ejecting method, the volume of the supply unit may be in a range from 2240000×10−8 m3 to 3920000×10−18 m3.
According to this liquid ejecting method, it is possible to eject the liquid by the amount of about 10 ng from the nozzles.
In the liquid ejecting method, the channel length of the pressure chamber may be in a range from 500×10−6 m to 1000×10−6 m.
According to this liquid ejecting method, it is possible to eject the liquid by the amount of about 10 ng from the nozzles.
In the liquid ejecting method, the cross-sectional area of the supply unit may be in a range from 3.3×10−15 m2 to 10×10−15 m2.
According to this liquid ejecting method, it is possible to eject the liquid by the amount of about 10 ng from the nozzles.
In the liquid ejecting method, the pressure chamber may have a partitioning portion which partitions a portion of the pressure chamber and applies the pressure variation to the liquid by deformation.
According to this liquid ejecting method, it is possible to efficiently apply the pressure variation to the liquid contained in the pressure chamber.
In the liquid ejecting method, the liquid ejecting head may include an element which deforms the partitioning portion by the degree according to a potential variation pattern of an applied ejection pulse.
According to this liquid ejecting method, it is possible to control the pressure of the liquid contained in the pressure chamber with high accuracy.
In addition, it will become apparent that the following liquid ejecting head can be realized.
That is, it will become apparent that a liquid ejecting head including: nozzles which eject the liquid; a pressure chamber which applies a pressure variation to the liquid in order to eject the liquid from the nozzles; and a supply unit which communicates with the pressure chamber and supplies the liquid to the pressure chamber, the volume of the supply unit is more than ⅕ of the volume of the pressure chamber and is less than ½ of the volume of the pressure chamber, and the channel length of the pressure chamber is equal to or more than the channel length of the supply unit and is equal to or less than twice of the channel length of the supply unit can be realized.
In addition, it will become apparent that the following liquid ejecting apparatus can be realized.
That is, it will become apparent that a liquid ejecting apparatus including: an ejection pulse generation unit which generates an ejection pulse; and a liquid ejection head which ejects a liquid from nozzles and includes: a pressure chamber which deforms a partitioning portion and applies a pressure variation to the liquid in order to eject the liquid from the nozzles; an element which deforms the partitioning portion by the degree according to a potential variation pattern of an applied ejection pulse; and a supply unit which communicates with the pressure chamber and supplies the liquid to the pressure chamber, the volume of the supply unit is more than ⅕ of the volume of the pressure chamber and is less than ½ of the volume of the pressure chamber, and the channel length of the pressure chamber is equal to or more than the channel length of the supply unit and is equal to or less than twice of the channel length of the supply unit can be realized.
The printing system shown in
The printer 1 includes a sheet transportation mechanism 10, a carriage movement mechanism 20, a driving signal generation circuit 30, a head unit 40, a detector group 50 and a printer controller 60.
The sheet transportation mechanism 10 transports a sheet in a transportation direction. The carriage movement mechanism 20 moves a carriage, in which the head unit 40 is mounted, in a predetermined movement direction (for example, a paper width direction) The driving signal generation circuit 30 generates a driving signal COM. This driving signal COM is applied to a head HD (piezo-element 433, see
As shown in
The channel unit 42 includes a channel forming substrate 421, a nozzle plate 422 and a vibration plate 423 In addition, the nozzle plate 422 is adhered to one surface of the channel forming substrate 421 and the vibration plate 423 is adhered to the other surface of the channel forming substrate. A groove which becomes a pressure chamber 424, a groove which becomes an ink supply path 425 and an opening which becomes a common ink chamber 426 are formed in the channel forming substrate 421 This channel forming substrate 421 is formed of, for example, a silicon substrate. The pressure chamber 424 is formed as a chamber which is elongated in a direction perpendicular to the arrangement direction of nozzles 427. The ink supply path 425 allows the pressure chamber 424 to communicate with the common ink chamber 426. This ink supply path 425 supplies an ink (a liquid) stored in the common ink chamber 426 to the pressure chamber 424. Accordingly, the ink supply path 425 is a supply unit for supplying the liquid to the pressure chamber 424. The common ink chamber 426 is a portion for temporarily storing the ink supplied from an ink cartridge (not shown) and corresponds to a common liquid storage chamber.
In the nozzle plate 422, the plurality of nozzles 427 is provided at a predetermined interval in the predetermined arrangement direction. The ink is ejected from the head HD via the nozzles 427 This nozzle plate 422 is formed of, for example, a stainless plate or a silicon substrate.
The vibration plate 423 has, for example, a double structure in which an elastic film 429 made of resin is laminated on a support plate 428 made of stainless. In the portion of the vibration plate 423 corresponding to the pressure chamber 424, the support plate 428 is etched in an annular shape. An island portion 428a is formed in the annular portion. The island portion 428a and the elastic film 429a located around the island portion configure a diaphragm portion 423a. This diaphragm portion 423a is deformed by the piezo-element 433 of the piezo-element unit 43 and varies the volume of the pressure chamber 424. That is, the diaphragm portion 423a partitions a portion of the pressure chamber 424 and corresponds to a partitioning portion for applying a pressure variation to the ink (liquid) in the pressure chamber 424 by the deformation.
The piezo-element unit 43 includes a piezo-element group 431 and a fixed plate 432 The piezo-element group 431 has a comb tooth-like shape One comb tooth is the piezo-element 433. The front end surface of the piezo-element 433 is adhered to the island portion 428a corresponding thereto. The fixed plate 432 supports the piezo-element group 431 and becomes a mounting unit of the case 41. This fixed plate 432 is formed of, for example, a stainless plate and is adhered to the inner wall of the storage space 411.
The piezo-element 433 is an electromechanical conversion element and corresponds to an element which performs an operation (deformation operation) for applying a pressure variation to the liquid in the pressure chamber 424. The piezo-element 433 shown in
As described above, the piezo-element unit 43 is mounted in the case 41 via the fixed plate 432 If the piezo-element 433 contracts, the diaphragm portion 423a is pulled to be separated from the pressure chamber 424. Accordingly, the pressure chamber 424 expands. In contrast, if the piezo-element 433 expands, the diaphragm portion 423a is pulled to the side of the pressure chamber 424. Accordingly, the pressure chamber 424 contracts. The pressure variation occurs in the ink contained in the pressure chamber 424 due to the expansion or the contraction of the pressure chamber 424. That is, the ink contained in the pressure chamber 424 is pressurized by the contraction of the pressure chamber 424 and the ink contained in the pressure chamber 424 is depressurized by the expansion of the pressure chamber 424 Since the expansion and the contraction of the piezo-element 433 are determined by the potential of the driving electrode 435, the volume of the pressure chamber 424 is also determined by the potential of the driving electrode 435. Accordingly, the piezo-element 433 is an element for deforming the diaphragm portion 423a (partitioning portion) by the degree according to the potential variation pattern of the applied ejection pulses PS. In addition, the pressurized degree or the depressurized degree of the ink contained in the pressure chamber 424 may be determined by a potential variation of the driving electrode 435 per unit time.
In the head HD, a plurality of ink channels (corresponding to a liquid channel in which the liquid is filled) which extends from the common ink chamber 426 to the nozzles 427 is formed according to the number of nozzles 427. In the ink channels, the nozzles 427 and the ink supply path 425 communicate with the pressure chamber 424. Accordingly, if the characteristic of the ink, such as the flow of the ink, is analyzed, the viewpoint of a Helmholtz resonator is applied.
In the general head HD, the length L424 of the pressure chamber 424 is determined in a range from 200 μm to 2000 μm. The width W424 of the pressure chamber 424 is determined in a range from 20 μm to 300 μm, and the height H424 of the pressure chamber 424 is determined in a range from 30 μm to 500 μm. In addition, the length L425 of the ink supply path 425 is determined in a range from 50 μm to 2000 μm. The width W425 of the ink supply path 425 is determined in a range from 20 μm to 300 μm, and the height H425 of the ink supply path 425 is determined in a range from 30 μm to 500 μm. In addition, the diameter φ427 of the nozzles 427 is determined in a range from 10 μm to 40 μm and the length L427 of the nozzles 427 is determined in a range from 40 μm to 100 μm.
The Helmholtz period (inherent vibration period of the ink) Tc may be expressed by following Equation (1).
Tc=1/f
f=1/2π√[(Mn+Ms)/(Mn×Ms×(Cc+ci))] (1)
In Equation (1), Mn denotes the inertance of the nozzles 427 (the mass of the ink per unit cross-sectional area, which will be described later), Ms denotes the inertance of the ink supply path 425, the Cc denotes the compliance (a volume variation per unit pressure and a degree of softness) of the pressure chamber 424, and Ci denotes the compliance of the ink (Ci=volume V/[density ρ×sound velocity c2]).
The amplitude of the pressure vibration is gradually decreased as the ink flows in the ink channel, For example, the pressure vibration attenuates due to the loss of the nozzles 427 or the ink supply path 425 and the loss of the wall portion partitioning the pressure chamber 424.
In the general head HD, the Helmholtz period of the pressure chamber 424 is determined in a range from 5 μs to 10 μs. For example, in the ink channel of
The printer controller 60 performs the whole control of the printer 1. For example, the printer controller controls control objects on the basis of the detected result of the detectors or the printing data received from the computer CP and prints the image on the sheet. As shown in
The control signal for generating the driving signal COM is also called DAC data and is, for example, plural-bit digital data. This DAC data decides the variation pattern of the potential of the generated driving signal COM. Accordingly, this DAC data is called data representing the potential of the ejection pulses PS or the driving signal COM. This DAC data is stored in a predetermined area of the memory 63, is read at the time of the generation of the driving signal COM, and is output to the driving signal generation circuit 30.
The driving signal generation circuit 30 functions as an ejection pulse generation unit and generates the driving signal COM having the ejection pulses PS on the basis of the DAC data. As shown in
The head controller HC selects a necessary portion of the driving signal COM generated by the driving signal generation circuit 30 on the basis of the head control signal and applies the necessary portion to the piezo-element 433. Accordingly, as shown in
Next, the driving signal COM generated by the driving signal generation circuit 30 will be described. As shown in
The potential of each ejection pulse PS shown rises from a medium potential VB as a reference potential to a highest potential VH and then falls to a lowest potential VL. Then, the potential of each ejection pulse rises to the medium potential VB. As described above, the piezo-element 433 contracts as the potential of the driving electrode 435 is higher than that of the common electrode 434, and the volume of the pressure chamber 424 is increased.
Accordingly, if the ejection pulses PS are applied to the piezo-element 433, the pressure chamber 424 expands from a reference volume corresponding to the medium potential VB to a maximum volume corresponding to a highest potential VH. Thereafter, the pressure chamber 424 contracts to a minimum volume corresponding to the lowest potential VL and expands to the reference volume. When the pressure chamber contracts from the maximum volume to the minimum volume, the ink contained in the pressure chamber 424 is pressurized and ink droplets are ejected from the nozzles 427. Accordingly, the portion of each ejection pulse PS which varies from the highest potential VH to the lowest potential VL corresponds to the ejection portion for ejecting the ink.
The ejection frequency of the ink droplet is determined by the interval between the ejection portions which are generated in tandem. For example, in the example of
In this type of printer 1, there is a need for stabilizing the ejection of the ink. For example, when the ink droplet is ejected with a low frequency and when the ink droplet is ejected with a high frequency, there is a need for equalizing the amount of ink droplet, a flight direction or a flying speed. However, when an ink having viscosity which is sufficiently higher than the viscosity (about 1 mPa·s) of a general ink and, more particularly, an ink having viscosity of 6 to 20 mPa·s (for convenience, also called a high-viscosity ink) is ejected by the existing head HD, the ejection of the ink becomes unstable.
Various factors for making the ejection of the ink unstable may be considered, but, among them, deviations in structural balance between the pressure chamber 424 and the ink supply path 425 are considered as the factors. In a detailed example, a deviation in a ratio of the volume of the pressure chamber 424 and the volume of the ink supply path 425, a deviation in a ratio of the cross-sectional area of the pressure chamber 424 and the cross-sectional area of the ink supply path 425, and a deviation in a ratio of the channel length of the pressure chamber 424 and the channel length of the ink supply path 425 are considered as the factors. If the ratio of the volume and the ratio of the channel length are deviated, the movement of the ink in the ink supply path 425 is excessively increased or decreased. In addition, if the ratio of the cross-sectional area and the ratio of the channel length are deviated, the amount of ink flowing in the ink supply path 425 is excessively increased or decreased. Due to these factors, the ejection of the inks becomes unstable.
In consideration of this situation, in the head HD of the first embodiment, the volume of the ink supply path 425 is determined on the basis of the volume of the pressure chamber 424, and the channel length of the pressure chamber 424 is determined on the basis of the channel length of the ink supply path 425. That is, as shown in
In the head HD of the second embodiment, the cross-sectional area of the ink supply path 425 is determined on the basis of the cross-sectional area of the pressure chamber 424 and the channel length of the pressure chamber 424 is determined on the basis of the channel length of the ink supply path 425. That is, as shown in
First, each of the ejection pulses PS used in evaluation will be described.
The ejection pulse PS1 shown in
The first depressurization portion P1 is a portion generated from a timing t1 to a timing t2. In this first depressurization portion P1, the potential of the timing t1 (corresponds to a start potential) is the medium potential VB and the potential of the timing t2 (corresponding to an end potential) is the highest potential VH. Accordingly, if the first depressurization portion P1 is applied to the piezo-element 433, the pressure chamber 424 expands from the reference volume to the maximum volume in the generation period of the first depressurization portion P1.
The medium potential VB of the ejection pulse PS1 is set to a potential higher than the lowest potential VL of the ejection pulse PS1 by 32% of a difference (26 V) between the highest potential VH and the lowest potential VL. In addition, the generation period of the first depressurization portion P1 is 2.0 μs.
The first potential holding portion P2 is a portion generated from the timing t2 to a timing t3. This first potential holding portion P2 is held at the highest potential VH. Accordingly, if the first potential holding portion P2 is applied to the piezo-element 433, the pressure chamber 424 holds the maximum volume in the generation period of the first potential holding portion P2. In this ejection pulse PS1, the generation period of the first potential holding portion P2 is 2.1 μs.
The pressurization portion P3 is a portion generated from the timing t3 to a timing t4. In this pressurization portion P3, a start potential is the highest potential VH and an end potential is the lowest potential VL. Accordingly, if the pressurization portion P3 is applied to the piezo-element 433, the pressure chamber 424 contracts from the maximum volume to the minimum volume in the generation period of the pressurization portion P3. Since the ink is ejected by the contraction of this pressure chamber 424, the pressurization portion P3 corresponds to the ejection portion for ejecting the ink droplet. In this ejection pulse PS1, the generation period of the pressurization portion P3 is 2.0 μs.
The second potential holding portion P4 is a portion generated from the timing t4 to a timing t5. This second potential holding portion P4 is held at the lowest potential VL. Accordingly, if the second potential holding portion P4 is applied to the piezo-element 433, the pressure chamber 424 holds the minimum volume in the generation period of the second potential holding portion P4. In this ejection pulse PS1, the generation period of the second potential holding portion P4 is 5.0 μs.
The second depressurization portion P5 is a portion generated from a timing t5 to a timing t6. In this second depressurization portion P5, a start potential is the lowest potential VL and an end potential is the medium potential VB. At this time, if the second depressurization portion P5 is applied to the piezo-element 433, the pressure chamber 424 expands from the minimum volume to the reference volume in the generation period of the second depressurization portion P5. In this ejection pulse PS1, the generation period of the second depressurization portion P5 is 3.0 μs.
Ink Having Viscosity of 15 mPa·s
Other values used in the simulation are as follows First, in the heads HD (heads HD of No. 1 to No. 16) to be evaluated, the height H424 of the pressure chamber 424 is 80 μm and the volume V424 thereof is 9680000×10−18 m3. In addition, the depth H425 of the ink supply path 425 is 80 μm and the length L425 thereof is equal to the length L424 of the pressure chamber 424. The diameter φ427 of the nozzles 427 is 25 μm and the length L427 of the nozzles 427 is 80 μm.
In addition, the simulation is performed on the basis of the nozzles 427 each of which has a substantially funnel shape, that is, has a tapered portion 427a and a straight portion 427b (see
Among the heads HD to be evaluated, the heads of the present embodiment are the heads HD of No. 6, 7, 10 and 11. In addition, the other heads HD are the heads of comparative examples. Hereinafter, the simulation result of these heads HD will be described.
In the head HD of No. 6, the length L424 of the pressure chamber 424 is 500 μm and is equal to the length L425 of the ink supply path 425. In addition, the volume V425 of the ink supply path 425 is 3920000×10−18 m3 and is slightly less than a half (4840000×10−18 m3) of the volume V424 of the pressure chamber 424,
In the head HD having such an ink channel, if the ejection pulse PS1 of
When the first depressurization portion P1 of the election pulse PS1 is applied to the piezo-element 433, the pressure chamber 424 expands. By this expansion, a negative pressure is generated in the ink contained in the pressure chamber 424 and the ink flows into the pressure chamber 424 via the ink supply path 425. In addition, as the negative pressure is generated in the ink, the meniscus is introduced from each of the nozzles 427 to the pressure chamber 424.
The movement of the meniscus to the pressure chamber 424 is continued even after the first depressurization portion P1 is applied. That is, by the compliance or the like of the vibration plate 423 or the wall portion partitioning the pressure chamber 424, the meniscus moves to the pressure chamber 424 even while the first potential holding portion P2 is applied. Thereafter, the meniscus is inverted in a direction separated from the pressure chamber 424 (a timing denoted by a reference numeral A). At this time, since the pressure chamber 424 contracts by applying the pressurization portion P3, the movement speed of the meniscus is rapid. The meniscus which moves by applying the pressurization portion P3 has a columnar shape. Until the applying of the second potential holding portion P4 to the piezo-element 433 is completed, a portion of the front end of the meniscus having the columnar shape is cut and is ejected in a droplet shape (a timing denoted by a reference numeral B) In addition, in
By the reaction to the ejection, the meniscus returns to the pressure chamber 424 at a high speed. At this time, the second depressurization portion P5 is applied to the piezo-element 433. By applying the second depressurization portion P5, the pressure chamber 424 expands. By this expansion, the negative pressure is generated in the ink contained in the pressure chamber 424. After the second depressurization portion P5 is applied, the movement direction of the meniscus is changed to the ejection side (a timing denoted by a reference numeral C) Thereafter, at a timing when the movement direction of the meniscus is changed, the applying of a next ejection pulse PS1 to the piezo-element 433 is started (a timing denoted by a reference numeral D). Thereafter, the above-described operation is repeatedly performed.
In addition, the ejection pulse PS1 is applied to the piezo-elements 433 even in the simulations shown in the other drawings (for example,
In the present embodiment, when the ink droplets are repeatedly ejected by the ejection pulse PS1 of
However, in the first to third ink droplets, the deviation in ejection amount slightly occurs. This is because the flow of the ink due to inertia is small and is not stabilized. The flow of the ink due to inertia denotes the flow of the ink from the common ink chamber 426 to the nozzles 427, which occurs by sequentially ejecting the ink droplets. The above-described evaluation reference is applied to the continuous ejection of the ink droplets. Accordingly, if the ejection amount or the ejection frequency is stabilized with respect to the ink droplets in the fourth ink droplet and later ink droplets, although the deviation in ejection amount slightly occurs in the first to third ink droplets, it is evaluated that the stable ejection is performed.
In the head HD of No. 7, the length L424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are 1000 μm. In addition, the volume V425 of the ink supply path 425 is 3920000×10−18 m3. This is similar to the head HD of No. 6 in that the volume V425 of the ink supply path 425 is slightly less than a half of the volume V424 of the pressure chamber 424. In contrast, this is different from the head HD of No. 6 in that the length L424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are 1000 μm, and are twice of the length of the same portion of the head HD of No. 6.
In the head HD of No. 10, the length L424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are 500 μm. In addition, the volume V425 of the ink supply path 425 is 2240000×10−18 m3. This is similar to the head HD of No. 6 in that the length L424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are 500 μm. In contrast, this is different from the head HD of No. 6 in that the volume V425 of the ink supply path 425 is 2240000×10−8 m3, and is slightly more than ⅕ (about 2000000×10−18 m3) of the volume V424 of the pressure chamber 424.
In the head HD of No. 11, the length L424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are 1000 μm. In addition, the volume V425 of the ink supply path 425 is 2240000×10−18 m3. This is different from the head HD of No. 6 in that the length L424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are twice of the length of the same portion of the head HD of No. 6. In addition, this is different from the head HD of No. 6 in that the volume V425 of the ink supply path 425 is slightly more than ⅕ of the volume V424 of the pressure chamber 424.
As described above, it can be seen that the heads HD of No. 6, 7, 10 and 11 satisfy the above-described evaluation reference. That is, in the head HD in which the length L424 of the pressure chamber 424 is equal to the length L425 of the ink supply path 425, it can be seen that the evaluation reference is satisfied when the volume V425 of the ink supply path 425 is set in a range more than ⅕ of the volume V424 of the pressure chamber 424 and less than ½ of the volume V424 of the pressure chamber 424. In more detail, when the length 424 of the pressure chamber 424 and the length L425 of the ink supply path 425 are in a range from 500 μm to 1000 μm and the volume V425 of the ink supply path 425 is set in a range from 2240000×10−18 m3 to 3920000×10−18 m3, it can be seen that the amount of 10 ng or more can be ensured although the ink having the viscosity of 15 mPa·s is ejected with the frequency of 60 kHz.
In these heads HD, the length L425 and the volume V425 of the ink supply path 425 are determined from the relationship with the shape of the pressure chamber 424. The cross-sectional size (cross-sectional area S425) of the ink supply path 425 is determined on the basis of the length L425 and the volume V425. The improvement of the movement of the ink contained in the ink supply path 425 when the pressure variation is given from the pressure chamber 424 is determined by the specific gravity of the ink, the volume V425 of the ink supply path 425 and the cross-sectional area S425 of the ink supply path 425. In brief, it is difficult to move the ink as the mass of the ink contained in the ink supply path 425 increases and it is easy to move the ink as the cross-sectional area S425 of the ink supply path 425 increases.
In the above-described heads HD, the ink in the ink supply path 425 or the ink in the nozzles 427 moves by the pressure variation which can be applied to the ink contained in the pressure chamber 424. There is a limitation in the pressure variation which can be applied to the ink contained in the pressure chamber 424. By setting the relationship between the length L425 and the volume V425 of the ink supply path 425 and the length L424 of the pressure chamber 424 and the volume V424 of the pressure chamber 424 like the above-described heads HD, the movement of the ink contained in the ink supply path 425 can be optimized on the basis of the pressure variation which can be applied to the ink contained in the pressure chamber 424. Accordingly, for example, it is possible to suppress shortage of the supply of the ink to the pressure chamber 424 and to supply a sufficient amount of ink. In addition, at the time of the pressurization of the ink contained in the pressure chamber 424, it is possible to suppress the excessive movement of the ink contained in the ink supply path 425 to the common ink chamber 426. As a result, the ejection can be stabilized at the time of the continuous ejection of the ink droplets.
Relationship with Nozzles 427
In the above-described heads HD, the shape of the nozzles 427 may have an influence on the ejection of the ink droplets. Hereinafter, the relationship with the nozzles 427 will be described.
In the heads HD, the cross-sectional area is determined on the basis of the volume V425 and the length L425 of the ink supply path 425. Accordingly, the channel resistance of the ink supply path 425 is determined. The channel resistance is internal loss of a medium. In the present embodiment, the channel resistance is force which is applied to the ink flowing in the ink channel and is reverse force against the ink flowing direction. In this channel resistance, it is preferable that the channel resistance of the nozzles 427 is higher than that of the ink supply path 425. This is because it is difficult to cause the shortage of the supply of the ink to the pressure chamber 424 by setting the channel resistance of the nozzles 427 to be higher than that of the ink supply path 425. That is, in the flow of the ink from the common ink chamber 426 to the nozzles 427, the ink more easily flows in the ink supply path 425 than in the nozzles 427.
The channel resistance Rcircular of the channel having a circular cross section may be expressed by Equation (2) and the channel resistance Rrectangular of the channel having a rectangular cross section may be expressed by Equation (3). Accordingly, by setting the dimension on the basis of such equations, the channel resistance of the nozzles 427 can be higher than that of the ink supply path 425.
Channel resistance Rcircular=(8×viscosity μ×length L)/(π×radius r4) (2)
Channel resistance Rrectangular=(12×viscosity μ×length L)/(width W×height H3) (3)
In such Equations (2) and (3), the viscosity μ denotes the viscosity of the ink, L denotes the length of the channel, W denotes the width of the channel, H denotes the height of the channel, and r denote the radius of the channel having the circular cross section.
As described above, the nozzles 427 have substantially the funnel shape. In this case, in order to apply Equation (2), for example, as shown in
When the ink having the high viscosity is ejected by the heads HD, it is preferable that the ink contained in the nozzles 427 is allowed to more easily move than the ink contained in the ink supply path 425 on the basis of the pressure variation of the ink contained in the pressure chamber 424. In other words, it is preferable that the inertance of the nozzles 427 is smaller than that of the ink supply path 425. In addition, the inertance is a value indicating the easiness of the movement of the ink in the channel. This is because the pressure variation applied to the ink contained in the pressure chamber 424 can be efficiently used for the ejection of the ink droplets.
When the density of the ink is ρ, the cross-sectional area of the channel is S, and the length of the channel is L, the inertance M may be approximately expressed by Equation (4). Accordingly, by setting the dimension on the basis of Equation (4), the inertance of the nozzles 427 may be set to be smaller than that of the ink supply path 425.
Inertance M=(density ρ×length L)/cross-sectional area S (4)
From Equation (4), the inertance may be considered as the mass of the ink per unit cross-sectional area. In addition, it is difficult to move the ink according to the ink pressure of the pressure chamber 424 as the inertance is increased and it is easy to move the ink according to the pressure of the pressure chamber 424 as the inertance is decreased.
As shown in
Next, the heads of comparative examples will be described. The heads of the comparative examples are heads HD of No. 1 to 5, No. 8 to 9, No. 12 to 16 of
As shown in
As shown in
As shown in
As shown in
Discussion about Ejection Amount
With respect to the heads HD of the comparative examples, the reason why the shortage or the periodical variation of the ejection amount occurs is not accurately known. In the shortage of the ejection amount, in the head HD of No. 1 to the head HD of No. 4, since the volume of the pressure chamber 424 is excessively large, it may be considered that the pressure variation of the ink contained in the pressure chamber 424 is insufficient. That is, it may be considered that the deformation of the diaphragm portion 423a (the partitioning portion) is insufficient with respect to the volume of the pressure chamber 424. In the heads HD of No. 12, 15 and 16, since the width of the pressure chamber 424 is excessively small, it may be considered that the deformation of the diaphragm portion 423a is insufficient.
In the periodical variation of the ejection amount, it may be considered that the ink contained in the pressure chamber 424 is not sufficiently depressurized after the ejection of the ink droplets. For example, if the depressurization of the ink contained in the pressure chamber 424 immediately after the first ink droplet is ejected is insufficient, it is considered that it is difficult to move the ink contained in the ink supply path 425. Accordingly, it is considered that the ejection amount is excessively decreased with respect to the second ink droplet. If the ink contained in the pressure chamber 424 is sufficiently depressurized by the ejection operation of the second ink droplet, it is considered that the movement of the ink contained in the ink supply path 425 to the pressure chamber 424 is started and the ink contained in the pressure chamber 424 is filled. This can be seen in that the heads HD of No. 3 and 4, in which the length L425 of the ink supply path 425 is long, requires much time consumed for filling the ink compared with the heads HD of No. 1 and 2.
With the heads HD of No. 12, 15 and 16, the variation in ejection amount due to the ejection frequency will be discussed. In these heads HD, as shown in
In contrast, in the head HD of No. 11, as shown in
Ink having Viscosity of 6 mPa·s
In the above-described evaluated result, the viscosity of the ink was 15 mPa·s. By using the head of the present embodiment, the ink having the viscosity of 6 mPa·s can be similarly ejected. The low viscosity of the ink indicates that the channel resistance is low. In this case, it is considered that the head HD in which the channel resistance of the ink supply path 425 or the pressure chamber 424 is low is significantly influenced. Accordingly, the head HD having the low channel resistance, that is, the head HD in which the pressure chamber 424 or the ink supply path 425 is thick and short, is evaluated.
In detail, the head HD of No. 6 is evaluated. That is, if the ink having the viscosity of 6 mPa·s can be stably ejected by the head HD of No. 6, this ink can be stably ejected with a high frequency by the heads HD of No. 7, 10 and 11. In addition, as the comparative examples, the heads HD of No. 1, and 5 are evaluated.
Next, the evaluated result using another ejection pulse PS2 which is different from the above-described ejection pulse PS1 in the potential variation pattern will be described.
In the depressurization portion P11, a start potential at a timing t1 is a lowest potential VL and an end potential at a timing t2 is a highest potential VH. In this ejection pulse PS2, the generation period of the depressurization portion P11 is 2.0 μs. The potential holding portion P12 is generated from the timing t2 to a timing t3 and is held at the highest potential VH. In this ejection pulse PS2, the generation period of the potential holding portion P12 is 2.0 μs. In the pressurization portion P13, a start potential at the timing t3 is the highest potential VH and an end potential at a timing t4 is the lowest potential VL. In this ejection pulse PS2, the generation period of the pressurization portion P13 is 2.0 μs.
When another ejection pulse PS2 is applied to the piezo-element 433, the ink is ejected from the nozzles 427. The behavior of the meniscus at this time is equal to that when the above-described ejection pulse PS1 is applied to the piezo-element 433. In brief, the ink contained in the pressure chamber 424 is depressurized due to the depressurization portion P11 and the meniscus is introduced to the pressure chamber 424. The movement of the meniscus is continued even when the potential holding portion P12 is applied. In addition, the pressurization portion P13 is applied according to a timing when the movement direction of the meniscus is inverted (a timing denoted by a reference numeral A of
As shown in
Meanwhile, as shown in
It may be considered that these results are equal to those of the case where the above-described ejection pulse PS1 is used, although there is a slight difference
In all the above-described heads HD to be evaluated, the length L424 of the pressure chamber 424 was equal to the length L425 of the ink supply path 425 Even in the head HD in which the length L424 of the pressure chamber 424 is twice of the length L425 of the ink supply path 425, the ink having the high viscosity can be similarly ejected. Hereinafter, this will be described.
As shown in
In consideration of the above evaluated result, if the length of the pressure chamber 424 is set in a range from the length L425 of the ink supply path 425 to twice of the length L425 of the ink supply path 425, it can be seen that the above-described evaluation reference is satisfied. By setting the length of the pressure chamber 424 in this range, it may be considered that the flow of the ink from the common ink chamber 426 to the nozzles 427, which occurs due to the continuous ejection of the ink droplets, can be efficiently used. For example, it may be considered that this ink flow can be used for the purpose of aiding the ejection of the ink droplets.
As described above, in the heads HD of the second embodiment, the cross-sectional area S425 of the ink supply path 425 is set in a range from ⅓ of the cross-sectional area S424 of the pressure chamber 424 to the cross-sectional area S424. The channel length L424 of the pressure chamber 424 is set in a range from the length L425 of the ink supply path 425 to twice of the length L425. Hereinafter the evaluated result of the heads HD of the second embodiment will be described. In addition, the ejection pulse PS used for evaluation is the ejection pulse PS1 described in
Ink Having Viscosity of 15 mPa·s
Other values used in the simulation are as follows. First, in the heads HD (heads HD of No. 1 to No. 16) to be evaluated, the height H424 of the pressure chamber 424 is 80 μm and the cross-sectional area S424 is 10×10−15 m2. In addition, he depth H425 of the ink supply path 425 is 80 μm and the length L425 thereof is 500 μm. The shape of each of the nozzles 427 is equal to that of the first embodiment.
Among the heads HD to be evaluated, the heads of the present embodiment are the heads HD of No. 6, 7, 10 and 11. In addition, the other heads HD are the heads of comparative examples. Hereinafter, the simulation result of these heads HD will be described.
In the head HD of No. 6, the length L424 of the pressure chamber 424 is 500 μm and the cross-sectional area S425 of the ink supply path 425 is 10×10−15 m2. That is, the cross-sectional area S425 of the ink supply path 425 is equal to the cross-sectional area S424 of the pressure chamber 424.
In the head HD of No. 7, the length L424 of the pressure chamber 424 is 1000 μm. In addition, the cross-sectional area S425 of the ink supply path 425 is 10×10−15 m2. This is similar to the head HD of No. 6 in that the cross-sectional area S425 of the ink supply path 425 is equal to the cross-sectional area S424 of the pressure chamber 424. In contrast, this is different from the head HD of No. 6 in that the length L424 of the pressure chamber 424 is 1000 μm, and is twice of the length L425 of the ink supply path 425.
In the head HD of No. 10, the length L424 of the pressure chamber 424 is 500 μm and the cross-sectional area S425 of the ink supply path 425 is 3.3×10−15 m2. This is similar to the head HD of No. 6 in that the length S424 of the pressure chamber 424 is equal to the length L425 of the ink supply path 425. In contrast, this is different from the head HD of No. 6 in that the cross-sectional area S425 of the ink supply path 425 is substantially ⅓ of the cross-sectional area S424 of the pressure chamber 424.
In the head HD of No. 11, the length L424 of the pressure chamber 424 is 1000 μm and the cross-sectional area S425 of the ink supply path 425 is 3.3×10−15 m2. This is different from the head HD of No. 6 in that the length L424 of the pressure chamber 42 is 1000 μm and is twice of the length L425 of the ink supply path 425, and the cross-sectional area S425 of the ink supply path 425 is substantially ⅓ of the cross-sectional area S424 of the pressure chamber 424.
As described above, it can be seen that the heads HD of No. 6, 7, 10 and 11 satisfy the above-described evaluation reference. That is, in the head HD in which the length L424 of the pressure chamber 424 is set in the range from the length L425 of the ink supply path 425 to twice of the length L425 of the ink supply path 425, it can be seen that the evaluation reference is satisfied when the cross-sectional area S425 of the ink supply path 425 is set in the range from ⅓ of the cross-sectional area S424 of the pressure chamber 424 to the cross-sectional area S424. In more detail, when the length L424 of the pressure chamber 424 is set in a range from 500 μm to 1000 μm and the cross-sectional area S425 of the ink supply path 425 is set in a range from 3.3×10−15 m2 to 10×10−15 m2, it can be seen that the amount of 10 ng or more can be ensured although the ink having the viscosity of 15 mPa·s is ejected with the frequency of 60 kHz.
In these heads HD, since the cross-sectional area S425 (opening size) of the ink supply path 425 is determined from the relationship with the cross-sectional area S424 of the pressure chamber 424, it is considered that the amount of ink flowing in the ink supply path 425 is properly adjusted. The cross-sectional area S425 of the ink supply path 425 is equal to the cross-sectional area S424 of the pressure chamber 424 at the maximum. Accordingly, if the ink flows in the ink supply path 425, it is considered that the confusion of the flow of the ink in the ink supply path 425 is suppressed. In addition, since the length L424 of the pressure chamber 424 is determined in a predetermined range, the flow of the ink from the common ink chamber 426 to the nozzles 427, which occurs due to the continuous ejection of the ink droplets, can be used and thus the shortage of the supply of the ink in the pressure chamber 424 is suppressed. From these reasons, it is considered that the ejection can be stabilized at the time of the continuous ejection of the ink droplets.
In the heads HD of the second embodiment, although the channel resistance of the ink supply path 425 may be equal to that of the pressure chamber 424, it is more preferable that the channel resistance of the ink supply path 425 is larger than that of the pressure chamber 424. By this configuration, the residual vibration of the ink contained in the pressure chamber 424 after the ejection of the ink droplets can be suppressed at an early stage.
Relationship with Nozzles 427
In the heads HD of the second embodiment, similar to the heads HD of the first embodiment, the shape of the nozzles 427 may have an influence on the ejection of the ink droplets. For example, it is preferable that the channel resistance of the nozzles 427 is higher than the channel resistance of the ink supply path 425. This is because the shortage of the supply of the ink to the pressure chamber 424 is suppressed with certainty. In addition, it is preferable that the inertance of the nozzles 427 is smaller than that of the ink supply path 425. Accordingly, the pressure variation applied to the ink contained in the pressure chamber 424 can be efficiently used for the ejection of the ink droplets.
Next, the heads of comparative examples will be described. The heads of the comparative examples are heads HD of No. 1 to 5, No. 8 to 9, No. 12 to 16 of
As shown in
As shown in
As shown in
As shown in
Discussion about Ejection Amount
With respect to the heads HD of the comparative examples, the reason why the shortage or the periodical variation of the ejection amount occurs is not accurately known. In the shortage of the ejection amount, in the head HD of No. 1 to the head HD of No. 4, since the channel resistance of the ink supply path 425 is excessively low, it may be considered that, when the ink contained in the pressure chamber 424 is pressurized, the ink is excessively returned from the pressure chamber 424 to the ink supply path 425. In contrast, in the heads HD of No. 13 to the head HD of No. 16, since the width of the pressure chamber 424 is excessively small and the deformation of the diaphragm portion 423a is insufficient or the channel resistance of the ink supply path 425 is excessively high, it may be considered that the supply of the ink from the ink supply path 425 is insufficient.
In the periodical variation of the ejection amount, it may be considered that the ink contained in the pressure chamber 424 is not sufficiently depressurized after the ejection of the ink droplets or the channel resistance of the ink supply path 425 goes out of the proper range.
Ink Having Viscosity of 6 mPa·s
In the above-described evaluated result, the viscosity of the ink was 15 mPa·s. By using the head of the present embodiment, the ink having the viscosity of 6 mPa·s can be similarly ejected. The low viscosity of the ink indicates that the channel resistance is low. Accordingly, the head HD in which the channel resistance of the ink supply path 425 is low is evaluated.
In detail, the head HD of No. 6 in which the cross-sectional area S425 of the ink supply path 425 is largest and the length L425 is shortest is evaluated. That is, if the ink having the viscosity of 6 mPa·s can be stably ejected by the head HD of No. 6, this ink can be stably ejected with a high frequency by the heads HD of No. 7, 10 and 11. In addition, as the comparative examples, the heads HD of No. 1, 2 and 5 are evaluated.
Although the printing system having the printer 1 as the liquid ejecting apparatus is described in the above-described embodiments, the disclosure of the liquid ejecting method, the liquid ejecting system and the method of setting the ejection pulse are included. In addition, these embodiments are intended to facilitate the understanding of the invention and not to limit the invention. The invention may be modified or improved without departing the scope thereof and the invention includes the equivalent thereof. In particular, the following embodiments are included in the invention.
In the heads HD of the above-described embodiments, an element which performs an operation for increasing the volume of the pressure chamber 424 as the potential applied by the ejection pulse PS1 (PS1, PS2 or the like) is increased was used as the piezo-element Other types of piezo-elements may be used. Another head HD′ shown in
In brief, another head HD′ includes common ink chambers 71, ink supply openings 72, pressure chambers 73, and nozzles 74. A plurality of ink channels from the common ink chambers 71 to the nozzles 74 via the pressure chambers 73 is included in correspondence with the nozzles 74. Even in another head HD′, the volumes of the pressure chambers 73 vary by the operation of the piezo-elements 75. That is, a portion of the pressure chambers 73 is partitioned by a vibration plate 76, and the piezo-elements 75 are provided on the surface of the vibration plate 76 which becomes the opposite side of the pressure chambers 73.
A plurality of piezo-elements 75 is provided in correspondence with the pressure chambers 73. Each of the piezo-elements 75 is configured by sandwiching a piezoelectric body between an upper electrode and a lower electrode (all not shown) and is deformed by applying a potential difference to these electrodes. In this example, if the potential of the upper electrode is increased, the piezoelectric body is charged and thus each piezo-element 75 is bend to be convex to each pressure chamber 73. Accordingly, each pressure chamber 73 contracts. In addition, in another head HD′, the portion of the vibration plate 76 which partitions each pressure chamber 73 corresponds to the partitioning portion.
Even in another head HD′, a pressure variation is applied to the ink contained in the pressure chambers 73 and the ink droplets are ejected using this pressure variation. Accordingly, the behavior of the ink contained in the pressure chambers 73 at the time of the ejection of the ink droplet is equal to that of the above-described head HD. Accordingly, by adjusting the length and the cross-sectional area of the ink supply ports 72 or the length of the pressure chambers 73, the same effect as the above-described head HD can be obtained.
Although the first embodiment and the second embodiment are individually described in the present specification, heads HD including the feature of the first embodiment and the feature of the second embodiment may be obtained. In these heads HD, the ejection of the ink droplets can be stabilized with certainty.
In the above-described heads HD, the piezo-elements 433 and 75 are used as the elements which perform the operation (the ejection operation) for ejecting the ink. The elements which perform the ejection operation are not limited to the piezo-elements 433 and 75. For example, magnetostrictive elements may be used. If the piezo-elements 433 and 75 are used, the volumes of the pressure chambers 424 and 73 can be controlled on the basis of the potential of the ejection pulse PS with accuracy.
In the above-described embodiments, the nozzles 427 are composed of substantially funnel-shaped holes which penetrate in the thickness direction of the nozzle plate 422. The ink supply path 425 has a rectangular opening shape and is composed of a hole for communicating the pressure chamber 424 and the common ink chamber 426, that is, a communication hole which partitions a rectangular column-shaped space.
The nozzles 427 or the ink supply path 425 may have various shapes. For example, the nozzles 427 may have a shape in which the cross-sectional area is substantially constant in the surface perpendicular to the nozzle direction, that is, a shape partitioning a columnar space, as shown in
In addition, the ink supply path 425 may be, for example, as shown in
In addition, the same is true in the pressure chamber 424. As shown in
Although the printer 1 is described as the liquid ejecting apparatus in the above-described embodiments, the invention is not limited to this For example, the same technique as the present embodiment is applicable to various types of liquid ejecting apparatus using an ink jet technique, such as a color filter manufacturing apparatus, a dyeing apparatus, a microfabricated apparatus, a semiconductor manufacturing apparatus, a surface treatment apparatus, a three-dimensional modeling apparatus, a fluid-vaporizing apparatus, an organic EL manufacturing apparatus (more particularly, a polymer EL manufacturing apparatus), a display manufacturing apparatus, a film forming apparatus, a DNA chip manufacturing apparatus, and so on. In addition, methods or manufacturing methods thereof are included in the application range.
The entire disclosure of Japanese Patent Application No: 2008-058454, filed Mar. 7, 2008 and No: 2008-305333, filed Nov. 28, 2008 are expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2008-058454 | Mar 2008 | JP | national |
2008-305333 | Nov 2008 | JP | national |