The present invention relates to a liquid ejecting module.
In a liquid ejecting module such as an inkjet print head, there is a case where evaporation of a volatile component is developed from an ejection port that has not been operated for ejection for a while, thereby leading to a problem of degradation of ink (liquid). This is because the concentration of a component such as a color material increases due to the evaporation of the volatile component, and in a case where the color material is a pigment, coagulation and sedimentation of the pigment occurs so as to affect the state of ejection. To be more specific, there may be a case where dispersion in an ejecting amount and an ejecting direction and density unevenness and a stripe on an image are confirmed.
In order to suppress such degradation of ink, a method of constantly supplying fresh ink to an ejection port by circulating ink within a liquid ejecting module is proposed recently. International Publication No. WO2012/054017 discloses a configuration of circulating ink by an ink-bypass gap provided between a die including a nozzle and a die carrier that supplies ink to the die. International Publication No. WO2011/146149 discloses a configuration of arranging an element for generating energy for ejection, a pumping device, and an individual path flow for connecting the element and device for circulation on the same die face so as to prompt the circulation of ink within the flow paths that are connected to individual nozzles. International Publication No. WO2013/032471 discloses a configuration of placing an actuator at a position adjacent to an energy generating element for ejection to prompt ink circulation at a position very close to an ejection port.
According to an aspect of the present invention, there is provided a liquid ejecting module comprising: an element arranged face on which a plurality of ejecting elements are arranged, each of the ejecting elements including a pressure chamber in which liquid is contained, an energy generating element for applying energy to liquid in the pressure chamber, and an ejection port for ejecting liquid to which energy is applied by the energy generating element; a circulation flow path including a supply flow path which supplies liquid to the pressure chamber and a collection flow path which collects liquid from the pressure chamber; and a liquid delivery mechanism provided in the circulation flow path for circulating liquid in the pressure chamber, wherein, in a case where a direction of liquid to be ejected from the ejection port is assumed to be a direction from a lower side to an upper side, the liquid delivery mechanism is disposed lower than the element arranged face.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
However, in the configuration of International Publication No. WO2012/054017, a path through which ink actually circulates is apart from an ejection port, and accordingly, it is difficult to exert an effect of ink circulation to a tip end of the ejection port. For this reason, evaporation of ink located at the tip end of the ejection port progresses and thus an ink droplet to be initially ejected cannot necessarily be kept in a stable condition.
In the configuration of International Publication No. WO 2011/146149, ink in the vicinity of the ejection port can be circulated. However, since the energy generating elements, the pumps, and the circulation flow paths connecting therebetween are all arranged on the same die face on which the energy generating elements are disposed and the number of pumps and circulation flow paths correspond to the number of energy generating elements, the energy generating elements cannot be disposed in high density, thereby leading to a difficulty in achieving both high resolution and downsizing.
In contrast, in the configuration of International Publication No. WO2013/032471, ink in the vicinity of the ejection port can be circulated while achieving the ejection ports of a high density compared to the configuration of International Publication No. WO2011/146149. However, in the configuration of International Publication No. WO2013/032471, the actuator placed adjacent to the energy generating element makes a vertical movement so as to compress the flow path (pressure chamber), and thus a height of the pressure chamber needs to be larger than an amplitude of the actuator. As a result, energy efficiency for ejection operation in the energy generating element will be reduced. Particularly, since the actuator is arranged within the face on which the ejection port is formed, the thickness of a plate on which the ejection port is formed is restricted by formation of the actuator, thereby failing to make the ejection port thinner. Therefore, there may be a problem that pressure loss inside the ejection port becomes large and more energy is consumed upon ejection.
The present invention is made to resolve the above problems. Accordingly, an object of the present invention is to provide a liquid ejecting module capable of making stable ejection operation while circulating and supplying fresh ink to the vicinity of the ejection ports arranged in high density.
It should be noted that the liquid ejecting module constitutes a least a part of the configuration of the liquid ejection head. In an entire printer, in a case where a liquid ejection head and a system in which a sub-tank and a main tank are connected with the liquid ejection head via a supply tube or the like are provided, the supply tube, sub-tank, and main tank themselves are not included in the liquid ejecting module. Meanwhile, a part being called a chip which includes nozzles of the liquid ejection head, for example, corresponds to the liquid ejecting module. Further, a part separated from the printer independently for replacement also corresponds to the liquid ejecting module.
The printing element substrates 4 are connected to a same electric wiring board 102 via respective flexible wiring substrates 101. On the electric wiring board 102, power supply terminals 103 for receiving power and signal input terminals 104 for receiving ejection signals are arranged. Meanwhile, on an ink supply unit 105, a circulation flow path for supplying ink supplied from a non-illustrated ink tank to the individual printing element substrates 4 and for collecting ink that has not been consumed in printing is formed.
In the above configuration, each of the printing elements arranged in the printing element substrates 4 uses, based on an ejection signal inputted from the signal input terminals 104, power supplied from the power supply terminals 103 and ejects ink supplied from the ink supply unit 105 in a Z direction in the figure.
In the present embodiment, as shown in
As shown in
Ink contained in the pressure chamber 3 forms meniscus at a position of the ejection port 2 in a stable state. If a voltage pulse is applied to the energy generating element 1 in accordance with an ejection signal, film boiling is generated in ink that contacts the energy generating element 1 and the ink is ejected as a droplet from the ejection port 2 in the Z direction due to the growing energy of generated bubbles. Assuming a direction in which liquid is ejected from the ejection port 2 (Z direction in this case) as a direction from a lower side to an upper side, ink is ejected from the lower side to the upper side. In actual ink ejection, ink may be ejected from an upper side to a lower side in the gravity direction, and in this case, the upper side of the gravity direction refers to the “lower side” and the lower side of the gravity direction refers to the “upper side” under the assumption. It should be noted that, in the present embodiment, a combination of the ejection port 2, the energy generating element 1, and the pressure chamber 3 is collectively referred to as the printing element (ejecting element).
As shown in
In such a configuration, ink supplied from the ink supply unit 105 through a supply port 15 circulates within the printing element substrate 4 in the order of the supply flow path 5, the pressure chamber 3, the collection flow path 6, and the connection flow path 7. Once the ink in the pressure chamber 3 is consumed due to the ejection operation, fresh ink is supplied to the ejection port 2 to reform the meniscus. Even if the ejection operation is not performed, the above circulation is made to constantly supply fresh ink to the vicinity of the ejection port 2. Incidentally, although not shown in the figure, it is preferable that a filter for preventing intrusion of foreign matters and bubbles be provided in the supply flow path 5 before reaching the pressure chamber 3. As the filter, a columnar structure can be employed.
The printing element substrate 4 as described above can be fabricated by forming respective structures for the first substrate 12 and the second substrate 13 beforehand and then joining the first substrate 12 and the second substrate 13 together as shown in the figure. The connection flow path 7 can be formed by introducing an intermediate layer, having a groove, between the first substrate 12 and the second substrate 13 upon joining them, or alternatively, can be formed by performing etching on the rear face (−Z direction side) of the first substrate 12.
A specific example of dimensions of the above structures will be described below. In the print head 100, the printing elements, each including the energy generating element 1, the ejection port 2, and the pressure chamber 3, are arranged in the density of 600 npi (nozzle per inch) in the Y direction. The size of the energy generating element 1 is 20 μm×20 μm, the diameter of the ejection port 2 is 18 μm, the size of the pressure chamber 3 is 100 μm in an X direction×35 μm in the Y direction×5 μm in the Z direction. Further, the sectional shapes of the supply flow path 5 and the collection flow path 6 are 20 μm×40 μm, and the thickness of the ejection port forming member 11 is 5 μm. In addition, the viscosity of ink to be used is 2 cP and the amount of ink ejection from the individual ejection port is 2 pl.
Next, a specific example of the liquid delivery mechanism 8 that can be adopted by the present embodiment will be described below.
For instance, the set of electrode groups include one group having a width of an electrode of 3 μm and the other group having a width of an electrode of 10 μm, and each electrode group has electrodes having an interval therebetween of 3 μm. Those electrode groups are arranged in the flow path having a width of 100 μm and a height of 20 μm. Then, the voltage of 5 to 30 V is applied in the cycle of 10 to 100 kHz. As a result, an appropriate ink flow can be generated to the overall circulation flow path including the connection flow path 7 without inviting electrolysis of ink.
In the connection flow path 7 of the present example, the flow path of a downstream side (supply flow path 5 side) of the actuator 20 is set to have a higher flow path resistance and a lower inertance than those of the flow path of the upstream side (collection flow path 6 side). To be more specific, as shown in
Moreover, inside the connection flow path 7, three actuators 20 and three diaphragms 21 which are used in
The coil 23 can be finely formed on the face of the connection flow path 7 by a combination of photolithography and plating, for example. It should be noted that, even in a case of adopting a configuration of placing two coils facing each other instead of using the permanent magnet 22, it is possible to generate repulsion or a gravitational force between them to function as an actuator. Alternatively, a permanent magnet or coil can be used as one of facing elements for the electromagnetic actuator 20a and a magnetic substance such as Fe and Ni can be used as the other one of the elements so as to generate a gravitational force and to be dependent on rigidity of movable parts for resilience.
As for such an electromagnetic actuator 20a, the diaphragm 21 can be relatively largely displaced but large power is required to drive the electromagnetic actuator 20a itself.
As the liquid delivery mechanism 8 of the present embodiment, any of the configurations shown in
In the printing element substrates 4 of the present embodiment as described above, a distance between the path in which ink is circulated and the ejection port 2 is not so large compared to the substrate disclosed in International Publication No. WO2012/054017. Accordingly, the effect of ink circulation can be exerted to the ejection port, and even at the use after a while, an ejection state of an ink droplet to be initially ejected can be stabilized. Further, in the printing element substrate 4 of the present embodiment, the face on which the liquid delivery mechanism 8 is arranged is provided in a manner deviated, in the Z direction, from the element-arranged face on which the plurality of printing elements are arranged, and their arranging areas overlap each other within an X-Y plane. In other words, if the direction of liquid to be ejected from the ejection port is assumed to be a direction from a lower side to an upper side, the liquid delivery mechanism 8 is disposed lower than the element-arranged face. In addition, in a case where the liquid ejecting module is viewed from a side opposing the ejection port, the liquid delivery mechanism 8 is arranged on an area that overlaps with the area in which the plurality of printing elements are arranged on the element-arranged face. For this reason, the density of positioning the printing elements is unlikely to be affected by the positioning of the liquid delivery mechanisms 8, thereby achieving high resolution and downsizing simultaneously. Further, it is possible to prevent the pressure chamber 3 from being blocked due to the displacement of the actuator as the substrate disclosed in International Publication No. WO 2013/032471, and therefore, the energy efficiency of the energy generating element 1 is unlikely to be reduced. In other words, according to the present embodiment, it is possible to stably maintain the ejection operation while circulating and supplying fresh ink to the vicinity of the ejection ports which are arranged in high density.
In the case of the configuration shown in
In the case of the configuration shown in
In both of the modified examples shown in
In the printing element substrate 4 of the present embodiment, ink flowing into the supply flow path 5 from the supply port 15 moves in +Y direction, and branches and enters into each of the pressure chambers 3. Ink flowing out from each of the pressure chambers 3 merges into the collection flow path 6 in which ink flows in the same Y direction and moves on in +Y direction, and is discharged from a collection port 16 located at the end of the collection flow path to the ink supply unit 105. At the bottom of the collection flow path 6, the liquid delivery mechanism 8 extending in the Y direction is disposed to prompt the flow in +Y direction. It should be noted that the liquid delivery mechanism 8 may be disposed at the bottom of the supply flow path 5 or may be disposed at both the supply flow path 5 and the collection flow path 6.
As for the liquid delivery mechanism 8 of the present embodiment which is to be disposed on a relatively elongate flow path, a configuration of using the AC electro-osmotic (ACEO) pump shown in
The printing element substrate 4 of the present embodiment can be fabricated by joining together a member on the first substrate 12 side in which the supply flow path 5, the collection flow path 6, the pressure chamber 3, the energy generating element 1, and the ejection port 2 are formed and the second substrate 13 in which the liquid delivery mechanism 8, the supply port 15, and the collection port 16 are formed. At this time, the supply flow path 5 and the collection flow path 6 may be formed by etching the rear face of the first substrate 12, or may be formed by sandwiching the intermediate layer, having a groove, between the first substrate 12 and the second substrate 13.
According to the present embodiment described above, ink in the pressure chamber 3 is caused to flow and circulate by the liquid delivery mechanism 8 which is located in the supply flow path 5 or the collection flow path 6 at a position deviated from the pressure chamber 3 in the Z direction (ejecting direction). Consequently, it is possible to prevent ink in the vicinity of the ejection ports 2 from degradation and to stably maintain the ejection operation in the state in which the ejection ports are arranged in high density.
As described above, according to the present embodiment, the liquid delivery mechanisms 8 are provided on at least either one of the supply flow path 5 or the collection flow paths 6 to cause ink to be circulated in the order of the supply flow path 5, the pressure chamber 3, and the collection flow paths 6. Moreover, the liquid delivery mechanisms 8 are provided in the supply flow path 5 or the collection flow paths 6 which are located at positions deviated from the pressure chamber 3 in the Z direction (ejecting direction) so as to cause the ink in the pressure chamber 3 to be circulated. Consequently, it is possible to prevent ink in the vicinity of the ejection ports 2 from degradation and to stably maintain the ejection operation in the state in which the ejection ports are arranged in high density.
Incidentally, the above-described flow path structures and liquid delivery mechanisms are not limited to those of the embodiments and modified examples described above, but they may be combined in various ways. For instance, even in a form in which ink in the supply flow path 5 and ink in the collection flow path 6 flow in the Z direction which is identical to the ejecting direction as shown in
Further, the six adjacent printing elements arrayed in the Y direction and their common supply flow path 5 and collection flow path 6 have been described above as one unit (flow path block) in the circulation flow path, but the present invention is not, of course, limited to such a form. The number of printing elements included in one block may be larger or smaller. For instance, a supply flow path and a collection flow path may be prepared for each of the printing elements, or a common supply flow path and collection flow path may be shared by all printing elements arranged on the printing element substrate.
In addition, an example of the printing element substrate having one row or two rows of the printing elements has been described above, but the present invention may be, of course, applied to the printing element substrate having three or more rows of the printing elements.
Further, the electrothermal transducing element has been used as the energy generating element 1 and the form in which ink is ejected as a result of the growing energy of generated bubbles caused by film boiling has been adopted, but the present invention is not limited to such an ejection method. For instance, various types of elements such as a piezoelectric actuator, an electrostatic actuator, a mechanical/impulse-driven actuator, a voice coil actuator, and a magnetostriction driven actuator may be adopted as an energy generating element.
Furthermore, an example of the print head of a full-line type in which the printing element substrates 4 are arranged by a distance corresponding to the width of a print medium has been described above with reference to
Moreover, an example of the print head that ejects ink containing a color material has been described above, but the liquid ejecting module of the present invention is not limited to this. For instance, it may be a module that ejects transparent liquid prepared for improving an image quality, or may be a module used for a purpose other than image printing such as a case of uniformly applying liquid of some kind to an object. In any case, as long as the liquid ejecting module ejects fine liquid droplets from a plurality of ejection ports, the present invention can function effectively.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application is a divisional of U.S. patent application Ser. No. 15/995,493, filed Jun. 1, 2018, which claims the benefit of Japanese Patent Application No. 2017-127571 filed Jun. 29, 2017, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-127571 | Jun 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8979254 | Ando et al. | Mar 2015 | B2 |
9254658 | Yamada et al. | Feb 2016 | B2 |
9452606 | Yamada | Sep 2016 | B2 |
9469111 | Yamada et al. | Oct 2016 | B2 |
9744760 | Yamada et al. | Aug 2017 | B2 |
9931845 | Moriya et al. | Apr 2018 | B2 |
9931860 | Tokimatsu et al. | Apr 2018 | B2 |
10300707 | Nakakubo | May 2019 | B2 |
20110228012 | Yoshida et al. | Sep 2011 | A1 |
20170197419 | Okushima et al. | Jul 2017 | A1 |
20170197439 | Okushima et al. | Jul 2017 | A1 |
20170274647 | Aoki et al. | Sep 2017 | A1 |
20170326875 | Nakakubo et al. | Nov 2017 | A1 |
20180170066 | Ohtsu et al. | Jun 2018 | A1 |
20190001671 | Yamada et al. | Jan 2019 | A1 |
20190001672 | Hammura et al. | Jan 2019 | A1 |
20190001692 | Yamazaki et al. | Jan 2019 | A1 |
20190001697 | Yamada et al. | Jan 2019 | A1 |
20190001698 | Yamazaki et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2011146069 | Nov 2011 | WO |
2011146149 | Nov 2011 | WO |
2012054017 | Apr 2012 | WO |
2013032471 | Mar 2013 | WO |
2013162606 | Oct 2013 | WO |
2014003772 | Jan 2014 | WO |
2017074324 | May 2017 | WO |
Entry |
---|
Extended European Search Report dated Nov. 2, 2018, in European Patent Application No. 18176449.9. |
Office Action dated Jan. 16, 2020, in European Patent Application No. 18 176 449.9. |
Number | Date | Country | |
---|---|---|---|
20190232675 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15995493 | Jun 2018 | US |
Child | 16379360 | US |