The present application is based on, and claims priority from JP Application Serial Number 2019-052354, filed Mar. 20, 2019, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a liquid ejecting unit and a liquid ejecting apparatus.
A liquid ejecting apparatus that ejects a liquid such as an ink from a nozzle has been proposed in the related art. For example, JP-A-2018-153944 discloses a liquid ejecting apparatus including a head body that ejects an ink and a flow channel member having a flow channel that supplies the ink to the head body. The head body and the flow channel member are fixed to each other through a screw.
However, in a configuration of JP-A-2018-153944, since it is necessary to fasten a screw in a process of fixing the head body and the flow channel member, there is a problem that work efficiency is low.
To solve the above problems, a liquid ejecting unit according to an exemplary aspect of the present disclosure includes: a liquid ejecting head that ejects a liquid; and a coupling member that is coupled to the liquid ejecting head, in which the liquid ejecting head has a first coupling portion and a second coupling portion, the liquid ejecting unit further includes: a first attachment portion that is installed in a first position of the coupling member; a second attachment portion that is installed in a second position that is different from the first position of the coupling member; a first elastic body that elastically biases the first attachment portion or the first coupling portion; and a second elastic body that elastically biases the second attachment portion or the second coupling portion, and the first elastic body biases the first attachment portion or the first coupling portion in a state in which the first attachment portion is in contact with the first coupling portion and the second elastic body biases the second attachment portion or the second coupling portion in a state in which the second attachment portion is in contact with the second coupling portion, so that the coupling member is coupled to the liquid ejecting head.
A liquid ejecting unit according to another aspect of the present disclosure includes: a liquid ejecting head that ejects a liquid; and a coupling member that is coupled to the liquid ejecting head, in which the liquid ejecting head has a coupling portion, the liquid ejecting unit further includes: an attachment portion installed in the coupling member; and an elastic body that elastically biases the attachment portion or the coupling portion, in a state in which the attachment portion is in contact with the coupling portion, the elastic body biases the attachment portion or the coupling portion, so that the coupling member is coupled to the liquid ejecting head, and the attachment portion is switched, through rotation, between a first state in which the attachment portion is not in contact with the coupling portion and a second state in which the attachment portion is in contact with the coupling portion.
A liquid ejecting unit according to yet another aspect of the present disclosure includes: a liquid ejecting head that ejects a liquid; and a coupling member that is coupled to the liquid ejecting head, in which the liquid ejecting head has a coupling portion, the liquid ejecting unit further includes: an attachment portion installed in the coupling member; and an elastic body that elastically biases the attachment portion or the coupling portion, in a state in which the attachment portion is in contact with the coupling portion, the elastic body biases the attachment portion or the coupling portion, so that the coupling member is coupled to the liquid ejecting head, and the coupling member is coupled to the liquid ejecting head by a restoring force of the elastic body, which is generated by shortening the elastic body to be shorter than a natural length.
As illustrated in
The movement mechanism 24 causes the flow channel member 25 and the liquid ejecting head 26 to reciprocate along the X axis under the control of the control unit 20. The X axis intersects the Y axis along which the medium 12 is transported. For example, the X axis and the Y axis are perpendicular to each other. The movement mechanism 24 according to the first embodiment includes a substantially box-shaped carriage 242 that stores the flow channel member 25 and the liquid ejecting head 26 and a transport belt 244 to which the carriage 242 is fixed. A configuration in which a plurality of the liquid ejecting heads 26 and the flow channel member 25 are mounted on the carriage 242 or a configuration in which the liquid container 14 is mounted on the carriage 242 together with the liquid ejecting head 26 and the flow channel member 25 may be employed.
The flow channel member 25 is a structure for supplying the ink from the liquid container 14 to the liquid ejecting head 26. The liquid ejecting head 26 ejects the ink supplied from the flow channel member 25. In detail, the liquid ejecting head 26 ejects the ink supplied from the liquid container 14 to the medium 12 from a plurality of nozzles under the control of the control unit 20. Each liquid ejecting head 26 ejects the ink to the medium 12 together with the transportation of the medium 12 by the transport mechanism 22 and the repeated reciprocation of the carriage 242, so that a desired image is formed on the surface of the medium 12. The flow channel member 25 and the liquid ejecting head 26 function as a liquid ejecting unit 200. In the following description, an axis that is perpendicular to the X-Y plane is thereinafter referred to as a Z axis. The Z axis is typically a vertical line.
As illustrated in
The first overhang portion 252a and the second overhang portion 252b are portions of the flow channel member 25, which project from side surfaces 51 of the flow channel forming portion 251. The first overhang portion 252a is formed on a side surface of the flow channel forming portion 251 along the Z axis in a negative direction of the Y axis, and the second overhang portion 252b is formed on a side surface of the flow channel forming portion 251 along the Z axis in a positive direction of the Y axis. That is, the first overhang portion 252a and the second overhang portion 252b are located on opposite sides with the flow channel forming portion 251 interposed therebetween in the Y axis direction. In the following description, when it is not necessary to particularly distinguish the first overhang portion 252a and the second overhang portion 252b from each other, the first overhang portion 252a and the second overhang portion 252b are simply referred to as an “overhang portion 252”.
As illustrated in
As illustrated in
As illustrated in
The attachment portion 60[1] and the attachment portion 60[2] are located on opposite sides with a central line L1 of the flow channel member 25 interposed therebetween. One of the positions of the attachment portion 60[1] and the attachment portion 60[2] is an example of a “first position”, and the other one thereof is an example of a “second position”. Similarly, the attachment portion 60[3] and the attachment portion 60[4] are located on opposite sides with the central line L1 of the flow channel member 25 interposed therebetween. One of the positions of the attachment portion 60[3] and the attachment portion 60[4] is an example of a “first position”, and the other one thereof is an example of a “second position”. The central line L1 is a straight line that passes through the center of the flow channel member 25 and is parallel to the X axis in the X-Y plane. Further, the attachment portion 60[1] and the attachment portion 60[3] are located on opposite sides with a central line L2 of the flow channel member 25 interposed therebetween. The central line L2 is a straight line that passes through the center of the flow channel member 25 and is parallel to the Y axis in the X-Y plane. One of the positions of the attachment portion 60[1] and the attachment portion 60[3] is an example of a “first position”, and the other one thereof is an example of a “second position”. Similarly, the attachment portion 60[2] and the attachment portion 60[4] are located on opposite sides with the central line L2 of the flow channel member 25 interposed therebetween. One of the positions of the attachment portion 60[2] and the attachment portion 60[4] is an example of a “first position”, and the other one thereof is an example of a “second position”.
The base portion 61 is installed in the flow channel member 25. For example, a cylindrical member along the Z axis is used as the base portion 61. The base portion 61 according to the first embodiment passes through a through-hole O formed in the overhang portion 252. The catch 63 and the support portion 62 are located on opposite sides of the base portion 61. In the first embodiment, the support portion 62 is installed at an end portion of the base portion 61 on the liquid ejecting head 26 side, and the catch 63 is installed at the other end portion thereof. The support portion 62 is located between the liquid ejecting head 26 and the overhang portion 252. The position where the support portion 62 and the catch 63 are installed is not limited to the end portion of the support portion 62.
As illustrated in
As illustrated in
As illustrated in
The second portion 72 includes a lower surface F7 and an upper surface F8 opposite to the lower surface F7. An example of a “coupling surface” of the coupling portion 70[m], which contacts the attachment portion 60[m], is the lower surface F7. The upper surface F8 is a surface on the flow channel member 25 side. The upper surface F8 of the second portion 72 is closer to the liquid ejecting head 26 than the lower surface F3 of the overhang portion 252. That is, the upper surface F8 of the second portion 72 and the lower surface F3 of the overhang portion 252 face each other with a space therebetween. As illustrated in
In a state in which the support portion 62 is in contact with the lower surface F7 of the second portion 72, the elastic body 80 biases the attachment portion 60[m] in a biasing direction. In other words, the biasing direction is a direction facing an opposite side of the support portion 62 with respect to the lower surface F7 of the second portion 72. As the second portion 72 is pressed by the support portion 62 in the biasing direction, the support portion 62 and the second portion 72 engage with each other. As a result, the flow channel member 25 is coupled to the liquid ejecting head 26. As understood from the above description, as the elastic body 80 biases the attachment portion 60[m] in a state in which the attachment portion 60[m] is in contact with the coupling portion 70[m], the flow channel member 25 is coupled to the liquid ejecting head 26.
Hereinafter, a procedure of coupling the flow channel member 25 to the liquid ejecting head 26 will be described. As illustrated in
On the other hand, the second state S2 is a state in which the support portion 62 is in contact with the lower surface F7 of the second portion 72 as illustrated by a broken line in
The attachment portion 60[m] biased by the elastic body 80 can rotate while being pressed in a direction that is opposite to the biasing direction. A positive direction of the Z axis is the direction that is opposite to the biasing direction. In a state in which the attachment portion 60[m] is pressed in the direction that is opposite to the biasing direction, the elastic body 80 is shorter than the natural length thereof. When the flow channel member 25 and the liquid ejecting head 26 are coupled to each other, in the first state S1, in a state in which the attachment portion 60[m] is pressed in the direction that is opposite to the biasing direction, the attachment portion 60[m] is rotated in a direction in which the support portion 62 approaches the coupling portion 70[m]. Then, after the attachment portion 60[m] is rotated to a position where the support portion 62 overlaps the second portion 72 of the coupling portion 70[m] in a plan view, the pressing of the attachment portion 60[m] is released. In the second state S2, the elastic body 80 is shorter than the natural length thereof. Accordingly, the attachment portion 60[m] is biased in the biasing direction by the elastic body 80, and the upper surface F6 of the support portion 62 comes into contact with the lower surface F7 of the second portion 72. That is, the attachment portion 60[m] is in the second state S2. As understood from the above description, the flow channel member 25 is coupled to the liquid ejecting head 26 by a restoring force of the elastic body 80, which is generated by making the elastic body 80 to be shorter than the natural length thereof.
On the other hand, when the coupling between the flow channel member 25 and the liquid ejecting head 26 is released, in the second state S2, the attachment portion 60[m] is pressed in the direction that is opposite to the biasing direction, so that the support portion 62 is separated from the second portion 72. Then, the support portion 62 is rotated in a direction in which the support portion 62 is separated from the coupling portion 70[m]. In detail, the attachment portion 60[m] is rotated to a position where the support portion 62 does not overlap the second portion 72 of the coupling portion 70[m] in a plan view. That is, the attachment portion 60[m] is in the first state S1.
For example, in a configuration in which the liquid ejecting head 26 and the flow channel member 25 are coupled to each other through a screw (hereinafter, referred to as a “comparative example”), it is necessary to fasten the screw in a process of coupling the liquid ejecting head 26 and the flow channel member 25, and thus work efficiency is low. On the other hand, in the first embodiment, as the elastic body 80 biases the attachment portion 60[m], the flow channel member 25 is coupled to the liquid ejecting head 26. Thus, as compared to the comparative example, the liquid ejecting head 26 and the flow channel member 25 can be efficiently coupled to each other.
In the comparative example, a space for fastening the screw is required in each of the liquid ejecting head 26 and the flow channel member 25. For example, a space is required for using a fastening tool around the screw. On the other hand, in the configuration of the first embodiment, a space for fastening the screw is not required, so that the liquid ejecting head 26 and the flow channel member 25 can be downsized.
Further, in the comparative example, since it is necessary to manage a torque when the screw is fastened, the process of coupling the liquid ejecting head 26 and the flow channel member 25 is complex. On the other hand, in the first embodiment, since the flow channel member 25 is coupled to the liquid ejecting head 26 by the elastic body 80 that biases the attachment portion 60[m], a troublesome operation such as the management of the torque is not required. Therefore, there is an advantage in that the process of coupling the flow channel member 25 and the liquid ejecting head 26 becomes easy.
In the first embodiment, since the flow channel member 25 is coupled to the liquid ejecting head 26 by the four attachment portions 60[1] to 60[4], the flow channel member 25 and the liquid ejecting head 26 are firmly fixed to each other, as compared to a configuration in which the flow channel member 25 and the liquid ejecting head 26 are coupled to each other by the one attachment portion 60[m]. However, the number of the attachment portion 60[m] is predetermined. For example, the flow channel member 25 and the liquid ejecting head 26 may be coupled to each other by the one attachment portion 60.
According to the configuration of the first embodiment in which the elastic body 80 is disposed on an opposite side to the support portion 62 with respect to the flow channel member 25 and the elastic body 80 biases the attachment portion 60[m] in the biasing direction, the liquid ejecting head 26 and the flow channel member 25 can be coupled to each other with a simple configuration. Further, since the elastic body 80 is located between the catch 63 and the flow channel member 25, the catch 63 can be used to support the elastic body 80. In the first embodiment, as the attachment portion 60[m] rotates about the central axis P of the base portion 61, the liquid ejecting head 26 and the flow channel member 25 can be coupled to each other, so that the liquid ejecting head 26 and the flow channel member 25 can be coupled to each other with a simple process of rotating the base portion 61. As the attachment portion 60[m] rotates in the X-Y plane, the attachment portion 60[m] comes into contact with the coupling portion 70[m]. However, the method of bringing the attachment portion 60 and the coupling portion 70[m] into contact with each other is not limited to the rotation of the attachment portion 60[m] in the X-Y plane. For example, a configuration in which the attachment portion 60[m] rotates in the Y-Z plane is also employed.
In the first embodiment, in the first state S1, the attachment portion 60[m] is located inside the peripheral edge of the flow channel member 25. Therefore, in a state in which the liquid ejecting head 26 and the flow channel member 25 are not coupled to each other, a workspace can be reduced in a process of the liquid ejecting head 26 and the flow channel member 25, as compared to a configuration in which the attachment portion 60[m] is located outside the peripheral edge of the flow channel member 25. However, in the first state S1, the configuration in which the attachment portion 60[m] is located outside the peripheral edge of the flow channel member 25 is also employed.
According to a configuration of the first embodiment in which two attachment portions 60[m] are located on opposite sides with the central lines L1 and L2 of the flow channel member 25 interposed therebetween, for example, the flow channel member 25 can be pressed evenly against the liquid ejecting head 26, as compared to a configuration in which the two attachment portions 60[m] are located on one side with the central line of the flow channel member 25 interposed therebetween.
Attention is paid to the predetermined two attachment portion 60[m1] and attachment portion 60[m2] among the four attachment portions 60[1] to 60[4] provided in the liquid ejecting unit 200 (m1≠m2). The attachment portion 60[m1] is an example of a “first attachment portion”, and the attachment portion 60[m2] is an example of a “second attachment portion”. The elastic body 80 that biases the attachment portion 60[m1] is an example of a “first elastic body”, and the elastic body 80 that biases the attachment portion 60[m2] is an example of a “second elastic body”. Further, the coupling portion 70[m1] that is in contact with the attachment portion 60[m1] is an example of a “first coupling portion”, and the coupling portion 70[m2] that is in contact with the attachment portion 60[m1] is an example of a “second coupling portion”.
A second embodiment will be described below. In the following examples, an element having the same function as that of the first embodiment is designated by the same reference numeral used in the description of the first embodiment, and detailed description thereof will be omitted as appropriate.
In the second embodiment, the same effect as that of the first embodiment is realized. In the second embodiment, in particular, since the flow channel member 25 is in contact with the upper surface F8 if the second portion 72 of the coupling portion 70[m], the coupling portion 70[m] can be supported from both the upper surface F8 and the lower surface F7 of the second portion 72. That is, the second portion 72 is pinched between the support portion 62 and the protrusion portion 253. Therefore, as compared to a configuration in which only the lower surface F7 of the second portion 72 is in contact with the coupling portion 70[m], the liquid ejecting head 26 and the flow channel member 25 can be coupled to each other more firmly.
As illustrated in
When the flow channel member 25 and the liquid ejecting head 26 are coupled to each other, in a state in which the attachment portion 60[m] is pressed in a direction that is opposite to the biasing direction in the first state S1, the support portion 62 is rotated to a position overlapping the first surface F7a of the second portion 72. Then, the pressing of the attachment portion 60[m] is released and the upper surface F6 of the support portion 62 comes into contact with the first surface F7a of the second portion 72, so that the attachment portion 60[m] is in the second state S2. That is, the flow channel member 25 and the liquid ejecting head 26 are coupled to each other. Here, it is assumed that in the process of coupling the flow channel member 25 and the liquid ejecting head 26, the rotation of the attachment portion 60[m] is stopped before the support portion 62 reaches the first surface F7a. Under the above assumption, as illustrated in
When the attachment portion 60[m] is in the third state S3, the support portion 62 is rotated by the biasing of the elastic body 80, so that the attachment portion 60[m] approaches the first state S1. As described above, the attachment portion 60[m] is biased in the biasing direction by the elastic body 80. Therefore, when the attachment portion 60[m] is in the third state S3, the support portion 62 moves along the second surface F7b in a direction in which the support portion 62 is separated from the first surface F7a. That is, the attachment portion 60[m] is in the first state S1. In the third embodiment, as the support portion 62 moves to a position where the support portion 62 is not in contact with the lower surface F7 of the second portion 72, the attachment portion 60[m] is in the first state S1.
In the third embodiment, the same effect as that of the first embodiment is realized. In the third embodiment, in the third state S3, the attachment portion 60[m] approaches the first state S1 by the biasing of the elastic body 80. Therefore, in the third state S3 in which the attachment portion 60[m] does not reach the first state S1, a possibility that the liquid ejecting head 26 and the flow channel member 25 are not sufficiently coupled to each other can be reduced. In the third embodiment, in particular, since the support portion 62 moves along the second surface F7b by the biasing of the elastic body 80, the attachment portion 60[m] can approach the first state S1 from the third state S3 with a simple configuration.
According to a configuration of the third embodiment in which the first surface F7a is located in the biasing direction from the periphery edge of the second surface F7b on the second surface F7b side, as the attachment portion 60[m] moves from the first state S1 to the second state S2, the support portion 62 can firmly engage with the coupling portion 70[m].
In the third state S3 of the fourth embodiment, as the support portion 62 is rotated by the biasing of the elastic body 80, the attachment portion 60[m] approaches the second state S2. In detail, the support portion 62 is rotated by the biasing of the elastic body 80, so that the attachment portion 60[m] is in the second state S2. As described above, the attachment portion 60[m] is biased in the biasing direction by the elastic body 80. Therefore, when the attachment portion 60[m] is in the third state S3, the support portion 62 moves along the second surface F7b in a direction in which the support portion 62 approaches the first surface F7a. That is, the attachment portion 60[m] is in the second state S2. In the third embodiment, as the support portion 62 moves to a position where the support portion 62 is in contact with the first surface F7a, the attachment portion 60[m] is in the second state S2. Similar to the third embodiment, in the second state S2, the movement of the support portion 62 is restricted by the wall surface F0.
In the fourth embodiment, the same effect as that of the first embodiment is realized. In the fourth embodiment, in the third state S3, the attachment portion 60[m] approaches the second state S2 by the biasing of the elastic body 80. Therefore, even in the third state S3 in which the attachment portion 60[m] does not reach the second state S2, the attachment portion 60[m] approaches the second state S2, so that the liquid ejecting head 26 and the flow channel member 25 can be sufficiently coupled to each other.
In the third embodiment and the fourth embodiment, the configuration in which the first surface F7a is located in the biasing direction from the peripheral edge of the second surface F7b on the first surface F7a side. However, in the biasing direction, the position of the peripheral edge of the second surface F7b on the first surface F7a side may be the same as the position of the first surface F7a. In the above configuration, the wall surface F0 is omitted.
Each embodiment illustrated above can be variously modified. Detailed modifications that can be applied to the above-described embodiments will be described as an example below. Two or more aspects selected from the following examples in a predetermined manner can be appropriately combined as long as the aspects do not contradict each other.
(1) In the above-described embodiments, the configuration in which the flow channel member 25 includes the flow channel forming portion 251 and the overhang portion 252 has been described as an example. However, the configuration of the flow channel member 25 is predetermined. For example, a configuration in which the overhang portion 252 is omitted from the flow channel member 25 or a configuration in which a member that is different from the flow channel forming portion 251 and the overhang portion 252 is included is also employed.
(2) In the above-described embodiments, the attachment portion 60[m] is installed in the overhang portion 252 of the flow channel member 25. However, the position where the attachment portion 60[m] is installed is not limited to the overhang portion 252. For example, the attachment portion 60[m] may be installed in the flow channel forming portion 251. Similarly, the position where the elastic body 80 is installed can be also changed as appropriate according to the attachment portion 60[m].
(3) In the above-described embodiments, the attachment portion 60[m] is configured by the catch 63, the support portion 62, and the base portion 61. However, the configuration of the attachment portion 60[m] is not limited to the above example. The shape of the attachment portion 60[m] is predetermined as long as the attachment portion 60[m] can be in contact with the coupling portion 70[m] by the biasing of the elastic body 80. For example, the attachment portion 60[m] may be configured by the catch 63 and the support portion 62 or the attachment portion 60[m] may include a portion that is different from the catch 63, the support portion 62, and the base portion 61. The shape of the attachment portion 60[m] can be changed in a predetermined manner. A predetermined portion of the attachment portion 60[m] is in contact with the coupling portion 70[m].
(4) In the above-described embodiments, the coupling portion 70[m] is configured by the first portion 71 and the second portion 72. However, the configuration of the coupling portion 70[m] is not limited to the above example. The shape of the coupling portion 70[m] is predetermined as long as the coupling portion 70[m] can be in contact with the attachment portion 60[m]. For example, a configuration in which the second portion 72 is omitted from the coupling portion 70[m] or a configuration in which the coupling portion 70[m] includes a portion that is different from the first portion 71 and the second portion 72 is also employed. The shape of the coupling portion 70[m] can be changed in a predetermined manner. A predetermined portion of the coupling portion 70[m] is in contact with the attachment portion 60[m].
(5) In the above-described embodiments, the elastic body 80 is installed on the upper surface F4 of the overhang portion 252. However, a place where the elastic body 80 is installed is predetermined. For example, as illustrated in
(6) In the above-described embodiments, the cylindrical catch 63 is used. However, the shape of the catch 63 is predetermined. For example, the catch 63 may have the same shape as that of the support portion 62. According to the configuration in which the catch 63 and the support portion 62 have the same shape, the position of the support portion 62 can be grasped according to the position of the catch 63 when the attachment portion 60[m] is rotated.
(7) In the above-described embodiments, the configuration has been employed in which the flow channel member 25 and the liquid ejecting head 26 are coupled to each other using a restoring force generated by shortening the elastic body 80 from the natural length state thereof. However, as illustrated in
(8) In the above-described embodiments, in a sectional view from the X axis direction (that is, in the Y axis direction), the configuration has been employed in which the attachment portion 60[m] is installed at a position closer to the flow channel forming portion 251 than the coupling portion 70[m]. However, the positions of the coupling portion 70[m] and the attachment portion 60[m] may be reversed.
(9) In the above-described embodiments, both the lower surface 52 of the flow channel member 25 and the mounting surface F2 of the liquid ejecting head 26 are coupled to each other to face each other. However, a positional relationship between the flow channel member 25 and the liquid ejecting head 26 is not limited to the above configuration. For example, the liquid ejecting head 26 and the flow channel member 25 located on the same plane as the liquid ejecting head 26 may be coupled to each other using the attachment portion 60[m] and the coupling portion 70[m]. The shapes of the attachment portion 60[m] and the coupling portion 70[m] can be appropriately changed according to the positions of the flow channel member 25 and the liquid ejecting head 26.
(10) In the above-described embodiments, the configuration has been illustrated in which the flow channel member 25 and the liquid ejecting head 26 are coupled to each other. However, a member coupled to the liquid ejecting head 26 is not limited to the flow channel member 25. For example, when an electric wiring member having electric wiring is coupled to the liquid ejecting head 26, the configurations of the above-described embodiments may be applied. The member coupled to the liquid ejecting head 26 is comprehensively expressed as a “coupling member”.
(11) In the above-described embodiments, as the support portion 62 of the attachment portion 60[m] penetrates the through-hole O formed in the overhang portion 252, the attachment portion 60[m] is installed in the flow channel member 25. However, the method of installing the attachment portion 60[m] in the flow channel member 25 is not limited to the above example. That is, it is not necessary to form the through-hole O in the overhang portion 252.
(12) In the first embodiment and the second embodiment, for example, as illustrated in
(13) In the second embodiment, the protrusion portion 253 of the flow channel member 25 is in contact with the upper surface F8 of the second portion 72. However, for example, a configuration is also employed in which the lower surface F3 of the overhang portion 252 is in contact with the upper surface F8 of the second portion 72. In the above configuration, the protrusion portion 253 is omitted from the flow channel member 25.
(14) In the third embodiment, as illustrated in
(15) In the first embodiment, the state in which the tip of the support portion 62 overlaps the lower surface F7 of the second portion 72 as a whole is set as the second state S2. However, a state in which at least a part of the tip E of the support portion 62 overlaps the lower surface F7 of the second portion 72 may be set as the second state S2. Similarly, a state in which at least a part of the tip E of the support portion 62 does not overlap the lower surface F7 of the second portion 72 may be set as the first state S1.
(16)
(17) In the above-described embodiments, the configuration in which the elastic body 80 is provided in the attachment portion 60[m] has been illustrated. However, other aspects can be implemented. For example, a configuration is also employed in which the attachment portion 60[m] is provided integrally with the overhang portion 252 and the elastic body 80 is provided in the coupling portion 70[m]. In the above configuration, the coupling portion 70[m] can move in the Z axis direction, and when the coupling portion 70[m] moves to come into contact with the attachment portion 60[m], the elastic body 80 biases the coupling portion 70[m] in the positive direction of the Z axis, so that the liquid ejecting head 26 and the coupling member may be coupled to each other.
(18) In the above-described embodiments, a serial type liquid ejecting apparatus 100 is illustrated which causes the carriage 242, on which the liquid ejecting head 26 is mounted, to reciprocate. However, the present disclosure can be applied to a line-type liquid ejecting apparatus in which the plurality of nozzles N are distributed over the entire width of the medium 12.
(19) The liquid ejecting apparatus 100 illustrated in the above-described embodiments may be adopted for various apparatuses such as a facsimile apparatus and a copying machine in addition to equipment dedicated to printing. However, usage of the liquid ejecting apparatus of the present disclosure is not limited to printing. For example, the liquid ejecting apparatus that ejects a solution of a color material is used as a manufacturing apparatus that forms a color filter of a liquid crystal display device. Further, a liquid ejecting apparatus that ejects a solution of a conductive material is used as a manufacturing apparatus that forms a wiring and an electrode of a wiring board.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-052354 | Mar 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5448274 | Hirabayashi et al. | Sep 1995 | A |
5671000 | Hirabayashi | Sep 1997 | A |
20060139405 | Nellen | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
H05-162298 | Jun 1993 | JP |
H07-068777 | Mar 1995 | JP |
2005-121198 | May 2005 | JP |
2018-153944 | Oct 2018 | JP |
Number | Date | Country | |
---|---|---|---|
20200298598 A1 | Sep 2020 | US |