1. Field of the Invention
The present invention generally relates to a liquid ejection head for delivering a liquid of a recording head used in an image recording apparatus such as a printer, a colorant ejection head used in fabricating a color filter of a liquid crystal display or the like, an organic EL display, an electrode material ejection head used for forming an electrode of a field emission display (FED) or the like, a living body organic substance ejection head used for fabricating a biochip or the like and a liquid ejection apparatus using the liquid ejection head.
2. Related Art
There is an inkjet printer widely used as a liquid ejection apparatus. The ink jet printer is provided with a recording head as a liquid ejection head for ejecting droplets of ink which is a liquid from a plurality of nozzle openings. The ink droplets are impacted to a surface of recording paper or the like which is a medium by the recording head to thereby print an image, a character or the like.
Such an ink jet printer is provided with a carriage moved relative to the recording paper or the like by a moving unit and the recording head is mounted to the carriage.
In the drawings, a recording head 1 is provided with a head case 2 and a circuit board B fixed to an upper face of the head case in the drawing. As shown by
As shown by
Meanwhile, a flow path unit 3 having a laminated layer structure in a plate-like shape is fixed to an end face of the front end portion 6 of the head case 2 and as shown by
Thereby, the head cover 5 covers to protect the flow path unit 3 having a fine structure and a side face portion of the head case 2 and shields these parts by a grounding effect by the metal material.
The recording head 1 ejects ink guided to the flow path unit 3 by a means (not illustrated), by applying drive voltage from the circuit board B to the oscillator unit 4 as a driving device from the nozzle opening 3a by oscillation of each oscillator 4b. Thereby, predetermined printing is carried out on a print face or the like of a medium (not illustrated) of recording paper or the like.
After carrying out the printing, there is a case in which a small amount of ink is adhered to the surrounding or the like of the nozzle opening 3a of the flow path unit 3. Therefore, cleaning operation is carried out. As shown in
However, according to the recording head 1, there is a case in which the small amount of ink wiped by the cleaning operation remains at a space S1 of
That is, the flow path unit 3 is fixed to an end face of the front end portion 6 of the head case 7 by using an adhesive agent and therefore, in order to take an adhering allowance thereof, an outer shape of the flow path unit 3 is necessarily smaller than an outer shape of the end face of the front end portion 6 of the head case 2. Therefore, the space S1 shown by
Therefore, ink invading the inner side of the head cover 5 is stored at the space S1.
The ink stored at the space S1 is brought into a small clearance G1 between the protective wall portion 5b of the head cover 5 and a side wall of the front end portion 6 of the head case 2 by the capillary phenomenon, moved in a direction of an arrow A3, spread to a total of the clearance G1 between the protective wall portion 5b and the side face of the front end portion 6 of the head case 2 and is held by surface tension.
When the recording head 1 changes its attitude under the state, for example, when the recording head 1 is inclined skewedly in operation of carrying the recording head 1 by a user or the like a phenomenon shown in
In the drawing, although ink invading the small clearance G1 between the protective wall portions 5b, 5b contiguous to each other and the side walls of the front end portion 6 of the head case 2 is held in a total of inner faces thereof, when the recording head 1 is inclined such that portions contiguous to the respective protective wall portions 5b, 5b are disposed on the lower side, ink at the inner faces of the respective wall portions 5b, 5b is aggregated to the portions contiguous to the respective protective wall portions 5b, 5b as shown by arrows A10, A10 by its own weight. Therefore, the aggregated ink flows down along the end faces of the respective protective wall portions 5b, 5b and along directions of arrows A11, A11 and advances to the head case 2. The ink aggregated in this way to increase the weight is liable to flow and may be moved around to a rear face of the base portion 7 in
That is, according to the constitution shown by
It is an object of the invention to resolve the above-described problem and provide a liquid ejection head capable of effectively avoiding a liquid from effecting adverse influence on a circuit board by restricting invasion and storage of ink between an inner side of a head cover or a protective wall portion of the head cover and a side face portion of a head case and a liquid ejection apparatus using the liquid ejection head.
(1) According to the invention, the above-described object is achieved by a liquid ejection head which is a liquid ejection head comprising a flow path unit for forming a nozzle for ejecting a liquid and a pressure chamber communicating with the nozzle for bringing about a change in a pressure by a driving device, the flow path unit being brought into contact with a head case and protected by a head cover, the head cover comprising an opening portion for exposing a nozzle face of the nozzle of the flow path unit and a frame portion provided at a surrounding of the opening portion for covering a peripheral edge portion of the flow path unit to be supported by the head case, a protective wall portion erected integrally from the frame portion and formed to cover a side face of the head case, and a support portion formed integrally with the protective wall portion and bent from the protective wall portion to extend to a surrounding direction for fixing to the head case, wherein a liquid restricting portion for restricting invasion and storage of liquid between the head case and head cover is formed on the head case.
(2) Specifically, in the invention, the liquid restricting portion may be provided as a structure that the protective wall portion is formed to widen a width of a clearance between the protective wall portion and the head case toward a side of the support portion.
According to the above constitution, the head cover covers to protect the peripheral edge of the flow path unit fixed to the head case by the frame portion. Further, the head cover covers to protect the side face of the head case by the protective wall portion, the support portion of the head cover is fixed to a base portion of the head case and therefore, the flow path unit and the side face of the head case can firmly be protected. According to the structure, the protective wall portion of the head cover is formed such that the width is widened to the side of the support portion of the head case. Therefore, an interval between the protective wall portion of the head cover and the side face of the head case is made to be widened. Therefore, the liquid brought from the opening portion of the head cover to the inner side is not guided in a direction of the support portion of the head case by the capillary phenomenon and therefore, adverse influence can effectively be prevented from being effected on a part present on the side of the support portion of the head case, for example, an electric constitution of a circuit board or the like of the recording head.
(3) The invention is characterized in that the clearance widening portion of the protective wall portion of the head cover for widening the width includes a stepped portion at a portion of the protective wall portion.
According to the above constitution, when the clearance widening portion is constituted to widen the width by forming the stepped portion, the interval between the protective wall portion of the head cover and the side face of the head case is widened by a large amount with the stepped portion as a boundary and therefore, the liquid brought from the opening portion of the head cover to the inner side is not guided in the direction of the support portion of the head case by the capillary phenomenon with the stepped portion as the boundary.
Further, the stepped portion can easily be formed by pressing or bending the head cover.
(4) The invention is characterized in that the clearance widening portion of the protective wall portion of the head cover for widening the width is formed in a taper shape gradually widening toward the side of the support portion.
According to the above constitution, the clearance widening portion is formed in the taper shape gradually widening toward the side of the support portion and therefore, the interval between the protective wall portion of the head cover and the side face of the head case is gradually widened by a large amount. Therefore, the liquid brought from the opening portion of the head cover to the inner side is not guided by the capillary phenomenon in the direction of support portion of the head case at a position of a size of the interval constituting a limit of operating the capillary phenomenon.
Further, the taper shape can easily be formed by pressing or bending the head cover.
(5) The invention is characterized in that at a region between a base portion in a shape of a flange and a front end portion of the head case, a groove portion is formed to surround a surrounding of the front end portion.
According to the above constitution, even when the liquid brought from the opening portion of the head cover to be inner side is guided in the direction of the support portion of the head case, the liquid is contained in the groove portion at a region of a vicinity of a root of the base portion in the flange-like shape of the head case and the liquid can effectively prevented from moving around the base portion and effecting adverse influence on a part disposed frontward therefrom, for example, an electric constitution of the circuit board of the recording head or the like.
(6) The invention is characterized in that the protective wall portion of the head cover is formed with an opening portion.
According to the above constitution, at a region of forming the opening portion to the protective wall portion of the head cover, an interval of holding the liquid is not present between the protective wall portion of the head-cover and the side plate of the head case and therefore, the liquid is not conducted.
(7) The invention is characterized in that the support portion of the head cover is formed with an opening portion.
According to the above constitution, at a region of forming the opening portion at the support portion of the head cover, an interval of holding the liquid is not present between the support portion of the head cover and the base portion of the head case and therefore, the liquid is not conducted frontward from t base portion of the head case.
(8) The invention is characterized in that the clearance widening portion in the taper shape of the head cover starts from a location apart from the frame portion to the side of the support portion by a predetermined distance.
According to the above constitution, at an interval from the frame portion of the head cover by the predetermined distance, the protective wall portion functions as a positioning device in attaching the head cover to the head case by being brought into close contact with the side face of the head case and integrating operability is promoted.
(9) The invention is characterized in that an opening angle of the clearance widening portion in the taper shape of the head cover is set to fall in a range of from 7 degrees to 10 degrees.
According to the above constitution, when the opening angle of the clearance widening portion in the taper shape of the head cover is less than 7 degrees, there is a drawback that capillary force is exerted to a liquid of ink or the like invading between the head cover and the head case. Further, when the opening angle of the clearance widening portion in the taper shape of the head cover exceeds 10 degrees, there is a drawback of enlarging the head. When the opening angle of the clearance widening portion in the taper shape of the head cover falls in the range of from 7 degrees through 10 degrees, there is achieved an advantage of capable of preventing a liquid of ink or the like invading between the head cover and the head case from exerting the capillary force without enlarging the head.
(10) Further, according to the invention, the above-described object is achieved by a liquid ejection head comprising a flow path unit for forming a nozzle for ejecting a liquid and a pressure chamber communicating with the nozzle for bringing about a change in a pressure by a driving device, the flow path unit being brought into contact with a head case and protected by a head cover, the head cover comprising an opening portion for exposing a nozzle face of the nozzle of the flow path unit and a frame portion provided at a surrounding of the opening portion for covering a peripheral edge portion of the flow path unit to be supported by the head case, a protective wall portion erected integrally from the frame portion and formed to cover a side face of the head case, and a support portion formed integrally with the protective wall portion and bent from the protective wall portion to extend to a surrounding direction for fixing to the head case, wherein a corresponding portion of the head case fixed with the support portion includes a projected portion projected to a side of the support portion.
According to the above constitution, the head cover covers to protect the peripheral edge of the flow path unit fixed to the head case by the frame portion. Further, the head cover covers to protect the side face of the head case by the protective wall portion, the support portion of the head cover is fixed to the base portion of the head case and therefore, the flow path unit and the side face of the head case can firmly be protected. In such a structure, the corresponding portion of the head case fixed with the support portion includes the projected portion projected to the side of the support portion. Therefore, even when the liquid brought from the opening portion of the head cover to the inner side is guided to the base portion of the head case, the projected portion constitutes a spacer between the base portion of the head case and the support portion of the head cover to form a comparatively large interval. Therefore, the liquid cannot be conducted through the interval by the capillary phenomenon and the liquid can effectively be prevented from effecting adverse influence on a part present frontward from the base portion of the head case, for example, an electric constitution of the circuit board of the recording head or the like.
(11) Further, according to the invention, the above-described object is achieved by a liquid ejection apparatus which is a liquid ejection apparatus comprising a liquid ejection head comprising a flow path unit for forming a nozzle for ejecting a liquid and a pressure chamber communicating with the nozzle for bringing about a change in a pressure by a driving device, the flow path unit being brought into contact with a head case and protected by a head cover and a device for moving the liquid ejection head relative to an object of ejecting the liquid, the head cover of the liquid ejection head comprising an opening portion for exposing a nozzle face of the nozzle of the flow path unit and a frame portion provided at a surrounding of the opening portion for covering a peripheral edge portion of the flow path unit to be supported by the mounting face, a protective wall portion erected integrally from the frame portion for covering a side face of the head case, and a support portion formed integrally with the protective wall portion and bent from the protective wall portion to extend in a surrounding direction for fixing to the head case, wherein a liquid restricting portion for restricting invasion and storage of liquid between the head case and head cover is formed on the head case.
(12) More specifically, in the liquid ejection apparatus of the invention, the liquid restricting portion is provided as a structure that the protective wall portion is formed to widen a width of a clearance between the protective wall portion and the head case toward a side of the support portion.
(13) Further, according to the invention, the above-described object is achieved by a liquid ejection apparatus which is a liquid ejection apparatus comprising a liquid ejection head comprising a flow path unit for forming a nozzle for ejecting a liquid and a pressure chamber communicating with the nozzle for bringing about a change in a pressure by a driving device, the flow path unit being brought into contact with a head case and protected by a head cover and a device for moving the liquid ejection head relative to an object of ejecting the liquid, the head cover of the liquid ejection head comprising an opening portion for exposing a nozzle face of the nozzle of the flow path unit and a frame portion provided at a surrounding of the opening portion for covering a peripheral edge portion of the flow path unit to be supported by the mounting face, a protective wall portion erected integrally from the frame portion for covering a side face of the head case, and a support portion formed integrally with the protective wall portion and bent from the protective wall portion to extend in a surrounding direction for fixing to the head case, wherein a corresponding portion of the head case fixed with the support portion includes a projected portion projected to a side of the support portion.
(14) According to the invention, a plurality of the protection wall may provided as said at least one protection wall, and
the liquid restricting portion may be provided as a structure that an end face in a direction of a width of each of the protective wall portions includes a chamfered portion chamfered so as to reduce a width of each of the protective wall portions along a direction of being apart from the frame portion.
According to the above constitution, the head cover covers to protect the peripheral edge of the flow path unit fixed to the head case by the frame portion. Further, the head cover covers to protect the side face of the head case by the protective wall portion, the support portion of the head cover is fixed to the base portion of the head case and therefore, the flow path unit and the side face of the head case can firmly be protected. In such a structure, the end face in the direction of the width of each of the protective wall portions includes the chamfered portion chamfered to reduce the width of each of the protective wall portions along the direction of being apart from the frame portion. Therefore, there is constituted a structure in which the respective end faces of the protective wall portions contiguous to each other are not butted each other. Therefore, even when the head changes its attitude, there is hardly a location of a corner at which the liquid of ink or the like is aggregated and therefore, the aggregated ink is dropped by its own weight and is effectively prevented from moving to other part.
(15) The invention is characterized in that a width of an interval between the protective wall portions opposed to each other in the plurality of protective wall portions is formed to widen toward sides of the support portions.
According to the above constitution, there is constructed a constitution in which the width of the interval between the protective wall portions opposed to each other is widened and therefore, a clearance between the protective wall portion and the side face of the head case is widened. Therefore, the liquid brought from the opening portion of the head cover to the inner side is not guided by the capillary phenomenon in the direction of the support portion of the head case and therefore, the liquid can effectively be prevented from effecting adverse influence on a part present on the side of the support portion of the head case, for example, an electric constitution of the circuit board of the recording head or the like.
(16) The invention is characterized in that the widths of the interval widening portions of the protective wall portions opposed to each other of the head cover for widening the widths are widened by providing stepped portions at portions of the protective wall portions.
According to the above constitution, when there is constructed a constitution in which the width of the interval widening portion is widened by forming the stepped portion, the interval between the protective wall portion of the head cover and the side face of the head case is widened by a large amount with the stepped portion as a boundary and therefore, the liquid brought from the opening portion of the head cover to the inner side is not guided by the capillary phenomenon in the direction of the support portion of the head case with the stepped portion as a boundary.
Further, such a stepped portion can easily be formed by pressing or bending the head cover.
(17) The invention is characterized in that the interval widening portions of the protective wall portions opposed to each other of the head cover for widening the widths are formed in a taper shape gradually widening toward the sides of the support portions.
According to the above constitution, the interval widening portion is formed in the taper shape gradually widening toward the side of the support portion and therefore, the interval between the protective wall portion of the head cover and the side face of the head case is gradually widened by a large amount. Therefore, the liquid brought from the opening portion of the head cover to the inner side is not guided by the capillary phenomenon in the direction of the support portion of the head case at a position of a size of the interval constituting a limit of operating the capillary phenomenon.
Further, such a taper shape can easily be formed by pressing or bending the head cover.
(18) The invention is characterized in that the interval widening portion in the taper shape of the head cover is started from a location apart from the frame portion to the side of the support portion by a predetermined distance.
According to the above constitution, at an interval from the frame portion of the head cover by the predetermined distance, the protective wall portion functions as a positioning device in attaching the head cover to the front end portion of the head case by being brought into close contact with the side face of the head case and integrating operability is promoted.
(19) The invention is characterized in that the plurality of support portions integral with the plurality of protective wall portions are constructed by a constitution of being fixed to the head case by screwing and the chamfered portions are formed at the end faces of the protective wall portions including the support portions to be screwed contiguous to each other.
According to the above constitution, when the liquid of ink or the like is guided to the screwed support portion, the liquid is liable to invade a side of other part by conducting the screwed portion. Therefore, when the chamfered portions are provided at the contiguous end faces of the protective wall portions having the screwed support portions, the liquid conducted to screwed portion can effectively be prevented from invading the side of the other part.
(20) Further, according to the invention, the above-described object is achieved by a liquid ejection apparatus in which a plurality of the protection wall are provided as said at least one protection wall, and
the liquid restricting portion is provided as a structure that an end face in a direction of a width of each of the protective wall portions includes a chamfered portion chamfered so as to reduce a width of each of the protective wall portions along a direction of being apart from the frame portion.
(21) In another aspect of the invention, the liquid restricting portion may be provided as a structure that a notch portion is, formed at a vicinity of a boundary between the frame portion and the protective wall portion.
According to the invention, the head cover covers to protect the peripheral edge of the flow path unit fixed to the end face of the front end portion of the head case by the frame portion. Further, the head cover covers to protect the side face of the head case by the protective wall portion, the support portion of the head cover is fixed to the base portion of the head case and therefore, the flow path unit and the side face of the head case can firmly be protected. In such a structure, the notch portion is formed at the vicinity of the boundary between the frame portion and the protective wall portion of the head cover. Therefore, the liquid of ink or the like invading the inner side of the head cover comes to outside from the space of the inner side the head cover via the notch portion and therefore, the liquid of ink or the like can effectively be prevented from being stored in the space on the inner side of the head cover. Further, the liquid of ink or the like can be avoided from passing on the inner side of the head cover to move to other part to thereby effect adverse influence.
(22) The invention is characterized in that the notch portion is provided at a position which does not interfere with a wiping direction of a wiping device in an operation of cleaning the liquid ejection head.
According to the above constitution, the notch portion is provided to avoid the position of interfering with the wiping direction of the wiping device and therefore, the wiping device formed by a comparatively soft material is prevented from damaging the notch portion by being brought into contact therewith owing to the cleaning operation.
(23) The invention is characterized in that the frame portion is constituted by a shape of surrounding a peripheral edge of the front end portion of the head case, the protective wall portion is constituted by a plurality of protective wall portions to be divided by a plural number from the frame portion to erect and the notch portion is divided by a plural number in a corresponding one of the protective wall portions on which the notch portion is provided.
According to the above constitution, the notch portion is divided by the plural number such that a single large notch portion is not constituted and therefore, strength of respective portions of the head cover starting from the protective wall portion and the frame portion is not deteriorated by that amount.
(24) The invention is characterized in that at least one notch portion of the plurality of notch portions is provided at a position in correspondence with a guide member on a side of a covering member in mounting the covering member for covering the nozzle face when printing is not carried out.
According to the above constitution, the notch portion can not only prevent the liquid of ink or the like from being stored on the inner side of the head cover but can function as a guiding device in mounting the covering member which needs fine positioning.
(25) The invention is characterized in that a plurality of protective wall portions are provided as the protective wall portion and at lease one of the protective wall portions of is not provided with the support portion, the protective wall portion which is not provided with the support portion includes a larger number of the notch portions than a number of the notch portions of another protective wall portion which is provided with the support portion.
According to the above constitution, by providing a number of the notch portions at positions of the protective wall portion which is not provided with the support portion, the notch portion having an effective area or size can be provided without deteriorating the strength of fixing the head cover to the head case.
(26) According to the invention, in a liquid ejection apparatus, the liquid restricting portion is provided as a structure that a notch portion is formed at a vicinity of a boundary between the frame portion and the protective wall portion.
Preferable embodiments of the invention will be explained in details in reference to the attached drawings as follows.
Further, although the embodiments described below are preferable specific examples of the invention and therefore, attached with various limitations preferable technically, a range of the invention is not limited to the embodiments so far as there is not a description stating to particularly limit the invention in the following explanation.
In the drawing, an ink jet recording apparatus (hereinafter, referred to as “recording apparatus”) 100 is an apparatus of carrying out printing by ejecting ink onto a surface of a medium P of paper or the like.
For that purpose, a carriage 101 mounted with an ink cartridge 102 is arranged to be opposed to a print face of the medium P. The carriage 101 is mounted with the ink cartridge 102 and a recording head, mentioned later. A front end portion of a case of the recording head for forming a nozzle is directed to the print face of the medium P. The carriage 101 is connected with a carriage moving unit 104 of a timing belt or the like, the timing belt 104 as the moving unit is driven by a driving device 105 of a timing motor or the like, guided by a guiding device 103 and moved, for example, in a direction of an arrow A4 coinciding with a direction of a platen 106. In the following drawings, in the case of indicating directions by using notations X and Y, the direction of the arrow A4 is designated by notation Y as a main scanning direction and a direction orthogonal to the main scanning direction is designated by an arrow X as a sub scanning direction.
A home position (nonprinting region) which is a nonprinting region of the recording apparatus 100 is arranged with a wiping device 107 for wiping a nozzle face of the recording head (mentioned later) mounted to the carriage 101. The wiping device 107 wipes the face of the recording head forming the nozzles by moving relative to a direction of moving the carriage 101. Therefore, a material and a mode suitable for wiping having elasticity to some degree of rubber of the like are selected for the wiping device 107.
Further, contiguous to the wiping device 107, a cover member (cap) 109 is arranged to the home position or a vicinity thereof. The cover member 109 is formed by a mode capable of containing a front end portion of the recording head, mentioned later, for cleaning ink by adsorbing ink by negative pressure by covering the front end portion of the recording head to constitute a hermetically closed space at inside thereof. The covering member 109 is connected with a pump unit 108 to be able to form the negative pressure in the hermetically closed space. Therefore, a cleaning device 110 of the recording head is formed as a whole by adopting the pump unit 108 and the covering member 109 and the wiping device 107 in addition thereto.
In
The rear side wall 54 of the carriage 101 is formed with slits 56, 56 . . . extended in a vertical direction in parallel with each other. The slits 56, 56 . . . are provided in correspondence with a number of respective color inks of the ink cartridge 102 (refer to
The bottom plate 57 of the carriage 101 is formed with a through hole 59 in, for example, a rectangular shape as shown by
Although the carriage 101 includes a portion connected to the guiding device 103 of the recording apparatus 100 of
As shown by the drawings, the recording head 30 includes a cartridge base (hereinafter, referred to as “base”) 31 for attaching various parts, mentioned later. The base 31 is a support base made of, for example, a synthetic resin as a whole and is provided with a plurality of sections as shown by FIG. 6 at one face thereof (upper face in the drawing). The sections are provided in correspondence with a number of respective color inks of the ink cartridge 102 (refer to
Other face of the base 31 is attached with a circuit board 35 via a sheet member 34 for constituting a packing. The sheet member 34 is formed with a through hole 34a for supplying ink. The circuit board 35 is provided with, for example, a drive circuit or the like for driving an ejection nozzle of ink, a connector for connecting to a main body side, a through hole in correspondence with the through hole 34a for supplying ink of the sheet member 34 and the like.
Further, the recording head 30 is provided with an oscillator unit 36 having a plurality of piezoelectric oscillators and a head case 37 attached with the oscillator units 36. The oscillator unit 36 is fixed in parallel with the plurality of piezoelectric oscillators at a fixed plate and supplied with drive voltage from the circuit board 35 via a tape carrier, not illustrated. By driving the oscillator unit 36, ink is delivered from the nozzle formed at a flow path unit 38.
For that purpose, the tape carrier, not illustrated, of the oscillator unit 36 is inserted into a through hole of the circuit board 35, bent, thereafter connected to the circuit board 35 by soldering and connected to the connector or the like. Further, as shown by
As shown by
A flow path unit 38 is brought into contact with an end face 62 (mounting plate) of the front end portion 61 of the head case 37 and is fixed by, for example, an adhesive agent or the like.
The flow path unit 38 is formed by successively laminating a nozzle plate 41, a flow path forming board 42 and an elastic plate 43 from a lower side to an upper side of
The nozzle plate 41 comprises a thin plate made of, for example, stainless steel and formed with small nozzle openings 41a in a shape of a row at a pitch in correspondence with a dot forming density of the printer.
The elastic plate 43 is arranged to dispose on the flow path forming board 42 and is formed by a plate member laminated with a support plate 43b made of a metal of, for example, stainless steel or the like on an elastic film 43a of, for example, polyphenylene sulphide (PPS).
The elastic plate 43 is made to overlap the flow path forming board 42 and is fixed in a state of closing an opening portion on an upper side in
The head cover 39 of
The recording head 30 is constituted as described above, the respective ink supply pins 32 . . . fixed to the base 31 guide corresponding respective color inks from respective cartridges to the side of the base 31 and the inks are guided to the flow path unit 38 held by the head case 37 via the ink supplying through holes 34a or the like of the sheet member 34. At the flow path unit 38, ink temporarily stored at the common ink chamber 66 of the flow path forming board 42 passes the ink supply port 67 of
A preferable embodiment of the head cover 39 will be explained in reference to the drawings.
Further, in
The head cover 39 is integrally formed by a conductive metal, preferably, having properties of being difficult to rust, being rigid even by thinning a plate thickness thereof and being excellent in conductivity, specifically, for example, by stainless steel.
As shown by
In the illustrated case, the frame portion 72 is formed in a shape of a frame in a rectangular shape according to the embodiment although the shape is not limited to the illustrated mode but may be a shape of a circular shape, a polygonal shape, an elliptical shape, an oval shape or the like so far as the shape matches to the shape of the front end portion 61 in a block-like shape of the head case 37.
There are provided protective wall portions bent substantially by 90 degrees and extended integrally from the frame portion 72. The protective wall portions are for covering to protect side faces of the front end portion 61 of the head case 37 and are divided by a plural number in accordance with a mode of the side face of the front end portion 61 of the head case 37. According to the embodiment, the frame portion 72 is constituted by a quadrangular shape and therefore, a plurality of protective wall portions 73, 74, 75 and 76 are respectively formed from four sides thereof in a mode of being partitioned respectively.
According to the embodiment, contiguous sides 87, 87 of the protective wall portions respectively contiguous to each other in the respective protective wall portions 73, 74, 75 and 75 are chamfered. That is, the respective sides 87 are chamfered by being inclined to narrow widths of the respective protective wall portions along a direction of being apart from the frame portion 72.
Thereby, ink as a remaining liquid brought to an inner side of the head cover 39 is prevented from aggregating to portions of four corners of the head cover 39 after cleaning operation, mentioned later.
A total or a portion of the protective wall portions of the head cover 39, in this case, for example, the protective wall portions 73, 74 and 75 are respectively formed integrally with support portions 77, 78 and 79 in a flange-like shape constituted by being bent substantially by 90 degrees and extended.
The respective support portions 77, 78 and 79 are utilized when the head cover 39 is attached to the head case 37. Although in attaching and fixing the support portions to the head case 37, for example, a method of screwing, thermal calking or the like can be adopted, according to the embodiment, screwing is used and the respective support portions 77, 78 and 79 are provided with screw holes 77a, 78a and 79a.
The respective support portions 77, 78 and 79 are chamfered preferably in a mode continuous to chamfered shapes on the contiguous sides 87, 87 of the protective wall portions.
Further, a total or a portion of the protective wall portions of the head cover 39, in this case, for example, the protective wall portion 73, 74 and 75 are formed with second opening portions 81, 82 and 83 of the head cover. The second opening portions 81, 82 and 83 are formed in consideration of positions and sizes which do not deteriorate a function of protecting the front end portion 61 of the head case 37 or the like and strength of the protective wall portions.
Similarly, a total or a portion of the support portions of the head cover 39, in this case, for example, the support portions 77 and 78 are formed with third opening portions 84 and 85 of the head cover 39. The second opening portions 84 and 85 are formed in consideration of positions and sizes which do not deteriorate a function for fixing the support portions 77 and 78 formed therewith to the head case 37 or the like and strength thereof.
Further, a notch portion is formed by selecting a portion at which ink is liable to be stored on the inner side of the head cover 39 after the cleaning operation of the recording apparatus 100, for example, a vicinity of a boundary of the frame portion 72 of the head cover 39 and the protective wall portion. The notch portion is formed at an opening penetrating the head cover 39 to enable to pass ink. A single or a plurality of the notch portions are formed.
There is no restriction in a number of the notch portions and the notch portions may be formed at anywhere so far as ink is liable to be stored on the inner side of the head cover 39. However, according to the embodiment, three opening portions 86, 86, 86 are provided at a boundary between the frame portion 72 and the protective wall portion 75 and three opening portions 11, 11, 11 are provided at a boundary between the frame portion 72 and the protective wall portion 76.
The opening portions are formed to prevent ink from being stored at a space S2 of
Cleaning operation in the recording head 30 of the embodiment is similar to that explained in reference to FIG. 25 and according to the embodiment, a consideration is given to the fact that the wiping device 107 shown in
That is, for example, in
Therefore, according to the embodiment, the notch portions are formed by selecting the respective positions of the boundary between the frame portion 72 and the protective wall portion 75 and the boundary between the frame portion 72 and the protective wall portion 76 as positions which do not interfere with the wiping direction Y of the wiping device 107 in the cleaning operation.
Further, in order to prevent ink from being stored at a space on the inner side of the head cover 39, it is preferable to enlarge the notch portion to enlarge an opening area thereof. In this respect, for example, in
Further, when possible, it is further preferable to select a boundary between a protective wall portion which is not provided with the support portion and the frame portion 72 as in the protective wall portion 76 in addition to selecting the position which does not interfere with the wiping direction of the wiping device 107, mentioned above.
Because a notch portion having an effective area or size can be provided without deteriorating strength of fixing the head cover 39 to the head case 37 by providing the notch portion as the boundary between the protective wall portion which is not provided with the support portion and the frame portion.
Here, although the cleaning operation is similar to that explained in reference to
A further detailed constitution of the head cover 39 will be explained in reference to
In
In
Further, preferably, a taper portion of the protective wall portion 74 is brought into close contact with the front end portion 61 of the head case 37 to constitute a positioning portion 95 at a location of the taper portion of the protective wall portion 74 by a predetermined distance from the frame portion 72, for example, starting from a distance of L1, at a location apart from the frame portion 72 of the protective wall portion 74 by the distance L1. That is, by bringing the protective wall portion of the head cover 39 into close contact with the side face of the front end portion 61 of the head case 37 by an amount of the distance of L1, positioning in attaching the head cover 39 is facilitated and the operability is promoted.
Further, in place of the above-described taper structure of the protective wall portion 74, for example, as shown by a chain line in
Further, a characteristic structure of the side of the head case 37 shown in
At a portion in correspondence with the portion of fixing the base portion 65 of the head case 37 and the support portion 78, there is formed a projected portion or a projection or a boss 92 projected to the support portion 78 of the head cover 39.
Specifically, when the support portion 78 of the head cover 39 is fixed by using a screw 78b, the support portion 78 is made to function as a spacer interposed between a washer 78c and the projected portion 92. Thereby, the base portion 65 of the head case 37 and the support portion 78 of the head cover 39 are not brought into close contact with each other and a clearance S4 is opened therebetween. Further, an outer periphery of the base portion 65 is provided with a projection 97 projected slightly in an outer direction and an upward stepped portion 97b and a downward stepped portion 97a are formed respectively in an up and down direction to interpose the projection 97.
Further, a groove portion 91 is formed at a location between the front end portion 61 and the base portion 65 of the head case 37 to surround an outer periphery of the front end portion 61.
Further, in
The embodiment is constituted as described above and a characteristic operation thereof will be explained centering on the head cover 39 as follows.
According to the recording apparatus 100, at portions of the head case 37 and the head cover 39 constituting a front end portion of the recording head 30, the wiping device 107 is relatively moved in the arrow Y direction of
After the cleaning operation, a portion of wiped ink is brought from the first opening portion 71 of the head cover 39 to an inner side and is going to be stored at inside of the space S2 of
However, when a space between the side face of the front end portion 61 of the head case 37 and the head cover 39 is narrow, ink still invading the inside of the head cover 39 is going to advance at inside of the clearance S3 along a direction of an arrow A6 of
Hence, according to the embodiment, first, as shown by
Here, it is preferable that the opening angle θ of the width widening potion in the taper shape is set to fall in a range from 7 degrees through 10 degrees.
When the opening angle θ of the clearance widening portion in the taper shape of the protective wall portion of the head cover 39 as less than 7 degrees, there is drawback that the capillary force is exerted to a liquid of ink or the like invading between the head cover and the head case. Further, when the opening degree of the clearance widening portion in the taper shape of the head cover exceeds 10 degrees, there is a drawback of enlarging the head. When the opening degree of the clearance widening portion in the taper shape of the head cover falls in a range of from 7 degrees through 10 degrees, there is achieved an advantage of capable of preventing the capillary force from exerting to the liquid of ink or the like invading between the head cover and the head case without enlarging the head.
Further, since the protective wall portion 74 is provided with the second opening portion 82, an area of forming the clearance S3 as a space between the side face of the front end portion 61 of the head case 37 and the head cover 39 is reduced and a portion at which a clearance of holding the liquid is present is reduced by that amount and therefore, ink is made to be difficult to move in the direction of the arrow A6 also in this respect.
However, when ink still reaches a vicinity of the base portion 65 of the head case 37, ink is stored by the groove portion 91. Therefore, ink is prevented from advancing at the clearance S4 between the base portion 65 and the support portion 78 along a horizontal direction of
Further, according to the embodiment, since the projected portion 92 of the base portion 65 serves as the spacer enlarging the clearance S4 between the base portion 65 and the support portion 78, the clearance S4 is increased. Therefore, the capillary phenomenon is not operated and ink is made to be difficult to move in a direction of an arrow A7.
Further, since the support portion 78 is provided with the third opening portion 85, an area of forming the clearance S4 between the base portion 65 and the support portion 78 is reduced, a portion at which an interval of holding the liquid is present is reduced and therefore, ink is made to be difficult to move in the direction of the arrow A7 also in this respect.
Further, when there is ink reaching a vicinity of the outer periphery of the base portion 65, ink is stored at the downward stepped portion 97a on the lower side of the projection 97 and when ink exceeding a storage limit thereof is turned around in an arrow A8 direction, ink is stored at the upward stepped portion 97b. When ink exceeding a storage limit of the upward stepped portion 97b is moved in a direction of arrow A9, generation of the capillary force is prevented between the support potion 93 and the circuit board 35 by the clearance 94 to thereby prevent ink from invading an electric connection portion.
In this way, according to the embodiment, by providing the notch portions 11, 11, 11 and 86, 86, 86 at the head cover 39, ink is effectively prevented from being stored at the space A2 on the inner side of the head cover 39. In addition thereto, even when there is ink invading the inner side of the head cover 39, by eliminating the clearance at which the capillary phenomenon is liable to be operated between the head cover 39 and the head case 37, ink can be prevented from invading the circuit board 35 or the like by preventing ink from being brought to and held by the clearance and preventing a large amount of ink from being stored in the clearance over a wide area.
Particularly, a large amount of ink can be prevented from being stored in a range reaching the support portion 78 from the frame portion 72 of the head cover 39 and when the attitude of the recording head 30 is changed in carrying the recording apparatus 100 by the user or the like, there can effectively be avoided a concern of bringing about electric shortcircuit or hampering the function by invasion of ink stored by a large amount to other part of the circuit board 35 or the like.
In the drawing, the cover member (cap) 109 is fixed to a slider 15 moved by following the movement of the carriage 101 of
Here, the slider 15 is provided with guide members 17, 17 each in a shape of a stay provided to erect vertically on both sides in the width direction of the covering member 109. Therefore, also the guide members 17, 17 are moved up and down similar to the covering member 109 in accordance with the movement of the slider 15. The guide members 17, 17 are for guiding the covering member 109 to correctly position to the nozzle face of the recording head 30 to cover.
Although the head cover 39 of
Similarly, also the three notch portions provided at the boundary between the protective wall portion 76 and the frame portion 72 of the head cover 39 are constructed by a similar constitution.
As shown by
Clogging of ink or the like of the nozzle face can be cleaned by vacuuming the covering member 109 as shown by an arrow B under the state as shown by
In this way, in the case of the modified example, the notch portion can not only prevent a liquid of ink or the like from being stored at the inner side of the head cover 39 but can function as a guiding device in mounting the covering member which needs accurate positioning.
Further,
Corresponding members in the respective embodiments are attached with the same reference numerals and an explanation thereof will be omitted.
According to the embodiment, among the respective protective wall portions 73, 74, 75 and 76, contiguous end faces of the protective wall portions contiguous to each other are chamfered. According to the embodiment, the contiguous end faces of all of the protective wall portions are constituted by the same shape and therefore, an explanation will be given of contiguous end faces of the protective wall portions 73 and 75 contiguous to each other in reference to
That is, the respective end faces are formed with chamfered portions 73a and 75b. According to the respective chamfered portions 73a and 75b, end faces or sides of the protective wall portions formed therewith are chamfered to be inclined to narrow widths of the respective protective wall portions 73 and 75 along a direction of being apart from the frame portion 72.
Thereby, as mentioned later, after the cleaning operation, ink as a remaining liquid brought to the inner side of the head cover 39 is made to be prevented from aggregating to locations of four corners of the head cover 39.
The respective support portions 77, 78 and 79 are preferably chamfered in a mode continuous to chamfered shape to the contiguous end faces of the protective wall portions.
Here, the shape of the chamfered portion is not limited to shapes illustrated as the chamfered portions 73a and 75b. For example, the chamfered portion may not be chamfered up to a predetermined distance from the frame portion 72 but may be chamfered from a middle thereof. Further, the chamfered shape may be a curved shape or a linear shape or may be constituted by a locus in a zigzag shape or in a shape of slalom.
Further, according to the head cover 39 of the embodiment, by the above-described structure, a liquid of ink or the like is made to be difficult to be stored at the clearance between the protective wall portion and the front end portion 61 of the head case 37 and ink or the like brought into the clearance is guided as shown by
In the drawing, although ink or the like invading the clearances between the protective wall portions 74 and 75 and the front end portion 61 of the head case 37 is held at the inner faces of the respective protective wall portions 74 and 75, when the contiguous portions of the respective protective wall portions 74 and 75 are inclined in the lower direction, ink at the inner faces of the respective protective wall portions 74 and 75 falls down to the contiguous portions of the respective protective wall portions 74 and 75 by its own weight as shown by arrows AN1, AN1.
However, in
That is, according to the head cover 39, there is constituted a structure in which the respective end faces of the contiguous protective wall portions 74 and 75 are not butted to each other and therefore, even when the attitude of the recording head 30 is changed, there is hardly a location of a corner at which a liquid of ink or the like is aggregated. Therefore, a large amount of ink or the like is not aggregated and is effectively prevented from advancing to other part of the circuit board 35 or the like by constituting the large amount.
Particularly, according to the embodiment, there is constructed a constitution of being fixed by screwing similar to the above-described embodiment. Further, as shown by FIG. 21, the chamfered portions 74b and 75a are formed at the contiguous end faces of the protective wall portions 74 and 75 respectively having the screwed support portions 78 and 79. Therefore, when a large amount of ink or the like is guided to concentrate on the screwed support portions 78 and 79, ink is liable to invade the side of other part via the screwed portions. Therefore, when the chamfered portions are provided at the contiguous end faces of the protective wall portions 74 and 75 having the screwed support portions 78 and 79, a large amount of ink or the like aggregated to the corners is not summarizingly guide to either of the support portions 78 and 79 but is dispersed and therefore, a liquid conducted to the screwed portion can effectively be prevented from invading the side of other part.
Further, by providing the chamfered portions 74b and 75a at the contiguous end faces of the protective wall portions 74 and 75, an area of a region formed with a clearance which is liable to hold ink or the like is reduced and a large amount of liquid of ink or the like can effectively be prevented from being aggregated also in this respect.
In this way, according to the embodiment, ink or the like is difficult to be aggregated to locations of contiguous corners of the protective wall portions of the head cover 39 and therefore, ink can be prevented from invading the circuit board 35 or the like by preventing a large amount of ink or the like from being aggregated.
Particularly, in a range reaching the support portion 78 from the frame portion 72 of the head cover 39, a large amount of ink can be prevented from being stored and when the attitude of the recording head is changed in carrying the recording apparatus 100 or the like, there can effectively be avoided a concern of bringing about electric shortcircuit or hampering the function by invasion of ink stored in a large amount to other part of the circuit board 35 or the like.
In the drawings, the head cover 80 differs from the head cover 39 in that there is not a width widening structure as in the taper shape and the stepped portion 96 explained in reference to
Therefore, the head cover 80 of the modified example can achieve operation and effect common to those of the head cover 39.
Meanwhile, the invention is not limited to the above-described embodiments.
Although the above-described embodiments is the most preferable embodiments combined with various preferable constitutions, the range of the invention is not limited to the embodiments but, for example, as the constitution of the head cover 39, only structure of the notch portion by itself may be adopted. Further, the protective wall portions may not be divided by a plural number and in this case, a single or a plurality of notch portions may be provided at a boundary between a single protective wall portion and a frame portion.
Further, as a constitution of the head cover 39, only the taper (width widening) structure of the protective wall portion may be adopted by itself, or only the second opening portion of the protective wall portion may be adopted by itself, or only the third opening portion of the support portion may be adopted by itself. Further, each constitution of the projected portion 92, the groove portion 91 or the like of the base portion of the head case 37 may be adopted by itself without adopting these constitutions of the head cover 39.
Further, as a constitution of the head cover 39, only the chamfered structure may be adopted by itself, or the chamfered structure may partially be adopted at end faces of the plurality of protective wall portions without adopting the chamfered structure for all of the end faces of the plurality of protective wall portions.
As has been explained above, according to the invention, the liquid ejection head capable of effectively preventing a liquid from effecting adverse influence on the circuit board by preventing ink from being stored at a space on the inner side of the head cover and the liquid ejection apparatus using the liquid ejection head can be provided.
According to the invention, the liquid ejection head capable of preventing a liquid from effecting adverse influence on the circuit board by preventing a small space for introducing a liquid of ink or the like from being formed between the protective wall portion of the head cover and the side face portion of the head case and the heat ejection apparatus using the liquid ejection head can be provided.
According to the invention, the liquid ejection capable of effectively avoiding a liquid from effecting adverse influence on the circuit board by preventing a liquid of ink or the like held between the protective wall portion of the head cover and the side face portion of the head case from being aggregated between the contiguous protective wall portions and the liquid ejecting apparatus using the liquid ejection head can be provided.
Number | Date | Country | Kind |
---|---|---|---|
P2002-240420 | Aug 2002 | JP | national |
P2002-240421 | Aug 2002 | JP | national |
P2002-240422 | Aug 2002 | JP | national |
This is a divisional of application Ser. No. 10/644,098 filed Aug. 20, 2003 now U.S. Pat. No. 7,044,578. The entire disclosures of the prior application, application Ser. No. 10/644,098 is considered part of the disclosure of the accompanying application and is hereby incorporated by reference. The present application is based on Japanese Patent Applications No. 2002-240421, 2002-240422 and 2002-240420, the entire contents of which are incorporated herein by reference.
Number | Date | Country |
---|---|---|
2000-190513 | Jul 2000 | JP |
2002-160377 | Jun 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20060119647 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10644098 | Aug 2003 | US |
Child | 11342570 | US |