The present invention relates to a liquid ejection head and a liquid ejection apparatus.
Japanese Patent Application Laid-Open No. 2008-254362 describes a liquid ejection apparatus in which an electric substrate of a liquid ejection head is provided with a wiring pattern for detecting ink leakage thereby to constantly perform the detection of ink leakage when the power of the liquid ejection apparatus is turned on and while the liquid ejection apparatus is in operation.
Regarding the liquid ejection head described in Japanese Patent Application Laid-Open No. 2008-254362, the positional relationship between the electric components of the electric substrate and the wiring pattern for detecting ink leakage is not clearly described. Therefore, in the case of the liquid ejection head described in Japanese Patent Application Laid-Open No. 2008-254362, there are cases where, depending on, for example, the attitude of the liquid ejection head installed to the main unit of a liquid ejection apparatus, ink comes in contact with an electric component before ink leakage is detected by the wiring pattern for detecting ink leakage.
An object of the present invention is to provide a liquid ejection head capable of detecting the leakage of a liquid before the liquid comes in contact with an electric component regardless of the attitude of the liquid ejection head installed to the main unit of a liquid ejection apparatus.
A liquid ejection head in accordance with the present invention includes:
a recording element substrate which ejects a liquid downward;
an electric substrate which is disposed above the recording element substrate, which has a plurality of electric components, including a capacitor, and which is electrically connected to the recording element substrate;
a wall which covers the electric substrate such that a liquid can be retained between the wall and the electric substrate; and
a sensor which is disposed in an area covered by the wall and which detects for the presence of a liquid,
wherein, at an attitude of the liquid ejection head attached to a main unit of a liquid ejection apparatus, the sensor is disposed below the capacitor in a vertical direction.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
First, a description will be given of the overall configuration of a liquid ejection apparatus 1000 according to the present embodiment.
In the liquid ejection apparatus 1000, four single-color liquid ejection heads 3 corresponding to four types, namely, CMYK, of ink I are arranged in an arc-like manner along the outer circumference of the transfer drum 1007. With this arrangement, a full-color image is formed on the transfer drum 1007. After being properly dried on the transfer drum 1007, the full-color image is transferred by a transfer section 1008 onto the recording medium 2 fed by a paper feeding roller 1009.
An electric controller, which transmits power and ejection control signals to the liquid ejection heads 3, is electrically connected to the liquid ejection heads 3.
The present embodiment is a type in which ink I is circulated between a tank (not illustrated) and an ejection module 200. However, a different type may be used. For example, rather than circulating ink I, two tanks (not illustrated) may be provided on the upstream side and the downstream side of the liquid ejection heads 3, and ink I may be moved from one tank to the other tank so as to move ink I in a pressure chamber.
Further, the liquid ejection heads 3 of the present embodiment are page-wide heads, which have lengths corresponding to the width of the recording medium 2. However, the present invention may be applied to serial type liquid ejection head 3 adapted to perform recording by scanning the recording medium 2. The serial type liquid ejection head 3 may be configured to have, for example, a recording element substrate for a black ink and a recording element substrate for color inks. However, the configuration is not limited to the above, and shorter line heads may be used, in which a plurality of recording element substrates are disposed such that their ejection orifices are overlapped in the column direction of the ejection orifices, and which are shorter than the width of the recording medium 2. The recording medium 2 used in the present embodiment is not limited to cut paper, and may alternatively be continuous roll paper. An example of the liquid may be a liquid other than ink. Further, the liquid ejection head, which ejects a liquid such as ink, and a liquid ejection apparatus provided with the liquid ejection head in accordance with the present invention can be applied to an apparatus such as a printer, a copier, a facsimile having a communication system, or a word processor having a printer unit. In addition, the liquid ejection head and the liquid ejection apparatus in accordance with the present invention can be applied to an industrial recording apparatus compositely combined with various types of processing devices. The liquid ejection head and the liquid ejection apparatus in accordance with the present invention can find applications in the fields of biochip fabrication, electronic circuit printing, semiconductor substrate fabrication, 3D printer and the like.
A description will now be given of the liquid ejection head 3 of the present embodiment.
The liquid ejection head 3 is an inkjet page-wide recording head which has a plurality of (e.g. thirty-six) recording element substrates 510 arranged linearly (in line) in the longitudinal direction thereof to perform recording by an ink of each color.
The liquid ejection head 3 includes the ejection module 200, a flow passage assembly 300, an electric component assembly 400, and sensors 597 which detect for the presence of ink I (refer to
The ejection module 200 is configured by including a plurality of recording element substrates 510, flexible substrates 540 (e.g. electric wiring substrates) connected to the opposing edges of the recording element substrates 510, and a covering member 130 (refer to
In the present embodiment, the eight electric substrates 590 are attached, four each, to the surfaces of the lengthy support plate 581 attached to the pair of unit support sections 81 (refer to
Disposed on each of the electric substrates 590 are capacitors 593, connectors (a signal input terminal 591 and a power supply terminal 592), and electric components 594 such as an EEPROM, a transistor, a power MOSFET, and a chip resistor. Each of the electric substrates 590 generates and outputs a signal for ejecting the ink I on the basis of an operation signal received from a liquid ejection apparatus main unit 1000A through the signal input terminal 591. As illustrated in
The plurality of first flow passage members 550 are individually joined to the recording element substrates 510 at the upper side of the recording element substrates 510. The first flow passage members 550, which are arranged along the longitudinal direction of the second flow passage members 560 disposed on the upper side of the first flow passage members 550, are joined to the second flow passage members 560. The flexible substrates 540 are connected to the electric substrates 590 by, for example, wire bonding. The first and the second flexible substrates 540 from the left in
Referring to
As illustrated in
If the leakage of ink I takes place on the inner side of the shield plates 632 of the liquid ejection head 3 (the inner side referring to the area covered by the wall 700, and also referring to the inside of the wall 700 in the present specification), then ink I remains inside the wall 700 rather than leaking out of the wall 700. Then, if ink I accumulates, causing the liquid level of ink I to rise, ink I comes in contact with the capacitors 593, the connectors (the signal input terminal 591 and the power supply terminal 592), the electric components 594 and the connection portions 596, resulting in the occurrence of a failure such as a short circuit.
According to the present embodiment, therefore, the attitudes of the liquid ejection heads 3 attached to the liquid ejection apparatus main unit 1000A are such that the sensors 597 are disposed below, in the vertical direction, all the electric components and the connection portions 596 of the electric substrates 590 (refer to
As described above, the present embodiment provides the following effects.
The sensors 597 in the present embodiment are placed at the positions that are lower in the vertical direction than those of all electric components. According to the present embodiment, therefore, ink I can be detected before ink I that has leaked into the wall 700 comes in contact with the electric component disposed at the lowest level in the vertical direction among all the electric components.
The sensors 597 in the present embodiment are placed at the positions that are lower in the vertical direction than those of at least the capacitors 593 among all the electric components. Therefore, according to the present embodiment, ink I can be detected before ink I that has leaked into the wall 700 comes in contact with at least the capacitors 593. If the capacitors 593 come in contact with ink I, then the capacitors 593 will exert greater influences than those of other electric components. Hence, placing at least the capacitors 593 at the positions that are higher in the vertical direction than those of the sensors 597 is effective.
Although placing the sensors 597 at positions that are lower in the vertical direction than those of all the electric components is effective, an electric component that will exert relatively less influence in case of contact with ink I among the electric components may be provided below the sensors 597.
The sensors 597 of the present embodiment are positioned below the connection portions 596 in the vertical direction. Thus, according to the present embodiment, ink I can be detected before ink I that has leaked into the wall 700 comes in contact with the connection portions 596.
The sensors 597 of the present embodiment are provided on the electric substrates 590. Thus, the sensors 597 can be provided with a simple configuration.
In order to advance the timing for detecting ink I in the wall 700, a member (liquid absorber), for example, which is composed of a porous body or the like to absorb ink I may be disposed in the wall 700 and below the sensors 597. This modification example can quickly detect the leakage of ink I into the wall 700, as compared with one that has no liquid absorber.
In the present embodiment, there is a possibility of, for example, the leakage of ink I in the process of supplying ink I from a liquid supply unit 220 to the second flow passage member 560. More specifically, there is a concern that ink I leaks at both ends in the longitudinal direction of the liquid ejection head 3. If the leakage of ink I occurs, then the ink I tends to accumulate between the electric substrate 590 of the opposing electric substrates 590 that is disposed at a lower level and the shield plate 632 that opposes the electric substrate 590 in the case where the liquid ejection head 3 is placed aslant as in the present embodiment (
A second embodiment will now be described. Regarding the present embodiment, only the aspects that are different from those of the first embodiment will be described.
According to the liquid ejection head 3A of the present embodiment, even if the liquid ejection head 3A is inclined in the longitudinal direction as illustrated in
With the configuration described above, the liquid ejection head 3A according to the present embodiment ensures high accuracy of detection of ink I even if the liquid ejection head 3A is inclined in the longitudinal direction.
A third embodiment will now be described. Regarding the present embodiment, only the aspects that are different from those of the first and the second embodiments will be described.
In the present embodiment, three or more sensors, namely, sensors 597, sensors 599 and sensors 600, are disposed on each electric substrate 590 along the longitudinal direction thereof. The sensors 600 have the same configurations as those of the sensors 597. More specifically, in the present embodiment, the plurality of sensors, namely, the sensors 597, 599 and 600, are arranged along the longitudinal direction of each recording element substrate 510. In other words, the plurality of sensors, namely, the sensors 597, 599 and 600, are arranged along the longitudinal direction of the plurality of recording element substrates 510 (a substrate group).
With the configuration described above, the liquid ejection head 3B according to the present embodiment ensures high accuracy of detection of the leakage of ink I, as compared with the liquid ejection head 3 according to the first embodiment described above, even if the liquid level of ink I leaked into the wall 700 is not uniform as illustrated in
Thus, the present invention has been described, using the foregoing embodiments as examples. However, the technological scope of the present invention is not limited to the embodiments.
For example, in the present embodiments, a thermal type, in which air bubbles are generated by heating elements to eject ink, has been adopted as an example. The present invention, however, can be applied also to liquid ejection heads that adopt various other types of liquid ejection methods, including a piezoelectric type
The liquid ejection head in accordance with the present invention makes it possible to detect the leakage of a liquid before the liquid comes in contact with an electric component, regardless of the attitude of the liquid ejection head attached to the main unit of a liquid ejection apparatus.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-137266, filed Jul. 13, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-137266 | Jul 2017 | JP | national |