1. Field of the Invention
The present invention relates to a liquid ejection head mounted on a liquid ejecting device performing a print operation by ejecting a printing liquid such as ink and a manufacturing method of a liquid ejection head.
2. Description of the Related Art
Japanese Patent Laid-Open No. 2002-19146 discloses a liquid ejection head in which a joint seal member is sandwiched between a channel unit formed with a liquid supply path and a support member supporting a printing element substrate and they are press-contacted with each other by a screw to be joined so that the liquid may not leak. The printing element substrate is formed of a Si wafer, and a material of the support member uses alumina etc. having a linear expansion coefficient equal to that of the printing element substrate.
By making the linear expansion coefficients of the printing element substrate and the support member equal, a stress applied on an adhesive interface between the printing element substrate and the support member caused by a temperature change can be relaxed, and a concern that the printing element substrate is peeled off the support member can be suppressed. Moreover, by sandwiching an elastic member between the channel unit for supplying the liquid to the support member and the support member and screwing and fixing them, ink leak between the channel unit and the support member is prevented, while a manufacturing process is facilitated, and a cost for manufacture is reduced.
However, ink such as ink improved for business which has overcome weak points of the ink having been used in the past such as water resistance or marker resistance has been developed in recent years. With that trend, viscosity of the ink has become high. In order to eject high-viscous ink, it is usually necessary to warm the ink so as to lower the viscosity, but with the support member using alumina, the warmed ink easily cools, and it has been difficult to make the temperature of the ink highly stable before ejection in advance. That is, with the conventional liquid ejection head using alumina for the support member, ink that can be selected is limited. Thus, by changing the material of the support member from alumina which has been used conventionally to a resin, improvement of heat-retaining performance of the printing element substrate can be considered.
Moreover, the printing element substrate of the liquid ejection head has an ejection port forming member for forming an ejection port and a liquid channel for leading a liquid to the ejection port on the substrate on which the printing element is disposed. The ejection port forming member uses an epoxy material as its main material, and it is formed by being patterned on the substrate. In a patterning process, the epoxy material is cured by high-temperature cure. Since the epoxy material with the linear expansion coefficient of approximately 50 ppm/° C. is cured on the Si substrate with the linear expansion coefficient of approximately 7 ppm/° C. at a high temperature, the stress in a direction in which the epoxy material is contracted remains on the Si substrate at a normal temperature after curing.
In a case where the Si substrate with the stress remaining is mounted on the support member formed of a resin, there is a concern as follows. That is, due to a synergic effect of the residual stress of the Si substrate and expansion and contraction of each of the Si substrate and the support member caused by a temperature change in use of the liquid ejection head based on a difference in the linear expansion coefficient between them, the Si substrate might be cracked or the ejection port forming member might be peeled off the Si substrate. Particularly, since the printing element substrate becomes elongated or narrowed in high density, a concern over the crack of the Si substrate or peeling-off of the ejection port forming member grows.
Thus, the present invention provides, in a liquid ejection head having a printing element substrate in which an ejection port forming member is formed on a Si substrate, a liquid ejection head which suppresses a crack of the Si substrate and peeling-off of the ejection port forming member and has high environmental reliability and a manufacturing method of a liquid ejection head.
Thus, the liquid ejection head of the present invention is a liquid ejection head, including: a printing element unit including a printing element substrate having an ejection port forming member configured to form an ejection port capable of ejecting a liquid and a substrate supporting the ejection port forming member, and a plate-shaped support member configured to support the printing element substrate and having a supply port capable of supplying the liquid to the printing element substrate; and a channel unit in which a channel for leading the liquid to the supply port of the support member is formed, wherein the support member is formed of a resin and includes a pressing unit configured to press so that a center part on a surface opposite to a surface on which the printing element substrate of the printing element unit is mounted becomes convex.
According to the present invention, a liquid ejection head which suppresses a crack of the Si substrate and peeling-off of the ejection port forming member and has high environmental reliability can be realized.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
A first embodiment of the present invention will be described below by referring to the attached drawings.
The channel unit 40 has the channel plate 42 bonded and fixed to the housing 41 by ultrasonic welding so as to form a liquid supply path for leading a liquid from an ink tank (not shown) for storage to a liquid inlet. The housing 41 and the channel plate 42 are formed of a resin such as a modified polyphenylene ether resin in view of workability of ultrasonic welding. In a case where component strength is needed, a glass filler may be contained as necessary.
The support member 13 may contain a glass filler as necessary in view of planarity and thermal expansion coefficient. As an adhesive material used for bonding between the printing element substrates 11 and 12 and the support member 13, a thermosetting epoxy resin is used, and its thickness is controlled to approximately 0.01 to 0.2 mm so that variation in planarity of the support member 13 may be absorbed.
As described above, after the printing element substrates 11 and 12 are bonded and fixed to the support member 13, the support member 13 is screwed and fixed through the elastic member 50 so that the residual stress of the printing element substrates 11 and 12 can be relaxed.
As a result, at a temperature change or humidity change, a crack of the Si substrate or peeling-off of the ejection port forming member which might be caused by the residual stress of the printing element substrate can be suppressed, and the liquid ejection head with high environmental reliability and the manufacturing method of the liquid ejection head can be realized.
Moreover, in this embodiment, since the residual stress remaining on the printing element substrate increases due to elongation and narrowing of the width of the printing element substrate, the effect of suppressing the crack of the Si substrate or the peeling-off of the ejection port forming member by relaxation of the residual stress is large.
In this embodiment, the screw is used for fixing the support member 13, but this is not limiting. That is, anything can be used as long as it is capable of fixation by pressing with the elastic member so that the center part of the support member 13 becomes convex, and fixation may be performed by a retaining ring or an E-ring and a pin, for example.
Moreover, in this embodiment, the configuration in which the support member 13 is pressed by sandwiching the elastic member 50 between the support member 13 and the channel unit 40 and fixing it with the screw is described, but this is not limiting. That is, any configuration can be used as long as it is capable of pressing so that the center part of the support member 13 becomes convex in a case where it is fixed, and the channel unit 40 and the elastic member may be integrally configured, for example.
A second embodiment of the present invention will be described below by referring to the attached drawings. Since the basic configuration of this embodiment is similar to that of the first embodiment, only a characteristic configuration will be described below.
As described above, after the printing element substrates 11 and 12 are bonded and fixed to the support member 13, by screwing and fixing them through the elastic member, the residual stress remaining on the printing element substrates 11 and 12 can be relaxed. As a result, the liquid ejection head with high environmental reliability which can suppress the crack of the Si substrate or the peeling-off of the ejection port forming member which might be caused by the residual stress of the printing element substrate at a temperature change or humidity change and the manufacturing method of the liquid ejection head can be provided.
Moreover, the residual stress remaining on the printing element substrate increases due to elongation and narrowing of the width of the printing element substrate, but the crack of the Si substrate or the peeling-off of the ejection port forming member can be suppressed by relaxation of the residual stress by screwing and fixation.
Moreover, regarding the stress by swelling of the sealing material caused by provision of the sealing material in the periphery of the printing element substrate, too, the crack of the Si substrate or the peeling-off of the ejection port forming member can be suppressed by relaxation of the residual stress by screwing and fixation.
A concave portion is formed on a back surface side of a side on which the printing element substrates 11 and 12 of the support member 13 are formed, whereby a thin portion 25 where a thickness of the support member 13 is small is formed. By providing the thin portion 25 on the support member 13 and screwing and fixing it, the stress applied to the support member 13 is changed. As a result, the stress applied to the printing element substrates 11 and 12 is changed, and the residual stress can be relaxed. In a case where the thickness of the thin portion 25 is small, deformation of the thin part becomes larger, and the stress applied to the printing element substrates tends to become small. As illustrated in
Since the support member 13 is formed of a resin, the thin portion 25 can be easily provided in molding of the support member. Depending on the lengths, widths and the numbers of through holes of the printing element substrates 11 and 12, the shape of the thin portion can be changed so as to handle them. In this embodiment, the thin portion 25 is provided by providing a counterbore from the back surface of the support member 13, but the thin portion may be provided by providing a counterbore from the front surface of the support member 13.
Depending on the lengths, widths and the numbers of through holes of the printing element substrates 11 and 12, the shape of the concave portion can be changed so as to handle them. In this embodiment, they are handled by the shape in the depth direction, but handling can be made as necessary also in the shape in a planar direction.
In this embodiment, too, since the support member 13 is formed of a resin material, by screwing and fixing it by sandwiching the elastic member 50, the support member 13 is deformed so that the center part becomes convex by the repulsion force of the elastic member 50. This stress also influences the printing element substrates 11 and 12 bonded and fixed to the support member 13, and the printing element substrates 11 and 12 are also deformed so that the center parts become convex. As a result, the residual stress remaining on the printing element substrates 11 and 12 is relaxed.
As described above, after the printing element substrates 11 and 12 are bonded and fixed to the support member 13, by screwing and fixing them through the elastic member, the residual stress remaining on the printing element substrates 11 and 12 can be relaxed.
As a result, the liquid ejection head with high environmental reliability which can suppress the crack of the Si substrate or the peeling-off of the ejection port forming member which might be caused by the residual stress of the printing element substrate at a temperature change or humidity change and the manufacturing method of the liquid ejection head can be provided.
Moreover, the residual stress remaining on the printing element substrate increases due to elongation and narrowing of the width of the printing element substrate, but the crack of the Si substrate or the peeling-off of the ejection port forming member can be suppressed by relaxation of the residual stress by screwing and fixation.
Moreover, by changing the shapes of the thin portion of the support member or the concave portion, handling is made possible in accordance with the width of the printing element substrate, the number of through holes and the like, and the crack of the Si substrate or the peeling-off of the ejection port forming member can be suppressed by relaxation of the residual stress by screwing and fixation.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-112741, filed May 30, 2014, which is hereby incorporated by reference wherein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-112741 | May 2014 | JP | national |