1. Field of the Invention
The present invention relates to a liquid ejection head that employs a scheme in which liquid is ejected by using thermal energy.
2. Description of the Related Art
Through similar processes to that for semiconductor manufacturing, a substrate for a liquid ejection head is manufactured by forming, on the same substrate, multiple heaters for heating liquid to generate bubbles when being energized, lines for providing electrical connection to the heaters, and the like. Then, a liquid ejection head is constructed in a way that a member (nozzle formation member) forming ejection openings and walls for liquid passages is provided on the substrate. Here, the ejection openings are provided corresponding to the heaters and are used to eject ink therefrom. Meanwhile, the liquid passages are formed to communicate with the corresponding ejection openings, respectively.
One method of manufacturing the liquid ejection head (see Japanese Patent Laid-Open No. H6-286149 (1994) includes the following steps:
Further, there has been proposed a liquid ejection head and a method of manufacturing a liquid ejection head in which a layer made of a polyetheramide resin (called an adhesion improvement layer below) is interposed between the substrate and the nozzle formation member in order to improve the adhesion between them (see Japanese Patent Laid-Open No. H11-348290 (1999)).
As even higher printing fineness and higher printing speed are demanded of the liquid ejection head, an increased number of heaters are required to be implemented on the substrate. This largely increases the number of lines used for energizing the heaters. As a result, depending on the locations of the heaters, the lines extending from electrode terminals of the substrate to the heaters vary in length, and accordingly greatly vary in resistance value. A possible way of evening the resistance values of the respective lines is to determine a width of each of the lines according to the distance from the electrode terminal. In this case, however, the lines for heaters existing farther from the electrode terminals have larger widths, and therefore the substrate increases in size.
To suppress the increase in the substrate size, a configuration has been proposed in which a low-resistance line common to all the heaters is formed of a thick film on the substrate surface and in which an individual line is formed from the common line to each of the heaters (see Japanese Patent Laid-Open No. 2005-153499).
To further reduce the line resistance value, the following technique has been proposed. Specifically, the common line and the electrode portions are simultaneously formed as a gold (Au) layer by plating (see Japanese Patent Laid-Open No. 2005-199701). Gold has excellent properties as an line material because of its low electric resistance, high chemical stability, high electromigration characteristics, and the like. Particularly, gold is excellent as an line material of a substrate for a liquid ejection head because the lines ordinarily exist very close to the ink and are used to energize the heaters to raise their temperature instantly.
However, the present inventors have discovered that the following technical problems needing resolution arise if the configuration using a common line as described above, especially using gold as the common line, is applied to the liquid ejection head described in Japanese Patent Laid-Open No. H6-286149 (1994) or No. H11-348290 (1999).
In the configuration of the liquid ejection head described in Japanese Patent Laid-Open No. H6-286149 (1994) or No. H11-348290 (1999), metal surfaces of the lines and the like existing on the substrate adhere to an organic resin constructing the nozzle formation member or the adhesion improvement layer. This adhesion is thought to be brought by a physical anchor effect of the organic resin entering the dips in the metal surfaces, and also by chemical bond, hydrogen bond, or the like through the OH groups existing on the metal surfaces.
However, being a stable noble metal, gold has a few OH groups on its surface, and therefore has poor bonding power with an organic resin. In addition, on a liquid ejection head substrate, the organic resin film swells because ink constantly exists near the ejection openings. Particularly, in a liquid ejection head substrate with heaters, heat generated by the heaters causes the organic resin and the substrate to expand to different degrees. As a result, the liquid ejection head substrate with heaters undergoes internal stress caused by the difference in thermal expansion between the substrate and the organic resin, in addition to the swelling of the organic resin film. This stress could possibly cause separation of the nozzle formation member from the Au layer, originating from and around parts having poor adhesion with the organic resin.
Such separation causes electrolytic ink to invade into an interface between the organic resin layer and the gold (Au) lines. Then, such ink invasion causes the electrolysis of Au and the deformation of the nozzle formation member. As a result, sufficient reliability might not be obtained.
The problems given above are especially noticeable when gold is used as the lines, but are also concerned more or less when a metal other than gold is used.
The present invention has been made inconsideration of the above problems, and an objective of the present invention is to improve the reliability of a liquid ejection head by preventing the separation of a nozzle formation member made of an organic resin.
In an aspect of the present invention, there is provided a liquid ejection head having an ejection opening which ejects liquid, comprising: an element substrate provided with, on a surface thereof, an element which generates energy utilized for ejecting liquid; and a resin layer provided on the surface of the element substrate, the resin layer having a wall for a liquid passage communicated with the ejection opening, wherein the element substrate has a first electrode layer and a second electrode layer at the surface side, the first electrode layer is provided in such a manner that the first electrode layer is positioned at a portion corresponding to an end of the resin layer with respect to a direction along the surface, and the second electrode layer electrically connected to the first electrode layer is provided on an upper side of the first electrode layer in such a manner that the second electrode layer is not positioned at the portion.
In another aspect of the present invention, there is provided a liquid ejection head having an ejection opening which ejects liquid, comprising: an element substrate provided with, on a surface thereof, an element which generates energy utilized for ejecting liquid; and a resin layer provided above the surface of the element substrate, the resin layer having a wall for a liquid passage communicated with the ejection opening, wherein the element substrate has a first electrode layer and a second electrode layer at the surface side, the first electrode layer is provided in such a manner that the first electrode layer is positioned at a portion corresponding to an end of the resin layer with respect to a direction along the surface, and the second electrode layer electrically connected to the first electrode layer is provided on an upper side of the first electrode layer in such a manner that the second electrode layer is not positioned at the portion, and wherein a adhesion improvement layer is provided in such a manner that the adhesion improvement layer is positioned between the surface of the element substrate and the resin layer to be in contact with them, and is positioned at the portion corresponding to the end of the resin layer.
Incidentally, liquid mentioned herein is used in a broad sense, and indicates liquid applied to a printing medium for: forming an image, a design, a pattern, or the like; processing a printing medium; or performing processing on ink or on a printing medium.
According to the present invention, the line portion is divided into two members so that no line portion exists under an end portion of the organic resin nozzle formation member, where stress concentrates. An insulating layer having high adhesion to the organic resin is positioned under that end portion. Then, the two divided members of the line portion are connected to each other through a roundabout line positioned under the insulating layer. Accordingly, separation is prevented which originates from the end portion of the organic resin layer where stress concentrates, allowing the liquid ejection head to have improved reliability.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
The present invention will be described in detail below with reference to the drawings.
As described earlier, when the common lines are formed using Au, the nozzle formation member 710 might be separated from the substrate 701 due to poor adhesion of the common lines to a resin layer positioned thereabove.
A description regarding such separation is given using
As shown in
Further, a layer 102 and then a resin layer 103 were formed. The layer 102 is to be an adhesion improvement layer having good adhesion to the insulating layer 100. The resin layer 103 is to be the nozzle formation member 710 when the ejection openings 703 and the liquid passages 702 are formed therein. An organic resin such as an epoxy resin is used as a material for the resin layer 103.
Then, an environmental testing was performed to observe how separation occurs. As a result, as shown in
It was found out that the above problem is not caused if the end part of the patterned resin layer 103, from which the separation 105 originates, is not located above the Au line portion 101. However, in the substrate for a liquid ejection head as described above, the end part of the patterned resin layer 103 is necessarily located above the Au line portion 101. This is because, in the conventional configuration, the electrode portion and a connecting portion between the electrode portion and the adjacent line portion 101 have to be exposed by forming a part without the resin layer so that power can be supplied from the outside. After being electrically connected to the flexible printed circuit board or the like, this exposed connecting portion is sealed with a sealer (not shown) to be protected from liquid (ink). At this time, sufficient space up to the end part of the resin layer 103 has to be secured in order to prevent the sealer from spreading up to the resin layer in which the ejection openings 703 are formed.
The common lines connected to the multiple heaters 704 to supply power to them have to have low resistance. In the common lines, the amount of flowing currents drastically changes depending on the number of the heaters 704 driven to eject ink. Such change in the values of the flowing currents fluctuates an amount of voltage descending due to resistance of the common lines, and consequently, fluctuates energy to be applied to the heaters 704. However, in order for the heaters 704 to eject ink stably and accurately, the energy applied to the heaters 704 has to be precisely controlled. If the resistance value of the common lines is not sufficiently small compared to those of the heaters 704, energy applied to the heaters 704 greatly fluctuates, causing unstable ink ejection. For that reason, it is desirable that the common line is formed continuously from the electrode portion 706 to the vicinity of the heaters 704.
For example, one end of each of the heaters 704 can be connected to the line portion 101 serving as common power supply line, via one part 1103A of the heater line 1103 and then a through-hole part 1208. The other end of the heater 704 is connected to the drive circuit formed in the layer underneath, via another part 1103B of the heater line 1103 and then, for example, a through-hole part 1209. The other end of the heater 704 can be then connected to the line portion serving as common ground line.
As shown in
As a countermeasure for the above problem, the present invention employs the configurations as described in the following embodiments.
First, a TaSiN layer as a material for the heaters 704 is formed on the base plate formed of Si or the like, to a thickness of 30 nm to 100 nm by a sputtering method. Subsequently to that, an Al layer to become the individual lines is formed to a thickness of 200 nm to 600 nm. In the present embodiment, the thickness of the TaSiN layer is 50 nm, and the thickness of the Al layer is 210 nm. Note that what can be used as the base plate is that onto which a drive circuit including semiconductor elements such as switching transistors for selectively driving the heaters 704, is built in advance.
Next, the TaSiN layer and the Al layer are patterned into a predetermined shape by a photolithography method. The Al layer and the TaSiN layer are simultaneously formed into a predetermined shape by dry etching. Simultaneously, a pattern for roundabout line 104 being a first electrode layer is formed with the Al layer and the TaSiN layer. The pattern is formed in the area where the Au line portion 101 is to be formed under a part at which the end part of the patterned resin layer 103 is to be, and from which the separation 105 can originate. Further, locating portions for the heaters 704 are formed by patterning the layers into a predetermined shape by the photolithography method and by performing wet etching.
Then, as an upper layer, an inorganic film (e.g., an SiN film) to become the insulating layer 100 is formed by a plasma CVD method. The insulating layer 100 is then dry-etched into a predetermined shape by the photolithography method. At this time, two through-holes are formed in the insulating layer 100 by partially removing the insulating layer 100. These through-holes are used for forming penetrating portions which connect the pattern used for the roundabout line 104 and the Au line portion 101 to each other. Here, each of the through-holes is formed with sufficient space from the end part of the patterned resin layer 103 from which the separation 105 can originate. Considering the accuracy of the photolithography method to perform alignment of the resin layer 103, it is preferable to give a distance of 10 μm or more between the two through-holes. The roundabout line 104 is formed with the Al layer and the TaSiN layer, the film thickness of which is smaller than the line part 101. Accordingly, if the two through-holes for forming the penetrating portions are separated too much, the resistance value increases. It is therefore preferable to give a distance of 30 μm or less between the through-holes. The end part of the resin layer 103 is to be positioned above the center part between the two through-holes. Accordingly, it is preferable that the end part of the resin layer 103 be positioned away from the through-holes by 5 μm or more.
Thereafter, TiW and Au films are serially formed by the sputtering method. TiW is formed as a barrier metal layer being a diffusion prevention layer. Au is formed as a seed layer to be used to grow an Au layer as the line portion 101, being a second electrode layer, by gold plating. By thus forming the Au layer, the line portion 101 is electrically connected to the roundabout line 104 through the Au penetrating portions in formed in the through-holes of the insulating layer 100. After that, TiW and Au are patterned into a predetermined shape corresponding to the line portion 101 and the electrode portion 706 by the photolithography method. Further, Au is formed into a film having a thickness of 1 μm or more but not exceeding 10 μm, preferably, of 5 μm, by electrolytic plating using gold sulfite. The patterning here is performed so as to divide the line portion 101 into two members while giving space between them at a part above which the end part of the patterned resin layer 103 is to be positioned where the separation 105 can originate. These two members are electrically connected to each other through the roundabout line 104. Considering the accuracy of the photolithography method to perform alignment of the resin layer 103, it is preferable to give a distance of 10 μm or more between the two members. In addition, the two members are given a distance of 30 μm or less between them so as to be connected to the roundabout line 104 through the respective penetrating portions. The end part of the resin layer 103 is going to be positioned above the center part between the two members. Here, it is preferable that the end part of the resin layer 103 be positioned away from the parts of the line portion 101 by 5 μm or more. Thereafter, using the Au plating pattern as a mask, Au as the seed layer and TiW as the barrier metal layer are wet-etched to electrically separate the patterns from each other.
Subsequently, the nozzle formation member 710 is formed on the substrate. At this time, several μm of the layer 102 is first applied. The layer 102 is formed of a polyetheramide resin or the like which exhibits good adhesion to SiN used as the insulating layer 100. Then, the layer 102 is patterned using the photolithography method, and dry-etched into a predetermined shape. Here, for protection and insulation of the lines, the layer 102 is patterned in such a manner as to cover the lines to the vicinity of the electrode portion 706 being an electric connecting portion to the outside. An epoxy resin is used as the resin layer 103. Concrete examples of the epoxy resin may include an alicyclic epoxy resin, a bisphenol-type epoxy resin, a novolac-type epoxy resin, a glycidyl ether-type epoxy resin or the like.
Next, to form parts to be the liquid passages, a mold material is applied, and is shaped into a predetermined shape by the photolithography method. Here, to make even the height of the resin layer 103 to be applied from the top part of the mold material, patterns other than the liquid passages 702 are formed as well. An end part of the patterned mold material is to be the end part of the patterned resin layer 103 as well. Accordingly, in the above step, at a part above which the end part of the patterning is to be positioned, the Au line portion 101 is not formed, but the roundabout line 104 is formed.
Thereafter, the resin layer 103, in which the ejection openings 703 are to be formed actually, is applied to a thickness of 10 μm or more but not exceeding 100 μm, and is formed into a predetermined shape by the photolithography method. Naturally, the resin layer 103 is patterned so that its end part is positioned on the insulating layer 100 not above the Au line 101, but above the roundabout line 104. Then, the ink supply opening 705 is formed, and the mold material is removed. The liquid ejection head as shown in
The liquid ejection head thus formed includes the substrate having a characteristic configuration.
Specifically:, as shown in
As a result, the separation 105 originating from the end part of the resin layer 103 can be prevented from occurring, which in turn prevents ink invasion into the line portion 101 and lifting of the resin layer 103. Accordingly, the common line portion 101 formed of Au can be employed without impairing the reliability of the substrate and the liquid ejection head.
Note that the roundabout line 104 can also be formed of a different material and with different steps from the layer for forming the individual lines and the heaters 704.
In addition, an increase in the resistance value of the lines can be avoided by making the formation area for the roundabout line 104 as small as possible.
Further, the roundabout lines 104 can be formed in a manner similar to the above even when, as shown in
Furthermore, although Au is used as a material for the common line 101 in the present embodiment, the configuration of the present embodiment is also effective when a different metal, for example, Ag, Cu or Ni is used as the line portion 101. Employment of the roundabout line according to the present embodiment can be effective when separation occurrence and its accompanying problems are to be avoided.
What has been described above is also true to the following embodiments.
Further, as shown in
In addition, as shown in
Moreover, when the layer 102 needs to be formed into a thick film, the separation 105 might be caused by the layer 102 as well. Stress occurring at the end part of the patterned layer 102 is determined based on the following factors of the resin layer 103: a film thickness, a Young's modulus and an expansion coefficient, a linear expansion coefficient, and the like upon moisture absorption.
When adhesion overcoming the stress cannot be obtained, as shown in
As described above, under which pattern end part of the resin layer to divide the line portion 101 and to form the roundabout line can be selected appropriately according to various conditions. In other words, for example, when multiple layers 102, accordingly multiple end parts, exist, whether or not to divide the line portion 101 and to form the roundabout line 104 can be selected for each of the end parts. The same is true to the case where the number of the resin layer increases.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2008-159658, filed Jun. 18, 2008, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-159658 | Jun 2008 | JP | national |