The present disclosure relates to a liquid ejection head.
A known example of the configuration of a piezoelectric liquid ejection head is such that a plate-like piezoelectric actuator is joined to a substrate (a cavity plate) in which a plurality of pressure chambers and ejection ports are formed (Japanese Patent Laid-Open No. 2001-162796 and No. 2001-260349). A piezoelectric actuator having a structure in which piezoelectric layers are laminated is joined to a substrate so as to cover the openings of pressure chambers provided in the substrate. A plurality of ejection ports communicating with the individual pressure chambers are open from a surface of the substrate different from a surface to which the piezoelectric actuator is joined. In this configuration, one wall of each pressure chamber is constituted by the piezoelectric actuator. The capacity of the pressure chambers is reduced by piezoelectric deformation of the piezoelectric actuator, thereby causing the liquid in the pressure chambers to be ejected from the ejection ports to the outside.
In the configuration disclosed in Japanese Patent Laid-Open No. 2001-162796, the pressure chambers are open from one surface of the substrate, to which the plate-like piezoelectric actuator is joined so as to cover the openings of the pressure chambers. The substrate has a multilayer structure in which a plurality of plate members (plates) are laminated. Of these plates, a base plate has through holes serving as pressure chambers, and the piezoelectric actuator is joined to one surface of the base plate. A spacer plate is joined to a surface of the base plate opposite to the surface to which the piezoelectric actuator is joined. Two manifold plates each have a through hole that constitutes a common liquid chamber and are joined to a surface of the spacer plate opposite to a surface joined to the base plate. An ejection port plate (an ejection-port formed member) is joined to the manifold plates to cover the through hole and has ejection ports. Each plate has channels connecting the common liquid chamber and the pressure chambers, channels connecting the pressure chambers to the ejection ports, and channels connecting a liquid supply source (not shown) to the common liquid chamber. In this configuration, liquid flows among the plates. In other words, the liquid from the liquid supply source is stored in the common liquid chamber, from which the liquid is supplied to the pressure chambers through the channels. When the piezoelectric actuator is deformed, so that the capacities of the pressure chambers are reduced, the liquid in the pressure chambers is ejected from the ejection ports through the channels.
The substrate with a structure disclosed in Japanese Patent Laid-Open No. 2001-162796 has a plurality of recesses on a first surface of the plate-like ejection-port formed member and has a plurality of ejection ports that are open from a second surface of the election-port formed member so as to communicate with the recesses. The plate-like piezoelectric actuator is joined to the first surface of the ejection-port formed member to close the recesses to form the pressure chambers. The pressure chambers and the election ports are arranged in a plurality of arrays. Adjacent pressure chambers are partitioned by a thin partition wall in the arrangement direction.
In the configuration disclosed in Japanese Patent Laid-Open No. 2001-20349, the piezoelectric actuator constitutes one wall of each pressure chamber, and the common liquid chamber is disposed at a position opposing the piezoelectric actuator with one plate (wall) interposed therebetween. With this configuration, when the piezoelectric actuator is deformed so as to protrude toward the inside of the pressure chambers, pressure due to the deformation can push a wall (referred to as “opposing wall”) at a position opposing the piezoelectric actuator to deform the wall. In particular, the common liquid chamber is positioned on the back of the opposing wall as viewed from the pressure chambers, so that the opposing wall is not firmly supported, being easily deformed by the pressure generated by the piezoelectric actuator. The deformation of the opposing wall can decrease the amount of reduction in the capacities of the pressure chambers, possibly not providing sufficient pressure to satisfactorily eject the liquid. In other words, part of energy generated by the piezoelectric actuator is used for deformation of the opposing wall rather than liquid ejection, resulting in poor energy efficiency. In addition, the deformation of the opposing wall also causes pressure to the liquid in the common liquid chamber, which applies pressure to the liquid in the other pressure chambers via the liquid in the common liquid chamber, possibly causing crosstalk.
Furthermore, in the case where adjacent pressure chambers are partitioned by a thin partition wall, as disclosed in Japanese Patent Laid-Open No. 2001-260349, the pressure due to the deformation of the piezoelectric actuator can deform the thin partition wall, causing pressure to be applied also to the liquid in the adjacent pressure chamber. The generation of crosstalk causes part of the energy generated by the piezoelectric actuator to be used for deformation of the partition wall, resulting in poor energy efficiency. Furthermore, when the Liquid in the adjacent pressure chamber vibrates and is thereafter ejected from the adjacent pressure chamber, the vibrating liquid cannot exhibit desired behavior, which may decrease the accuracy of liquid ejection. Furthermore, in some cases, the liquid may be ejected or dropped from the ejection ports even though a piezoelectric actuator at a position facing the adjacent pressure chamber is not operated. Increasing the thickness of a partition wall between adjacent pressure chambers to prevent crosstalk increases the size of the entire liquid ejection head, which is undesirable because it hinders high density.
The present disclosure provides a liquid ejection head capable of high-accuracy liquid ejection with high energy efficiency.
A liquid ejection head according to an aspect of the present disclosure includes a plurality of ejection ports, a plurality of pressure chambers each communicating with each of the ejection ports, a piezoelectric actuator constituting part of walls of the pressure chambers, and a common liquid chamber containing liquid to be supplied to the pressure chambers. The pressure chambers and the common liquid chamber are opposed with an opposing wall interposed therebetween. The opposing wall faces the wall of the pressure chambers constituted by the piezoelectric actuator. A reinforcing portion that supports the opposing wall is provided in the common liquid chamber.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present disclosure will be described with reference to the drawings.
As illustrated in
As illustrated in
As illustrated in
As described above, the substrate 10 of the present embodiment is configured such that liquid flows from the supply holes 19a provided at one end of the base plate 14 through the through holes 19b and 19c into the common liquid chambers 23. The liquid in the common liquid chambers 23 is distributed into the pressure chambers 16 through the through holes 18, and thereafter flows from the pressure chambers 16 through the through holes 17 to reach the election ports 15 corresponding to the pressure chambers 16 (see
In the liquid ejection head of the present embodiment, the pressure chambers 16 of the substrate 10 are closed by the piezoelectric actuator 20. In other words, part of the walls of each pressure chamber 16 is constituted by the piezoelectric actuator 20. Accordingly, when electric power is appropriately supplied from an electrode (to be described later) to the piezoelectric actuator 20, the piezoelectric actuator 20 is deformed in a protruding shape toward the inside of the pressure chamber 16, that is, so as to reduce the capacity of the pressure chamber 16. This causes pressure to be applied to the liquid in the pressure chamber 16, and the liquid is ejected to the outside through the through hole 17 from the ejection port 15. When the piezoelectric actuator 20 is deformed toward the inside of the pressure chambers 16 to reduce the capacity in this manner, the pressure is also applied through the liquid to the other walls of the pressure chamber 16 other than the wall constituted by the piezoelectric actuator 20. In particular, a pressure in a direction perpendicular to a wall at a position facing the piezoelectric actuator 20 (part of the spacer plate 13, referred to as “opposing wall 13a”) is applied to the opposing wall 13a. If the opposing wall 13a is deformed by the pressure, the amount of reduction in the capacity of the pressure chamber 16 is decreased, resulting in poor energy efficiency, and in some cases, the capacity is not reduced enough to eject the liquid from the ejection port 15. In addition, the deformation of the opposing wall 13a can draw the base plate 14 constituting the side walls of the pressure chamber 16 to deform the base plate 14. In particular, deformation of a thin partition wall positioned between adjacent pressure chambers 16 out of the side walls of the pressure chambers 16 that the base plate 14 constitutes can cause so-called crosstalk in which the liquid in pressure chambers 16 that do not eject liquid is also influenced by the vibration and so on. The deformation of the opposing wall 13a of the pressure chamber 16 is likely to occur due to the fact that the pressure chamber 16 and the common liquid chamber 23 are opposed to each other with the opposing wall 13a interposed therebetween, that is, the fact that the common liquid chamber 23 is positioned on the back of the opposing wall 13a as viewed from the inside of the pressure chamber 16, so that a firmly supporting member is not present. The deformation of the opposing wall 13a can cause the pressure to be applied also to the liquid in the common liquid chamber 23 and also to the liquid in other pressure chambers 16 via the liquid in the common liquid chamber 23, possibly causing crosstalk.
For that reason, the present disclosure is configured such that deformation of the opposing wall 13a hardly occurs by disposing the reinforcing portion 1 constituted by the protrusion 12 in the common liquid chamber 23, and supporting the opposing wall 13a from the back with the reinforcing portion 1. Specifically, the common liquid chamber 23 of the present embodiment is formed of two manifold plates 12a and 12b laminated each other. The manifold plates 12a and 12b are overlapped with one another so that the recess 23a that is open from one surface of the manifold plate 12a and the recess 23b that is open from one surface of the manifold plate 12b face each other. The recesses 23a and 23b face each other to form the common liquid chamber 23. The protrusion 12d protruding toward the opposite manifold plate 12a or 12b is provided in each of the recesses 23a and 23b. When the manifold plates 12a and 12b are laminated, the ends of the protrusions 12d are brought into contact with each other to constitute the columnar reinforcing portion 1 standing in the common liquid chamber 23.
With this configuration, even if pressure is applied to the opposing wall 13a via the liquid when the piezoelectric actuator 20 constituting one wall of the pressure chamber 16 is deformed, the opposing wall 13a is hardly deformed. This is because the reinforcing portion 1 in the common liquid chamber 23 positioned on the back of the opposing wall 13a as viewed from the pressure chamber 16 supports the opposing wall 13a. Since the opposing wall 13a is hardly deformed, almost all of the energy generated by the piezoelectric actuator 20 is used to reduce the capacity of the pressure chamber 16, which is energy efficient, allowing the liquid in the pressure chamber 16 to be satisfactorily ejected from the ejection ports 15 to the outside. Furthermore, in the present embodiment, the common liquid chamber 23 is constituted by providing the bottomed recesses 23a and 23b in the manifold plates 12a and 12b rather than by providing through holes in the manifold plates 12a and 12b. In other words, the common liquid chamber 23 is not positioned on the back of the opposing wall 13a as viewed from the pressure chamber 16 but is positioned with part (a thin portion) of the manifold plate 12a interposed therebetween. Accordingly, part (the thin portion) of the manifold plate 12a also supports the opposing wall 13a of the pressure chamber 16, contributing to suppression of deformation.
Furthermore, in the present embodiment, the opposing wall 13a of the pressure chamber 16 is hardly deformed, so that there is little possibility of occurrence of crosstalk via the liquid in the common liquid chamber 23. Furthermore, there is little possibility of occurrence of crosstalk due to deformation of the base plate 14 constituting the side wall of the pressure chamber 16 drawn by the opposing wall 13a. Considering an effect on preventing deformation of the opposing wall 13a, the reinforcing portion 1 is increased in size, but excessive resistance to the flow of the liquid in the common liquid chamber 23 is undesirable. For that reason, the reinforcing portion 1 preferably have, in plan view, substantially a length of half the length of the pressure chamber 16 in the longitudinal direction of the pressure chamber 16, more preferably at least half, and a length equal to the length of the pressure chamber 16 in the crosswise direction of the pressure chamber 16. Deformation of the opposing wall 13a at a position close to the ejection port 15 particularly has a great influence on the performance of liquid ejection. Accordingly, the reinforcing portion 1 may be disposed at a position nearer to the ejection port 15 than the center of the pressure chamber 16. More specifically, the center of gravity of the reinforcing portion 1 is nearer to the ejection port 15 than the center of gravity of the pressure chamber 16.
The piezoelectric actuator 20 of the present embodiment described above will be described. The piezoelectric actuator 20 has a configuration in which a plurality of piezoelectric layers and electrode layers are alternately laminated. The piezoelectric layers are each formed of a piezoelectric sheet 21 made of piezoelectric ceramic with a thickness of about 30 μm. As illustrated in
All of piezoelectric sheets 21 of the piezoelectric actuator 20 other than the lowermost piezoelectric sheet 21 have through holes 32 for connecting the surface electrodes 30, the individual electrodes 24 and the dummy individual electrodes 26 at corresponding positions in plan view together. Likewise, a through hole 33 for connecting at least one surface electrode 31 and the extending portion 25a of the common electrode 25 and the dummy common electrode 27 at a corresponding position in plan view is provided. In the illustrated embodiment, the through hole 33 is formed in the surface electrodes 31 at the four corners of the uppermost piezoelectric sheet 21 and the extending portion 25a of the common electrode 25 and the dummy common electrode 27 at a corresponding position in plan view. The interior of the through holes 32 is filled with an electrically conductive material to electrically connect the individual electrodes 24 of the individual layers and the surface electrodes 30 at corresponding positions in plan view. Likewise, the interior of the through holes 33 is filled with an electrically conductive material to electrically connect the extending portions 25a of the individual layers and the surface electrode 31 at the corresponding position in plan view. In an actual manufacturing process, the through holes 32 and 33 are formed in a ceramic green sheet constituting each piezoelectric sheet 21, and an electrically conductive paste made of an alloy of silver and palladium is applied to the green sheet by screen printing or the like to form electrode patterns. At that time, the electrically conductive material forming the electrode patterns enters the interior of the through holes 32 and 33 and fills them. This allows the upper and lower surfaces of the piezoelectric sheets 21 to be electrically conducted through the through holes 32 and 33. The piezoelectric sheets 21 are laminated so that the electrode patterns or the dummy electrodes of the lower layers and the through holes 32 and 33 of the upper layers are aligned and are pressed in the laminating direction to form a single unit, and it is burned as is well known to form the piezoelectric actuator 20.
As described above, the through holes 32 and 33 of the piezoelectric layers sandwiched between the individual electrodes 24 and the common electrode 25 are filled with an electrically conductive material. As is well known, when the common electrodes 25 are grounded, and a positive high voltage for polarization is applied to all of the individual electrodes 24, an area of each piezoelectric sheet 21 between the electrodes is polarized in a direction from the individual electrodes 24 to the common electrode 25 to form an active portion. In other words, the second piezoelectric sheet 21 counted from the bottom to the uppermost piezoelectric sheet 21 constitute the active layer. When a driving positive low voltage is selectively applied to the individual electrodes 24 with the common electrodes 25 grounded, the active portion is extended due to a piezoelectric longitudinal effect. Thus, distortion in the laminating direction occurs in the piezoelectric layers sandwiched between the individual electrodes 24 and each common electrode 25. The amount of displacement due to the distortion increases toward the interior of the pressure chamber 16 corresponding to each individual electrode 24, which reduces the capacity of the pressure chamber 16, so that the liquid in the pressure chamber 16 is ejected as droplets from the ejection port 15 to the outside. The thus-ejected droplets are attached to a desired position of a printing medium (not shown) to perform desired recording (image formation or printing).
More concrete embodiments of the present disclosure will be described. In the following description, only the characteristics of the embodiments will be described, and description of configurations similar to those already described will be omitted.
In a first embodiment of the present disclosure, as illustrated in
In a second embodiment of the present disclosure, as illustrated in
In a third embodiment of the present disclosure, as illustrated in
In a fourth embodiment of the present disclosure, as illustrated in
In a fifth embodiment of the present disclosure, as illustrated in
The liquid ejection head according to an embodiment of the present disclosure allows high-accuracy liquid ejection with high energy efficiency.
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2016-173601 filed Sep. 6, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2016-173601 | Sep 2016 | JP | national |