This application claims priority from Japanese Patent Application No. 2019-107713 filed on Jun. 10, 2019, the content of which is incorporated herein by reference in its entirety.
Aspects of the disclosure relate to a liquid ejection head that ejects liquid such as ink and that is included in a liquid ejection apparatus.
Some known liquid ejection apparatus is configured to eject ink toward a medium such as a recording sheet from a liquid ejection head (hereinafter, simply referred to as the “head”) to form an image on the medium. Such a head may include a heater that is configured to heat a supply channel structure that allows liquid to flow therethrough.
For example, some known head includes a channel structure, a supply channel structure, and heaters. The channel structure includes ejection channels that lead ink toward nozzles. The supply channel structure includes supply channels that allow ink to flow therefrom to the ejection channels. The heaters are configured to heat the supply channel structure. In such a known head, heaters and temperature sensors are fixed to an outer periphery of the supply channel structure using an adhesive.
In order to eject relatively high viscosity ink from nozzles effectively, ink may need to be heated to be at a temperature slightly higher than a room temperature (e.g., approximately 40 degrees Celsius) to cause ink to have a suitable viscosity. The known head is configured to apply heat to the supply channel structure using the heaters to heat ink in the supply channel structure.
In the known head, the heaters may be fixed to the outer periphery, that is, a side surface, of the supply channel structure using an adhesive. Nevertheless, it may be difficult to attach the heaters to the side surface of the supply channel structure in fabrication of the head. Thus, the procedure for fabricating such a head may include complicated steps.
Accordingly, aspects of the disclosure provide a liquid ejection head that may include a heater for heating a supply channel structure, wherein the liquid ejection head may be fabricated without a complicated step.
In one or more aspects of the disclosure, a liquid ejection head may include a supply channel structure and a heater. The supply channel structure may have a supply channel configured to allow liquid to flow therefrom to ejection channels that may be configured to lead liquid to nozzles aligned in a first direction. The heater may be configured to heat liquid. Assuming that a side of the liquid ejection head, in which the nozzles are provided, is defined as a lower side of the liquid ejection head, the heater may be disposed above the supply channel structure.
According to this configuration, the heater may be disposed above the supply channel structure. Attaching a heater in such a manner may be easier than attaching a heater to a side surface of a supply channel structure, thereby avoiding complication of the fabrication procedure. Such a configuration may enable the heater to heat the supply channel via the upper surface of the supply channel structure, thereby heating liquid more effectively as compared with a head including a heater disposed on a side surface of a supply channel structure.
With such a configuration, the one or more aspects of the disclosure may thus provide a liquid ejection head that may include a heater for heating a supply channel structure, wherein the liquid ejection head may be fabricated without a complicated step.
Hereinafter, illustrative embodiments of the disclosure will be described with reference to the accompanying drawings. As used throughout this disclosure and the drawings, the same or similar elements will be indicated by common reference numerals or letters. Therefore, one of the same or similar elements may be described in detail, and description for the others may be omitted.
Configuration of Liquid Ejection Head
Referring to
The channel structure 11 may have a flat plate like shape. The channel structure 11 may have longer sides and shorter sides. A direction in which the longer sides of the channel structure 11 extend may be referred to as a longitudinal direction. The channel structure 11 is fixed to the supply channel structures 12A. The channel structure 11 has one surface and another surface opposite to each other. The actuator substrate 13 and the support substrates 14A are disposed between the channel structure 11 and the set of the supply channel structures 12A and are fixed to the one surface of the channel structure 11. The nozzle substrate 15 and the dampers 21 are fixed to the other surface of the channel structure 11. Each supply channel structure 12A has one surface and another surface opposite to each other. The other surface faces toward the channel structure 11. The thermal conductors 16 are disposed on the one surfaces of the respective supply channel structures 12A. The heaters 31A are disposed overlapping the respective thermal conductors 16.
In the head 10 illustrated in
For describing the positional relationship in the head 10, the longitudinal direction, that is, the length direction, may be defined as a first direction regarded as a reference direction. The transverse direction may correspond to a right-left direction. The right-left direction may be defined as a second direction. The up-down direction may be defined as a third direction. The first direction is indicated by a double-headed arrow d1 in
The nozzle substrate 15 is disposed at the lower surface of the head 10. The nozzle substrate 15 has a plurality of nozzles 25 arranged along the longitudinal direction (e.g., the direction of the arrow d1 in
The nozzle substrate 15 is disposed at a middle portion of the lower surface of the head 10 in the right-left direction (e.g., the direction of the arrow d2 in
The actuator substrate 13 is laminated on a middle portion of the upper surface of the channel structure 11 in the right-left direction. The elastic layer 23 is laminated on an upper surface of the actuator substrate 13. The support substrates (e.g., protection substrates) 14A are laminated on an upper surface of the elastic layer 23. Each support substrate 14A has a cavity 24. The cavities 24 may be recesses defined in lower surfaces of the respective support substrates 14A. The elastic layer 23 is disposed at the lower surfaces of the support substrates 14A to close the cavities 24. The piezoelectric elements 26 are disposed in the cavities 24. In other words, each support substrate 14A has a recess at a portion corresponding to corresponding ones of the piezoelectric elements 26. Each recess may have an appropriate size that may allow driving of the corresponding piezoelectric elements 26. The recesses may serve as the cavities 24. The piezoelectric elements 26 are disposed on the upper surface of the elastic layer 23. Thus, the piezoelectric elements 26 are disposed at a lower portion of a corresponding closed cavity 24.
The actuator substrate 13 has pressure chambers 43 that may be through holes. The pressure chambers 43 are disposed vertically below the corresponding cavities 24, that is, the respective corresponding piezoelectric elements 26. The elastic layer 23 defines upper surfaces of the respective pressure chambers 43. The channel structure 11 defines lower surfaces of the respective pressure chambers 43. The pressure chambers 43 are thus closed by the elastic layer 23 and the channel structure 11. The ejection channels 42 of the channel structure 11 are in communication with the respective corresponding pressure chambers 43. The channel structure 11 further includes nozzle communication channels 44 (e.g., descenders) that may be through holes. The nozzle communication channels 44 are in communication with the respective corresponding nozzles 25. The nozzle communication channels 44 are also in communication with the respective corresponding pressure chambers 43. As illustrated in
The pressure chambers 43 of the actuator substrate 13 are in fluid communication with the respective corresponding nozzles 25 defined in the nozzle substrate 15. In the first illustrative embodiment, the nozzles 25 of the nozzle substrate 15 are arranged in two rows along the longitudinal direction (e.g., the direction of the arrow d1 in
As illustrated in
The head 10 has a hollow 22 including a first space 22a and a second space 22b. The supply channel structures 12A are spaced from each other in the right-left direction to define the first space 22a therebetween. The support substrates 14A are spaced from each other in the right-left direction to define the second space 22b therebetween. The first space 22a and the second space 22b are elongated along the longitudinal direction. The upper surface of the actuator substrate 13 is partially exposed through the second space 22b.
The supply channel structures 12A are separated from each other to define the first space 22a therebetween to allow the second space 22b to be exposed. With this arrangement, the supply channel structures 12A partially cover the channel structure 11, the actuator substrate 13, and the support substrates 14A. Such a configuration may thus allow the upper surface of the actuator substrate 13 to be partially exposed through the hollow 22 consisting of the first space 22a and the second space 22b.
An electrode trace extends on the upper surface of the actuator substrate 13 from each piezoelectric element 26. The electrode traces of the piezoelectric elements 26 are disposed in the second space 22b. The electrode traces of the piezoelectric elements 26 are connected to the wiring substrate 34. The drive IC 35 for driving the piezoelectric elements 26 is mounted on the wiring substrate 34. At least a portion of the wiring substrate 34 and the drive IC 35 are disposed in the hollow 22.
Each piezoelectric element 26 is configured to cause ink ejection from a corresponding nozzle 25. In response to driving of a piezoelectric element 26 by the drive IC 35, a corresponding portion of a vibration plate including the elastic layer 23 is warped to protrude toward a pressure chamber 43. This may cause ink (e.g., liquid) flow from the pressure chamber 43 to a corresponding nozzle 25 via a nozzle communication channel 44, thereby causing ejection of ink (e.g., liquid) from the corresponding nozzle 25. That is, the channel structure 11, the actuator substrate 13, the elastic layer 23, and the piezoelectric elements 26 constitute an actuator unit.
The heaters 31A are disposed at an upper portion of the head 10. The heaters 31A are configured to heat ink (or any liquid to be ejected from the head 10). According to the disclosure, a side of the head, in which the nozzles 25 are provided, may be defined as a lower side of the head. Thus, the head according to the disclosure has the nozzles 25 at the lower portion thereof. The heaters 31A are disposed at the upper portion of the head. The channel structure 11 that is in fluid communication with the nozzles 25 is disposed at the lower portion of the head 10. The supply channel structures 12A fixed to the channel structure 11 are disposed above the channel structure 11. Thus, the heaters 31A are disposed above the respective supply channel structures 12A.
In the head according to the disclosure, the heaters may be disposed above the respective supply channel structures 12A. In the first illustrative embodiment, as illustrated in
Hereinafter, one of the halves of the head 10 will be described. In the description below, plural same components have the same or similar configuration and function in the same or similar manner to each other. Therefore, one of the plural same components will be described in detail, and a description for the others will be omitted. In the first illustrative embodiment, the thermal conductor 16 is disposed on the upper surface of the supply channel structure 12A and the heater 31A is disposed on an upper surface of the thermal conductor 16. Nevertheless, in other embodiments, for example, the heater 31A may be disposed on the upper surface of the supply channel structure 12A. While the thermal conductor 16 may have a plate like shape that may be substantially the same shape as the upper surface of the supply channel structure 12A, the thermal conductor 16 may need to be made of material having a higher thermal conductivity than material used for the supply channel structure 12A.
As illustrated in
In the head 10 having the above configuration, the supply channel 41 (e.g., the manifold) of the supply channel structure 12A may be supplied with ink from the ink cartridge. The supply channel 41 is in communication with the ejection channels 42 of the channel structure 11. The ejection channels 42 are in communication with respective corresponding ones of the pressure chambers 43 arranged in the longitudinal direction. The nozzle communication channels 44 of the channel structure 11 and the nozzles 25 of the nozzle substrate 15 are arranged in the longitudinal direction. The pressure chambers 43 are in communication with the respective corresponding nozzles 25 of the nozzle substrate 15 via the respective corresponding nozzle communication channels 44. Such a configuration may thus allow ink supplied to the supply channel 41 to flow therefrom to the pressure chambers 43 via the ejection channels 42.
The piezoelectric elements 26 are disposed at the upper surfaces of the respective corresponding pressure chambers 43. The vibration plate including the elastic layer 23 is disposed to extend over the upper surfaces of the pressure chambers 43. With such a configuration, as a piezoelectric element 26 is driven, ink flows from a pressure chamber 43 to a nozzle 25 via a nozzle communication channel 44, thereby causing ejection of ink to the outside of the head 10. While ink flows from the pressure chamber 43 to the nozzle, the heater 31A heats the supply channel structure 12A from the upper surface side, thereby heating the supply channel 41 (e.g., the manifold) via the upper surface of the supply channel structure 12A. The heater 31A is configured to be driven by control of a controller. More specifically, for example, the controller controls driving of the heater 31A based on at least temperature measured by the temperature sensor.
The configuration of the head 10 is not limited to the specific example such as the head 10 including the channel structure 11, the supply channel structures 12A, the actuator substrate 13, the support substrates 14A, the nozzle substrate 15, the thermal conductors 16, the dampers 21, the elastic layer 23, the piezoelectric elements 26, and the heaters 31A. In other embodiments, a head having any known configuration may be adopted.
The channel structure 11 may be a substrate made of, for example, inorganic material. In the first illustrative embodiment, for example, the channel structure 11 may be a silicon substrate. The ejection channels 42 and the nozzle communication channels 44 of the channel structure 11 may be formed by known anisotropic etching or half etching. The supply channel structure 12A may be made of, for example, known resin material. In the first illustrative embodiment, for example, the supply channel structure 12A may be made of ABS resin. In another example, the supply channel structure 12A may be made of inorganic material instead of resin material. Examples of the inorganic material include alumina (Al2O3).
The actuator substrate 13 may be a substrate made of, for example, inorganic material. In the first illustrative embodiment, for example, the actuator substrate 13 may be a silicon substrate. The actuator substrate 13 has a plurality of pressure chambers 43 formed by, for example, anisotropic etching. The pressure chambers 43 correspond to the respective corresponding nozzles 25 defined in the nozzle substrate 15.
The piezoelectric elements 26 are placed in the cavities 24 of the support substrates 14A and are thus protected by the support substrates 14A. That is, the support substrates 14A may be protection substrates for the piezoelectric elements 26. A material used for the support substrate 14A is not limited specifically. Examples of the material used for the support substrate 14A include inorganic materials such as glasses, ceramic materials, silicon monocrystal substrates, and metals, or organic materials such as known resin materials. The nozzle substrate 15 may be, for example, a silicon substrate made of inorganic material. The nozzles 25 arranged in rows (e.g., nozzle rows) may be formed in the nozzle substrate 15 by, for example, dry etching.
The thermal conductor 16 may be made of material having a relatively good thermal conductivity. More specifically, for example, the thermal conductor 16 may preferably be made of material having a higher thermal conductivity than the material used for the supply channel structure 12A. The material used for the supply channel structure 12A includes, for example, oxide-based inorganic material such as resin material or alumina. The material used for the thermal conductor 16 includes, for example, metal such as stainless steel (SUS), which may have a higher thermal conductivity than resin material and alumina. Using such metal as the material for the thermal conductor 16 may enable reasonable fabrication of the thermal conductor 16.
The damper 21 may be a film made of resin material (e.g., a damper film). For example, the damper 21 may be made of PPS resin. The elastic layer 23 may be made of elastic material. In the first illustrative embodiment, the elastic layer 23 may be, for example, a silicon dioxide layer having a thickness of approximately 1 μm. An insulating layer made of an insulating material is provided on the elastic layer 23. Examples of the insulating material include zirconium oxide. Nevertheless, the insulating material used for the insulating layer is not limited to the specific example. The piezoelectric elements 26 are disposed on the lamination of the elastic layer 23 and the insulating layer in a one-to-one correspondence with the pressure chambers 43.
The configuration of the piezoelectric elements 26 is not limited specifically. In the first illustrative embodiment, for example, the piezoelectric elements 26 have a configuration such that a lower electrode layer, a piezoelectric layer, and an upper electrode layer are laminated one above another on the lamination of the elastic layer 23 and the insulating layer and a pattern is provided by a known patterning method to correspond to the respective pressure chambers 43. The upper and lower electrode layers may be made of, for example, known metal. The piezoelectric layer may be made of, for example, known piezoelectric material including lead zirconate titanate (PZT). One of the upper and lower electrode layers may serve as a common electrode and the other may serve as individual electrodes. The elastic layer 23, the insulating layer, and the lower electrode layer may serve as a vibration plate configured to vibrate when the piezoelectric elements 26 are driven.
Electrode traces extend from the respective individual electrodes (e.g., the upper electrode layer or the lower electrode layer) on the insulating layer. The electrode traces are connected to the wiring substrate 34. A configuration of the wiring substrate 34 is not limited specifically. In the first illustrative embodiment, the wiring substrate 34 may be a known Chip on Film (“COF”) substrate. The configuration of the drive IC 35 is not limited specifically. An integrated circuit or a drive element known in the field of liquid ejection head may be suitable. The drive IC 35 is configured to apply a drive signal (e.g., a drive voltage) to a particular portion between the upper electrode layer and the lower electrode layer of a particular piezoelectric element 26 to deform the piezoelectric element 26. This may thus cause the vibration plate including the lower electrode, the insulating layer, and the elastic layer 23 to vibrate.
The type of the temperature sensor such as a thermistor is not limited specifically. Any thermistor known in the field of liquid ejection head may be suitable. The configuration of the heater 31A is not limited specifically. Any heater known in the field of liquid ejection head may be suitable. In the first illustrative embodiment, for example, a known film heater or a known ceramic heater may be used as the heater 31A. The configuration of the controller is not limited specifically. For example, a microcomputer, a CPU of a microcontroller, or any controller having a known configuration including various storages may be used.
The fabrication method of the head 10 is not limited specifically. The head 10 may be fabricated using a known method in which the members such as the channel structure 11, the supply channel structures 12A, the actuator substrate 13, the support substrates 14A, the nozzle substrate 15, the dampers 21, the elastic layer 23, and the piezoelectric elements 26 may be fixed or joined to each other. The laminating order in which the members of the head 10 are fixed or joined to each other is not limited specifically. For example, the channel structure 11, the dampers 21, and the nozzle substrate 15 may be joined to fabricate a channel unit. The actuator substrate 13, the elastic layer 23, the piezoelectric elements 26, and the support substrates 14A may be joined to fabricate an actuator unit. Then, the channel unit and the actuator unit may be fixed to each other to fabricate the head 10.
The method for fixing or joining the members and/or the units to each other is not limited specifically. In one example, a known adhesive may be used. In another example, the members and/or the units may be fixed or joined to each other without using an adhesive. In this disclosure, in a case where the channel structure 11 and the supply channel structures 12A are fixed to each other using an adhesive, the adhesive may preferably have a higher thermal conductivity than the material used for the supply channel structures 12A.
In a case where the supply channel structures 12A are made of resin material, an adhesive having a higher thermal conductivity than the resin material used for the supply channel structures 12A may be used. More specifically, for example, in a case where the supply channel structures 12A are made of ABS resin material, an epoxy adhesive may be suitable. As compared with a silicone adhesive that may be one of typical adhesives, an epoxy adhesive tends to have a higher thermal conductivity than ABS resin. Thus, using such an epoxy adhesive may effectively reduce an occurrence of great difference in linear expansion coefficient between the channel structure 11 and the supply channel structures 12A at their joint surfaces. Consequently, the joint condition of the channel structure 11 and the supply channel structures 12A may be maintained in an appropriate condition.
Configuration of Heater and Thermal Conductor
Referring to
The head according to the disclosure may include at least one heater that may serve as a liquid heating portion configured to heat ink (e.g., liquid). In the head according to the disclosure, the liquid heating portion may be disposed above the supply channel structure 12A. In the first illustrative embodiment, as illustrated in
The thermal conductor 16 may have a plate like shape that may cover the upper surface of the supply channel structure 12A. Nevertheless, the thermal conductor 16 may preferably have a shape that may cover another portion the supply channel structure 12A in addition to the upper surface of the supply channel structure 12A. As illustrated in
As illustrated in
As illustrated in
With this configuration, an area of the opening 16a of the thermal conductor 16 is smaller than an area of the opening 41a of the supply channel structure 12A. Thus, as illustrated in
As illustrated in
Values of the width W1 and the width W2 are not limited specifically. The width W1 and the width W2 may be assigned respective appropriate values in accordance with the specific configuration of the head 10. For example, the width W1 may be assigned a value of between 2 mm and 3 mm and the width W2 may be assigned a value of between 1 mm and 2 mm while the relationship of W1>W2 is satisfied. With this configuration, the area of the opening 16a of the thermal conductor 16 is smaller than the area of the opening 41a of the supply channel structure 12A. Such a configuration may thus enable the thermal conductor 16 to be contacted directly to ink in the supply channel 41. Consequently, ink may be effectively heated via the thermal conductor 16.
As illustrated in
In the example configuration illustrated in
As illustrated in
In the example configuration illustrated in
The heater 31A may have a shape that may cover the entirety of the upper surface of the supply channel structure 12A. Nevertheless, as illustrated in
In the example illustrated in
Each wide heater 37a has longer sides and shorter sides. Each wide heater 37a is disposed such that its longer sides extend along the right-left direction (e.g., the second direction). Each narrow heater 37b has longer sides and shorter sides. Each narrow heater 37b is disposed such that its longer sides extend along the longitudinal direction (e.g., the first direction). Thus, as with the heater 31A, the heater 31B may have a hollow rectangular shape corresponding to the shape of the upper surface of the supply channel structure 12A, thereby heating the particular portion other than the central portion of the upper surface of the supply channel structure 12A. The configuration of the heater 31B is not limited to the specific example of
Modifications
The head according to the disclosure may include the supply channel structures 12A and at least one heater. The heater may be disposed above one of the supply channel structures 12A. In the first illustrative embodiment, examples of the heater disposed above the supply channel structure 12A include the heater 31A that may be a single heater and the heater 31B that may a combined heater include a plurality of heaters. The heaters 31A and 31B may be disposed at the topmost portion of the head 10. Nevertheless, the configuration of the head according to the disclosure is not limited to the specific examples. Another member may be disposed above the heater 31A or 31B.
For example, as illustrated in
In this modification, the head 10A includes the second thermal conductor 17 that is disposed above the heater 31A and made of the same material as the material used for the thermal conductor 16. That is, the heater 31A that may be a film heater is sandwiched between the thermal conductors 16 and 17 that may be made of the same material. Such a configuration may thus reduce an occurrence of distortion in the head 10A due to difference in thermal expansion coefficient between the heater 31A and the thermal conductors 16 and 17 during heating by the heater 31A.
A manner of fixing the second thermal conductor 17 to the upper surface of the heater 31A is not limited specifically. For example, as illustrated in
As illustrated in
In the example illustrated in
In a case where a particular member is disposed above the heater 31A, the following adhesion method may be adopted. A position of the particular member is fixed using a jig while a portion for applying adhesive is left and the particular member is placed above the heater 31A leaving a gap (e.g., a space) therebetween. Then, an adhesive layer is formed at the portion for applying adhesive to maintain the position of the particular member. That is, the particular member and the heater 31A may be adhered to each other in the air. With this procedure, the particular member may be fixed to the thermal conductor 16 while a gap is left between the upper surface of the heater 31A and a lower surface of the particular member.
In the head according to the disclosure, the heater 31A may be disposed above the supply channel structure 12A (or on the upper surface of the supply channel structure 12A). When necessary, the head may include another heater disposed at another portion of the supply channel structure 12A. For example, as with the known head, the head 10, 10A may include a further heater disposed on a side surface of the supply channel structure 12A. In a case where the further heater is disposed on the side surface of the supply channel structure 12A in addition to the upper surface of the supply channel structure 12A, the supply channel 41 may be heated from two sides via the upper surface and side surface of the supply channel structure 12A. Thus, ink in the supply channel 41 may be heated appropriately.
In the head 10 according to the first illustrative embodiment, the heater 31A is disposed on the upper surface of the thermal conductor 16. Nevertheless, the head according to the disclosure is not limited to the specific example. In the head according to the disclosure, a heater may be disposed on an upper surface of a supply channel structure. Referring to
In a second illustrative embodiment, as illustrated in
In the first illustrative embodiment, the head 10 includes two support substrates 14A and has the second space 22b between the support substrates 14A in the right-left direction. Nevertheless, in the second illustrative embodiment, the head 110 includes a single support substrate 14B and thus might not have such a space. In the first illustrative embodiment, the head 10 further includes two supply channel structures 12A and has the first space 22a between the supply channel structures 12A in the right-left direction. The first space 22a and the second space 22b constitute the hollow 22. Such a configuration may thus allow the upper surface of the actuator substrate 13 to be partially exposed through the hollow 22. The wiring substrate 34 is connected to the exposed portion of the actuator substrate 13. The drive IC 35 is disposed at the wiring substrate 34.
Nevertheless, in the second illustrative embodiment, any portion of the actuator substrate 13 might not be allowed to be exposed. Thus, the head 110 includes through electrodes instead of the wiring substrate 34. The through electrodes penetrate the support substrate 14B. Each through electrode has one end connected to an electrode trace of a corresponding piezoelectric element 26 on the actuator substrate 13, and the other end connected to a corresponding drive IC 35. As illustrated in
In the second illustrative embodiment, although the head 110 does not have a hollow 22, the drive ICs 35 may be disposed on the upper surface of the support substrate 14B. Thus, the supply channel structure 12B may have a shape that may cover the entirety of the upper surface of the support substrate 14B and the heater 31C may be disposed on the upper surface of the supply channel structure 12B such that the heater 31C extends over substantially the entirety of the upper surface of the supply channel structure 12B. Such a configuration may thus enable the supply channel structure 12B to have a shape that may cover the entirety of the upper surface of the support substrate 14B. Thus, the supply channel structure 12B may provide a sufficient area for placing the heater 31C on its upper surface.
The entirety of the upper surface of the supply channel structure 12B may be heated by the single heater 31C, thereby effectively reducing an occurrence of temperature differences between the supply channels 41 when heated by the heater 31C, inconsistencies in density caused by temperature differences, and liquid ejection deficiency. As illustrated in
The supply channel structure 12B may be made of resin material or inorganic material as with the supply channel structure 12A of the first illustrative embodiment. Nevertheless, in a case where the heater 31C is disposed on the upper surface of the supply channel structure 12B (e.g., the second illustrative embodiment), the supply channel structure 12B may preferably be made of inorganic material such as metal. The supply channel structure 12B made of inorganic material such as metal having a relatively high thermal conductivity may transfer heat generated by the heater 31C more effectively, thereby heating liquid in the supply channel 41 more effectively.
The entirety of the supply channel structure 12B might not necessarily be made of inorganic material such as metal. For example, a portion constituting the upper surface of the supply channel structure 12B (e.g., an upper portion of the supply channel structure 12B) may be made of inorganic material and the other portion of the supply channel structure 12B may be made of resin material or inorganic material other than metal. In a case where at least the upper portion of the supply channel structure 12B is made of inorganic material having a relatively high thermal conductivity and the heater 31C is disposed on the upper surface of the supply channel structure 12B, the heater 31C may heat the upper surface of the supply channel structure 12B directly, thereby heating the supply channel 41 appropriately.
The material used for the portion constituting the upper surface of the supply channel structure 12B might not necessarily be made of inorganic material such as metal and is not limited specifically as long as the material has a relatively good thermal conductivity. More specifically, for example, the thermal conductivity of the material may have a higher thermal conductivity than the material used for the dampers 21. The dampers 21 may be resin films. In a case where the material used for the portion constituting the upper surface of the supply channel structure 12B has a higher thermal conductivity than the material used for the dampers 21, a relative thermal conductivity of the supply channel structure 12B may be increased. Consequently, heat generated by the heater 31C disposed at the upper surface of the supply channel structure 12B may be transferred to the supply channel 41 more effectively.
In the second illustrative embodiment, as illustrated in
If the input lines 33 and the FPC 36 extend toward different sides of the head 110, a space for placing the input lines 33 and a space for placing the FPC 36 may be needed on respective sides of the head 110. In the second illustrative embodiment, as described above, the input lines 33 and the FPC 36 are routed to extend toward the same direction (e.g., toward the one side of the head 110 with respect to the longitudinal direction). In such a case, for example, as illustrated in
While the disclosure has been described in detail with reference to the specific embodiments thereof, these are merely examples, and various changes, arrangements and modifications may be applied therein without departing from the spirit and scope of the disclosure. The particular elements and features disclosed in the illustrative embodiments and the modifications or variations may be combined with each other in other ways without departing from the spirit and scope of the disclosure.
The disclosure may be suitable for liquid ejection heads of liquid ejection apparatuses configured to eject liquid such as ink.
Number | Date | Country | Kind |
---|---|---|---|
2019-107713 | Jun 2019 | JP | national |