The present invention relates to a liquid ejection head.
Japanese Patent Laid-Open No. 2012-532772 discloses a configuration in which an inkjet printing head uses a thin-film piezoelectric element as an ejection energy generation element and ink circulates in a pressure chamber corresponding to each ejection port irrespective of whether ejection is performed or not. In Japanese Patent Laid-Open No. 2012-532772 as described above, a stable ejection operation can be maintained without bubbles and dusts contained in the ink stagnating in an ejection portion.
Moreover, Japanese Patent Laid-Open No. 2010-194750 discloses the following technique: in a configuration in which ink circulates as in Japanese Patent Laid-Open No. 2012-532772, a meniscus is retreated to a position near the pressure chamber when no ejection signal is received. According to Japanese Patent Laid-Open No. 2010-194750, since the meniscus can be brought close to a circulation flow in the pressure chamber, an ink circulation effect can be extended to a position near the meniscus (edge of the liquid).
Furthermore, International Publication No. WO2013/162606 discloses a technique where a substrate in which an ejection port is formed is provided with a groove which extends in an ink circulation direction and which communicates with the ejection port. According to the configuration of International Publication No. WO2013/162606, the distance between the meniscus and the circulation flow in the pressure chamber can be reduced without moving the meniscus as in Japanese Patent Laid-Open No. 2010-194750 and the ink circulation effect can be extended to a position near the meniscus.
When the meniscus is retreated as in Japanese Patent Laid-Open No. 2010-194750, the risk that the meniscus exposed to the atmosphere takes in the atmosphere as bubbles rises. Moreover, when the groove is provided as in International Publication No. WO2013/162606, the risk that the bubbles taken in due to vibration of the meniscus are guided into the pressure chamber via the groove rises. Then, when the bubbles are mixed in the pressure chamber, there is a risk that an ejection operation performed thereafter is not properly performed.
In other words, in the conventional configuration, it has been difficult to sufficiently extend the effect of liquid circulation to a position near the meniscus while suppressing mixing of bubbles.
The present invention has been made to solve the aforementioned problems. Accordingly, an object of the present invention is to provide a liquid ejection head which can sufficiently extend a liquid circulation effect to a position near a meniscus while suppressing mixing of bubbles.
According to an aspect of the present invention, there is provided a liquid ejection head comprising:
a substrate in which an ejection port for ejecting liquid is formed;
a pressure chamber configured to house the liquid to be ejected from the ejection port and apply pressure to the liquid in the ejection; and
a flow passage connected to the pressure chamber and configured to cause the liquid in the pressure chamber to circulate along the substrate, wherein
the ejection port has a non-circular shape, and
the substrate is provided with a groove portion extending in a direction of the circulation and connected to the ejection port.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
In each liquid ejection unit 152, the liquid is supplied from a liquid supply port 104, flows through a liquid supply passage 103, a pressure chamber 102, and a liquid collection passage 105 in this order, and then is discharged from a liquid collection port 106. A piezoelectric element 111 configured to apply pressure to the liquid housed in the pressure chamber 102 in a Z direction is provided in the pressure chamber 102.
A lead-out line 114 extending parallel to the liquid collection passage 105 is connected to the liquid collection passage 105 side of the piezoelectric element 111 and a bump pad 115 is disposed in an end portion of the lead-out line 114. The liquid ejection unit 152 is configured such that, when voltage is applied to the piezoelectric element 111 in response to an ejection signal, the piezoelectric element 111 moves in the Z direction and part of the pressurized liquid in the pressure chamber 102 is ejected in the Z direction from an ejection port 101.
Each liquid ejection unit 152 has such a shape that the liquid supply passage 103, the pressure chamber 102, and the liquid collection passage 105 extend in a Y direction and, as illustrated in
In the embodiment, two liquid ejection units 152 adjacent to each other in the X direction are arranged to be shifted from each other in the Y direction by a distance corresponding to 1200 dpi (about 21.5 μm). Thus, an image with a resolution of 1200 dpi can be printed on a printing medium by ejecting the liquid (ink) at a predetermined frequency from each ejection port 101 while moving the printing medium in the X direction at predetermined speed relative to the liquid ejection head 1.
Moreover, two ejection unit rows L adjacent to each other in the Y direction are each laid out in a state rotated by 180 degrees from another one, that is laid out in point symmetry and the liquid supply ports 104 or the liquid collection ports 106 are gathered between the adjacent two ejection unit rows L. Moreover, a common supply passage 122 configured to commonly supply the liquid to two ejection unit rows L and a common collection passage 123 configured to commonly collect the liquid from two ejection unit rows L are alternately arranged in the Y direction. The lead-out lines 114 are also gathered on the common collection passage 123 side. As described above, the liquid ejection head 1 of the embodiment is configured such that many liquid ejection units 152 are densely arranged while the flow passages of the liquid and the electrical lines are laid out as simply as possible.
The liquid supply substrate 134 is a silicon substrate and the liquid supply port 104 and the liquid collection port 106 are formed in the liquid supply substrate 134 by etching. An electrical line 117 and an electrically-conductive bump 116 connected to a not-illustrated control circuit are arranged between the liquid supply port 104 and the liquid collection port 106 on one surface (+Z direction side surface) of the liquid supply substrate 134. For example, an Au bump can be used as the electrically-conductive bump 116. The surface (+Z side surface) of the liquid supply substrate 134 is covered with a protection film 118 except for a portion to which the electrically-conductive bump 116 is electrically connected.
The element substrate 151 is formed by stacking a diaphragm 109 on a surface (−Z side surface) of a silicon substrate 108 and then stacking a common electrode 110, the piezoelectric element 111, and an individual electrode 112 in this order at a predetermined position (position corresponding to the pressure chamber 102) on the surface of the silicon substrate 108. The individual electrode 112 is electrically connected to the electrically-conductive bump 116 disposed on the liquid supply substrate 134, via the lead-out line 114 and the bump pad 115. The common electrode 110 extends from the +Z surface side of the piezoelectric element 111 to an end portion of the liquid ejection head 1 and is connected to the control circuit outside the liquid ejection head 1 via a bump (not illustrated) common to multiple liquid ejection units 152. Note that the element substrate 151 is also covered with a protection film 113 except for a portion to which the bump pad 115 is electrically connected.
Using the electrically-conductive bump 116 and the bump pad 115 as in the embodiment allows the line on the liquid supply substrate 134 side and the line on the element substrate 151 side to be easily connected to each other. However, the embodiment is not limited to a design using the electrically-conductive bump 116 and the bump pad 115. For example, the line on the liquid supply substrate 134 side and the line on the element substrate 151 side can be connected to each other also by using a penetration line.
The liquid supply passage 103, the pressure chamber 102, and the liquid collection passage 105 are formed on the back surface side (+Z side surface) of the silicon substrate 108 by etching. The liquid supply passage 103 is connected to the liquid supply port 104 and the liquid collection passage 105 is connected to the liquid collection port 106. The sizes and shapes of the liquid supply passage 103 and the liquid collection port 106 are defined by side walls 121 which are unetched portions of the silicon substrate 108. In the drawings, although only the side walls 121 defining the sizes in the Z direction (height direction) are illustrated, side walls disposed between the liquid ejection units 152 adjacent to each other in the X direction are also formed in the etching.
A nozzle substrate 107 in which the ejection ports 101 are formed is bonded to the +Z side surface of the silicon substrate 108 with the flow passage structures corresponding to the multiple liquid ejection units 152 formed as described above. The ejection ports 101 are arranged to correspond to the respective pressure chambers 102 and face the diaphragms 109 exposed by the etching.
The photosensitive resin layer 119 can be formed of a photosensitive dry film such as DF-470 (Hitachi Chemical Co, Ltd.), photosensitive liquid resist, a photosensitive film, or the like. Parts of the passages of the liquid supply port 104 and the liquid collection port 106 penetrating the photosensitive resin layer 119 to extend from the liquid supply substrate 134 to the element substrate 151 are formed in the photosensitive resin layer 119 by patterning using light. Using the photosensitive resin layer 119 as a layer having a role of a spacer allows joining of the element substrate 151 and the liquid supply substrate 134 and curing of the photosensitive resin layer 119 to be performed in one operation by utilizing heating and pressing performed in the connection of the electrically-conductive bump 116.
In the aforementioned configuration, the liquid fills the liquid supply port 104, the liquid supply passage 103, the pressure chamber 102, the liquid collection passage 105, and the liquid collection port 106 and circulates therein in this order. Since the flow passage cross section is reduced by the side walls 121 in the liquid supply passage 103 and the liquid collection passage 105, the liquid flows faster therein than in the liquid supply port 104 and the liquid collection port 106 and has a large force of inertia in the −Y direction.
A −Z direction surface of the piezoelectric element 111 is connected to the individual electrode 112 and a +Z direction surface of the piezoelectric element 111 is connected to the common electrode 110. Accordingly, when the control circuit applies a voltage pulse to the individual electrode 112 via the electrical line 117, the electrically-conductive bump 116, the bump pad 115, and the lead-out line 114, a potential difference is generated between the individual electrode 112 and the common electrode 110 and the piezoelectric element 111 bulges in an out-of-plane direction. With this bulging, the diaphragm 109 moves in the Z direction to reduce the volume of the pressure chamber 102, and part of the pressurized liquid is ejected from the ejection port 101 in the +Z direction. In this case, since the force of inertia of the liquid flowing from the liquid supply passage 103 to the liquid collection passage 105 is sufficiently large, the pressure applied to the liquid by the piezoelectric element 111 does not affect the flow of the liquid in the liquid supply passage 103 and the liquid collection passage 105.
In the liquid ejection head 1 of the embodiment, the piezoelectric element 111 can be driven for various applications in addition to the droplet ejection operation. For example, as described in Japanese Patent Laid-Open No. 2010-194750, the piezoelectric element 111 can be driven to cause a meniscus to retreat when no ejection signal is received. Moreover, the piezoelectric element 111 can be driven at timing synchronized with the Helmholtz resonance frequency of the pressure chamber 102 to control the droplet ejection amount or reduce generation of satellite droplets in the ejection operation. Furthermore, the piezoelectric element 111 can be driven to suppress residual vibration in the pressure chamber 102 after the ejection of droplets, by causing vibration of such a degree that no liquid is ejected.
Brief description is given of a phenomenon in which bubbles are mixed in the liquid due to vibration of the meniscus. Generally, when liquid is made to vibrate in a tubular passage with the meniscus exposed to the atmosphere in the forefront, the atmosphere is more likely to be mixed into the liquid in a portion near an inner wall of the tube than in a center portion of a tube cross section. In the studies made by the present inventors, it was found that: the flow rate at an inner wall surface was almost zero and thus almost no atmosphere was mixed into the liquid; however, particularly in a portion near the inner wall surface (specifically, a region 3 to 10 μm away from the inner wall surface toward the center of the tube cross section), the atmosphere is likely be taken into the liquid. Accordingly, the risk of bubbles being mixed into the pressure chamber can be kept low by making the flow resistance of the inner wall (edge of the nozzle) of the tube as high as possible and reducing the flow rate in the portion near the inner wall surface.
Generally, “hydraulic mean depth” which is a physical quantity with a dimension of length is known as a dimension used for studying the flow resistance of a tubular passage. A tube friction coefficient of a tubular passage is proportional to the “hydraulic mean depth.” The “hydraulic mean depth” is defined by the following formula.
(hydraulic mean depth)=(flow passage cross-sectional area)/(length of wet edge of flow passage cross section)
In the study of “hydraulic mean depth,” a cross-sectional shape with the smallest cross-sectional area of a tubular passage among various cross-sectional shapes with a certain flow resistance is a circle. In other words, when fluid is made to flow through various tubes with the same flow resistance, the average flow rate per unit area is highest in a circular tube. Furthermore, in the circular tube, the flow rate is highest at the center of the circular cross-section and decreases toward an outer edge portion.
In a tube which does not have a circular cross section, it is assumed that the flow rate is highest at the center of a largest circle inscribed in the cross section of the tube and decreases as the distance from the center of the circle increases. Specifically, it is possible to keep the flow rate near the edge of the ejection port low and suppress mixing of bubbles due to the vibration of meniscus by adjusting the shape of the ejection port such that many regions of the edge portion are located away from the inscribed circle. Furthermore, if the ejection port with such a shape can be prepared, the bubbles guided to the pressure chamber via a groove portion connected to the ejection port can be reduced even when such a groove portion is provided. Thus, it is possible to achieve both of the suppression of the mixing of the bubbles and improvements in a circulation effect of the liquid.
Two groove portions 201 extending in the Y direction are formed in the nozzle substrate 107 of the embodiment. The two groove portions 201 have the same shape and each have the X direction width of 10 μm, the Y direction length of 500 μm, and the Z direction depth of 15 μm.
Such a nozzle substrate 107 can be formed by using, for example, an Si substrate as a material and forming the ejection port 101 and the groove portions 201 by photolithography and dry etching (Deep Reactive Ion Etching; DRIE).
Since the nozzle substrate 107 has sufficient thickness of 20 μm, the nozzle substrate 107 can sufficiently withstand pressure generated by vibration of the diaphragm 109 even when two groove portions 201 are formed. Specifically, when the piezoelectric element 111 is driven, the pressure obtained from the diaphragm 109 can be efficiently utilized for the ejection operation from the ejection port.
In
In addition, in the embodiment, the groove portions 201 are formed such that portions farthest from the inscribed circle (both ends of the major axis), that is portions where the flow rate is lowest are the overlapping regions 201a, and the liquid circulation effect near the ejection port is thereby improved. The nozzle substrate 107 in the groove portions 201 is thin and the thickness thereof is 5 μm. Accordingly, the meniscus is sufficiently near a circulation flow passing through the groove portions 201 and the circulation effect in the groove portions 201 extends to regions near the meniscus. As a result, fresh liquid can be stably supplied to the nozzles with the circulation.
As described above, in the embodiment, there is used the nozzle substrate in which the ejection port has the elliptical shape and the two grooves are formed such that both ends of the major axis of the elliptical ejection port are the overlapping regions. This improves the liquid circulation effect while suppressing the mixing of bubbles due to vibration of the meniscus and a stable ejection operation can be maintained in the liquid ejection head.
Note that, although there are portions coming into contact with the inscribed circles C near ends of the two protruding portions, the distance between the protruding portions facing each other is very small and the liquid tends to flow in by capillary force. Accordingly, the risk of air bubbles being mixed into the liquid from these portions is small.
The positions of the overlapping regions 201a between the two groove portions 201 and the ejection port 101 vary among
In each of
Also in a liquid ejection head 1 of a second embodiment, multiple liquid ejection units 152 are arranged in the layout illustrated in
Although two groove portions 201 are arranged for one ejection port 101 in the first embodiment, in this embodiment, one groove portion 201 is arranged for one ejection port 101 to pass the center of the ejection port 101. The width (10 μm) and the depth (15 μm) of the groove portion 201 are the same as those in the first embodiment.
In the embodiment, two inscribed circles C in which the flow rate is relatively high are arranged in the X direction. Since most of the regions of the edge portion of the ejection port 101 are not in contact with the inscribed circles C as in the first embodiment, the risk of the mixing of bubbles can be kept low.
In the embodiment, the groove portion 201 is formed in a center region in which the flow rate is reduced by the protruding portions, and the liquid circulation effect in the ejection port is improved. Since the liquid circulating in the groove portion 201 passes the center of the ejection port 101, the liquid in the ejection port 101 can be more efficiently replaced. Note that, although there are portions where the two protruding portions come into contact with the inscribed circles C near ends of the protruding portions, the distance between the protruding portions facing each other is 5 μm and is very small. Accordingly, the liquid is likely to flow in by capillary force and the risk of air bubbles mixing in from these portions is low.
Since the flow resistance in the center portion of the ejection port is increased and the flow rate is thus reduced from those in the elliptic shape described in the first embodiment by amounts corresponding to arranging of the protruding portion, the mixing of bubbles due to meniscus vibration can be suppressed even when the groove portion 201 is formed to pass the center portion of the ejection port 101. In addition, since the circulation flow in the groove portion 201 can be made to pass the center of the ejection port 101, the liquid in the ejection port 101 can be more efficiently replaced.
As described above, in the embodiment, there is used the nozzle substrate in which the protruding portions are arranged in the ejection port and the one groove is formed such that the portions where these protruding portions are arranged are included in the overlapping region. This improves the liquid circulation effect while suppressing the mixing of bubbles due to vibration of the meniscus and a stable ejection operation can be maintained in the liquid ejection head.
Although the groove portion 201 extending with the uniform width over the entire longitudinal direction of the pressure chamber 102 is prepared in the nozzle substrate 107 in the aforementioned embodiments, the present invention is not limited to such a mode. Even if the groove portion does not extend over the entire pressure chamber, an effect of the present invention which is efficiently circulating the liquid near the ejection port can be obtained as long as at least one groove portion is formed to be connected to the ejection port 101. In this case, the length and depth of the groove portion are preferably adjusted while keeping balance between the liquid circulation efficiency and the stiffness of the nozzle substrate. Note that, as preferable conditions, there are given a condition that the groove portion is arranged at least upstream of the ejection port in the circulation direction and a condition that the length of the groove portion in the circulation direction is twice or more than the depth of the groove portion. Moreover, the depth and width of the groove portion may gradually change in the circulation direction.
Although the configuration using the piezoelectric element 111 and the diaphragm 109 as elements for generating the ejection energy is described above, the liquid ejection head of the present invention is not limited to such a configuration. For example, also in a thermal liquid ejection head using a thermoelectric conversion element as the ejection energy generation element, an effect of the present invention which is improving the liquid circulation efficiency while suppressing the mixing of bubbles can be obtained as long as a non-circular ejection port and a groove portion connected to the ejection port are arranged in the nozzle substrate.
In any case, forming the ejection port in a non-circular shape and disposing at least one groove portion connected to the ejection portion can cause the liquid circulation effect to extend to a portion near the meniscus while suppressing the mixing of bubbles due to vibration of the meniscus. As a result, a stable ejection operation can be maintained in the liquid ejection head.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2018-079105, filed Apr. 17, 2018, which is hereby incorporated by reference wherein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2018-079105 | Apr 2018 | JP | national |