The present invention relates to a liquid ejecting head for ejecting desired liquid by generation of bubble by application of thermal energy thereto, a head cartridge using the liquid ejecting head, a liquid ejecting apparatus and a liquid ejecting method.
More particularly, the present invention relates to a liquid ejecting method, a liquid ejecting head, a head cartridge using the liquid ejecting head, and a liquid ejecting apparatus, using a movable member which displaces by generation of a bubble.
The present invention is applicable to equipment such as a printer, a copying machine, a facsimile machine having a communication system, a word processor having a printer portion or the like, and an industrial recording device combined with various processing device or processing devices, in which the recording is effected on a recording material such as paper, thread, fiber, textile, leather, metal, plastic resin material, glass, wood, ceramic and so on.
In this specification, “recording” means not only forming an image of letter, figure or the like having specific meanings, but also includes forming an image of a pattern not having a specific meaning.
An ink jet recording method of so-called bubble jet type is known in which an instantaneous state change resulting in an instantaneous volume change (bubble generation) is caused by application of energy such as heat to the ink, so as to eject the ink through the ejection outlet by the force resulted from the state change by which the ink is ejected to and deposited on the recording material to form an image formation. As disclosed in U.S. Pat. No. 4,723,129, a recording device using the bubble jet recording method comprises an ejection outlet for ejecting the ink, an ink flow path in fluid communication with the ejection outlet, and an electrothermal transducer as energy generating means disposed in the ink flow path.
With such a recording method is advantageous in that, a high quality image, can be recorded at high speed and with low noise, and a plurality of such ejection outlets can be posited at high density, and therefore, small size recording apparatus capable of providing a high resolution can be provided, and color images can be easily formed. Therefore, the bubble jet recording method is now widely used in printers, copying machines, facsimile machines or another office equipment, and for industrial systems such as textile printing device or the like.
With the increase of the wide needs for the bubble jet technique, various demands are imposed thereon, recently.
For example, an improvement in energy use efficiency is demanded. To meet the demand, the optimization of the heat generating element such as adjustment of the thickness of the protecting film is investigated. This method is effective in that a propagation efficiency of the generated heat to the liquid is improved.
In order to provide high image quality images, driving conditions have been proposed by which the ink ejection speed is increased, and/or the bubble generation is stabilized to accomplish better ink ejection. As another example, from the standpoint of increasing the recording speed, flow passage configuration improvements have been proposed by which the speed of liquid filling (refilling) into the liquid flow path is increased.
Japanese Laid Open Patent Application No. SHO-63-199972 and so on discloses a flow passage structure shown in
On the other hand, in the bubble jet recording method, the heating is repeated with the heat generating element contacted with the ink, and therefore, a burnt material is deposited on the surface of the heat generating element due to burnt deposit of the ink. However, the amount of the deposition may be large depending on the materials of the ink. If this occurs, the ink ejection becomes unstable. Additionally, even when the liquid to be ejected is the one easily deteriorated by heat or even when the liquid is the one with which the bubble generation is not sufficient, the liquid is desired to be ejected in good order without property change.
Japanese Laid Open Patent Application No. SHO-61-69467, Japanese Laid Open Patent Application No. SHO-55-81172 and U.S. Pat. No. 4,480,259 disclose that different liquids are used for the liquid generating the bubble by the heat (bubble generating liquid) and for the liquid to be ejected (ejection liquid). In these publications, the ink as the ejection liquid and the bubble generation liquid are completely separated by a flexible film of silicone rubber or the like so as to prevent direct contact of the ejection liquid to the heat generating element while propagating the pressure resulting from the bubble generation of the bubble generation liquid to the ejection liquid by the deformation of the flexible film. The prevention of the deposition of the material on the surface of the heat generating element and the increase of the selection latitude of the ejection liquid are accomplished, by such a structure.
However, with this structure in which the ejection liquid and the bubble generation liquid are completely separated, the pressure by the bubble generation is propagated to the ejection liquid through the expansion-contraction deformation of the flexible film, and therefore, the pressure is absorbed by the flexible film to a quite high degree. In addition, the deformation of the flexible film is not so large, and therefore, the energy use efficiency and the ejection force are deteriorated although the some effect is provided by the provision between the ejection liquid and the bubble generation liquid.
Accordingly, it is a principal object of the present invention to provide a liquid ejecting head and device wherein the state of the liquid to be ejected is changed at least upon the start of the recording operation, while maintaining the high ejection power and the high ejection efficiency, by which ejection performance and the property for the recording material are improved or normalized to stabilize and improve the image quality.
It is another object of the present invention to provide a liquid ejecting head and a device, wherein ejection liquid and/or the bubble generation liquid is discharged at the latest upon the record start, and the density of the ejection liquid is stabilized to improve or stabilize the image quality.
It is a further object of the present invention to provide a liquid ejecting head, a driving method therefor, and a device, wherein selection latitude of the liquid to be ejected is enhanced, while maintaining the stability of the ejection property and the high recorded image quality.
According to an aspect of the present invention, there is provided a Liquid ejecting method for ejecting liquid using a bubble, comprising the steps of: using a liquid ejecting head having an ejection outlet for ejecting the liquid, a bubble generating region where a bubble is generated in the liquid, a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
displacing the movable member from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; and
imparting an operation to said liquid ejecting head to normalize a state of the liquid in a liquid flow path for the liquid at least before liquid ejection start or at the time of non-ejection of the liquid.
According to another aspect of the present invention, there is provided a liquid ejection apparatus, using a liquid ejection head having an ejection outlet for ejecting the liquid, a bubble generating region where a bubble is generated in the liquid, a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
wherein the movable member is displaced from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; the improvement comprising:
driving means for imparting an operation to said liquid ejecting head to normalize a state of the liquid in a liquid flow path for the liquid at least before liquid ejection start or at the time of non-ejection of the liquid.
According to a further aspect of the present invention, there is provided a liquid ejecting head for ejecting liquid using a bubble, comprising:
an ejection outlet for ejecting the liquid:
a bubble generating region for generating the bubble in the liquid:
a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
wherein the movable member is displaced from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; and
means for changing a state of said liquid by changing a temperature of said liquid.
According to a further aspcet of the present invention, there is provided a liquid ejecting head for ejecting liquid using a bubble, comprising:
an ejection outlet for ejecting the liquid:
a bubble generating region for generating the bubble in the liquid:
a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
wherein the movable member is displaced from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; and
liquid moving means for changing a state of said liquid by moving said liquid without ejecting said liquid.
According to a further aspect of the present invention, there is provided a liquid ejection apparatus for ejecting liquid, comprising:
a liquid ejecting head having an ejection outlet for ejecting the liquid, a bubble generating region where a bubble is generated in the liquid, a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
wherein the movable member is displaced from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; and
energy increasing means for making larger bubble generation energy for ejecting at least during a predetermined period from ejection start than thereafter.
According to a further aspect of the present invention, there is provided a liquid ejecting method for ejecting liquid using a bubble, comprising:
using a liquid ejecting head having an ejection outlet for ejecting the liquid, a bubble generating region where a bubble is generated in the liquid, a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
wherein the movable member is displaced from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; and
making larger bubble generation energy for ejecting at least during a predetermined period from ejection start than thereafter.
According to a further aspect of the present invention, there is provided a liquid ejecting apparatus for effecting recording by ejecting liquid, comprising:
a liquid ejecting head having an ejection outlet for ejecting the liquid, a bubble generating region where a bubble is generated in the liquid, a movable member which is disposed faced to said bubble generating region, and which is displaceable between a first position and a second position farther from the bubble generating region than the first position and which has a free end at a downstream side thereof;
wherein the movable member is displaced from said first position to said second position by pressure based on generation of the bubble in said bubble generating region, wherein said bubble expands more to the downstream side than to the upstream side with respect to a direction toward said ejection outlet by the displacement of said movable member, thus directing said bubble toward said ejection outlet to eject the liquid through the ejection outlet; and
discharging means for discharging said liquid from the liquid flow path for the liquid to be ejected during a predetermined period in a non-ejection period at least before ejection start, using means partly constituting said liquid ejecting head.
means for changing a state of said liquid by changing a temperature of said liquid.
liquid moving means for changing a state of said liquid by moving said liquid without ejecting said liquid; and
energy increasing means for making larger bubble generation energy for ejecting at least during a predetermined period from ejection start than thereafter.
In this specification, “upstream” and “downstream” are defined with respect to a general liquid flow from a liquid supply source to the ejection outlet through the bubble generation region (movable member).
As regards the bubble per se, the “downstream” is defined as toward the ejection outlet side of the bubble which directly function to eject the liquid droplet. More particularly, it generally means a downstream from the center of the bubble with respect to the direction of the general liquid flow, or a downstream from the center of the area of the heat generating element with respect to the same.
In this specification, “substantially sealed” generally means a sealed state in such a degree that when the bubble grows, the bubble does not escape through a gap (slit) around the movable member before motion of the movable member.
In this specification, “separation wall” may mean a wall (which may include the movable member) interposed to separate the region in direct fluid communication with the ejection outlet from the bubble generation region, and more specifically means a wall separating the flow path including the bubble generation region from the liquid flow path in direct fluid communication with the ejection outlet, thus preventing mixture of the liquids in the liquid flow paths.
In this specification, “upon ‘non-ejection’, ‘non-printing’ or ‘non-recording’”, means “when the liquid is not ejected for a period longer than a minimum ejection period (a reciprocal of the maximum ejection frequency) of repeated liquid ejections by bubble generations for the recording operation, in a nozzle. For example, it occurs in the not recording range in one line recording in a serial printer, in the sheet advancing period between lines, in the sheet feeding period between pages, in a temporary rest period waiting for recording instructions from a host computer, or in the off-state of the voltage source. Thus, it may mean a short or long period.
In this specification, “upon ‘ejection start’, ‘print start’, or ‘record start’”, covers a short period from start or resumption of the ejection, printing or recording after the non-ejection of a certain period.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.
(Ejection Fundamentals and Head Structure)
The description will be made as to fundamentals on the ejection of the liquid and the structure of the head. First, the description will be made as to an improvement in an ejection force and/or an ejection efficiency by controlling a direction of propagation of pressure resulting from generation of a bubble for ejecting the liquid and controlling a direction of growth of the bubble.
The liquid ejecting head of this embodiment comprises a heat generating element 2 (a heat generating resistor of 40 μm×105 μm in this embodiment) as the ejection energy generating element for supplying thermal energy to the liquid to eject the liquid, an element substrate 1 on which said heat generating element 2 is provided, and a liquid flow path 10 formed above the element substrate correspondingly to the heat generating element 2. The liquid flow path 10 is in fluid communication with a common liquid chamber 13 for supplying the liquid to a plurality of such liquid flow paths 10 which is in fluid communication with a plurality of the ejection outlets 18.
Above the element substrate in the liquid flow path 10, a movable member or plate 31 in the form of a cantilever of an elastic material such as metal is provided faced to the heat generating element 2. One end of the movable member is fixed to a foundation (supporting member) 34 or the like provided by patterning of photosensitivity resin material on the wall of the liquid flow path 10 or the element substrate. By this structure, the movable member is supported, and a fulcrum (fulcrum portion) is constituted.
The movable member 31 is so positioned that it has a fulcrum (fulcrum portion which is a fixed end) 33 in an upstream side with respect to a general flow of the liquid from the common liquid chamber 13 toward the ejection outlet 18 through the movable member 31 caused by the ejecting operation and that it has a free end (free end portion) 32 in a downstream side of the fulcrum 33. The movable member 31 is faced to the heat generating element 2 with a gap of 15 μm approx. as if it covers the heat generating element 2. A bubble generation region is constituted between the heat generating element and movable member. The type, configuration or position of the heat generating element or the movable member is not limited to the ones described above, but may be changed as long as the growth of the bubble and the propagation of the pressure can be controlled. For the purpose of easy understanding of the flow of the liquid which will be described hereinafter, the liquid flow path 10 is divided by the movable member 31 into a first liquid flow path 14 which is directly in communication with the ejection outlet 18 and a second liquid flow path 16 having the bubble generation region 11 and the liquid supply port 12.
By causing heat generation of the heat generating element 2, the heat is applied to the liquid in the bubble generation region 11 between the movable member 31 and the heat generating element 2, by which a bubble is generated by the film boiling phenomenon as disclosed in U.S. Pat. No. 4,723,129. The bubble and the pressure caused by the generation of the bubble act mainly on the movable member, so that the movable member 31 moves or displaces to widely open toward the ejection outlet side about the fulcrum 33, as shown in
Here, one of the fundamental ejection principles according to the present invention will be described. One of important principles of this invention is that the movable member disposed faced to the bubble is displaced from the normal first position to the displaced second position on the basis of the pressure of the bubble generation or the bubble per se, and the displacing or displaced movable member 31 is effective to direct the pressure produced by the generation of the bubble and/or the growth of the bubble per se toward the ejection outlet 18 (downstream side).
More detailed description will be made with comparison between the conventional liquid flow passage structure not using the movable member (
In a conventional head as shown in
On the other hand, in the case of the present invention, shown in
The growth direction per se of the bubble is directed downstream similarly to to the pressure propagation directions V1-V4, and grow more in the downstream side than in the upstream side. Thus, the growth direction per se of the bubble is controlled by the movable member, and the pressure propagation direction from the bubble is controlled thereby, so that the ejection efficiency, ejection force and ejection speed or the like are fundamentally improved.
Referring back to
At this time, the movable member 31 is displaced from the first position to the second position by the pressure produced by the generation of the bubble 40 so as to guide the propagation of the pressure toward the ejection outlet. It should be noted that, as described hereinbefore, the free end 32 of the movable member 31 is disposed in the downstream side (ejection outlet side), and the fulcrum 33 is disposed in the upstream side (common liquid chamber side), so that at least a part of the movable member is faced to the downstream portion of the bubble, that is, the downstream portion of the heat generating element.
The movable member 31 having been displaced to the second position returns to the initial position (first position) of
In the foregoing, the description has been made as to the operation of the movable member with the generation of the bubble and the ejecting operation of the liquid. Now, the description will be made as to the refilling of the liquid in the liquid ejecting head of the present invention.
Referring to
When the bubble 40 enters the bubble collapsing process after the maximum volume thereof (
Therefore, when the flow resistance at the supply port side is smaller than the other side, a large amount of the liquid flows into the bubble collapse position from the ejection outlet side with the result that the meniscus retraction is large. With the reduction of the flow resistance in the ejection outlet for the purpose of increasing the ejection efficiency, the meniscus M retraction increases upon the collapse of bubble with the result of longer refilling time period, thus making high speed printing difficult.
According to this embodiment, because of the provision of the movable member 31, the meniscus retraction stops at the time when the movable member returns to the initial position upon the collapse of bubble, and thereafter, the supply of the liquid to fill a volume W2 is accomplished by the flow VD2 through the second flow path 16 (W1 is a volume of an upper side of the bubble volume W beyond the first position of the movable member 31, and W2 is a volume of a bubble generation region 11 side thereof). In the prior art, a half of the volume of the bubble volume W is the volume of the meniscus retraction, but according to this embodiment, only about one half (W1) is the volume of the meniscus retraction.
Additionally, the liquid supply for the volume W2 is forced to be effected mainly from the upstream (VD2) of the second liquid flow path along the surface of the heat generating element side of the movable member 31 using the pressure upon the collapse of bubble, and therefore, more speedy refilling action is accomplished.
When the refilling using the pressure upon the collapse of bubble is carried out in a conventional head, the vibration of the meniscus is expanded with the result of the deterioration of the image quality. However, according to this embodiment, the flows of the liquid in the first liquid flow path 14 at the ejection outlet side and the ejection outlet side of the bubble generation region 11 are suppressed, so that the vibration of the meniscus is reduced.
Thus, according to this embodiment, the high speed refilling is accomplished by the forced refilling to the bubble generation region through the liquid supply passage 12 of the second flow path 16 and by the suppression of the meniscus retraction and vibration. Therefore, the stabilization of ejection and high speed repeated ejections are accomplished, and when the embodiment is used in the field of recording, the improvement in the image quality and in the recording speed can be accomplished.
The embodiment provides the following effective function. It is a suppression of the propagation of the pressure to the upstream side (back wave) produced by the generation of the bubble. The pressure due to the common liquid chamber 13 side (upstream) of the bubble generated on the heat generating element 2 mostly has resulted in force which pushes the liquid back to the upstream side (back wave). The back wave deteriorates the refilling of the liquid into the liquid flow path by the pressure at the upstream side, the resulting motion of the liquid and the resulting inertia force. In this embodiment, these actions to the upstream side are suppressed by the movable member 31, so that the refilling performance is further improved.
The description will be made as to a further characterizing feature and the advantageous effect.
The second liquid flow path 16 of this embodiment has a liquid supply passage 12 having an internal wall substantially flush with the heat generating element 2 (the surface of the heat generating element is not greatly stepped down) at the upstream side of the heat generating element 2. With this structure, the supply of the liquid to the surface of the heat generating element 2 and the bubble generation region 11 occurs along the surface of the movable member 31 at the position closer to the bubble generation region 11 as indicated by VD2. Accordingly, stagnation of the liquid on the surface of the heat generating element 2 is suppressed, so that precipitation of the gas dissolved in the liquid is suppressed, and the residual bubbles not disappeared are removed without difficulty, and in addition, the heat accumulation in the liquid is not too much. Therefore, the stabilized bubble generation can be repeated at a high speed. In this embodiment, the liquid supply passage 12 has a substantially flat internal wall, but this is not limiting, and the liquid supply passage is satisfactory if it has an internal wall with such a configuration smoothly extended from the surface of the heat generating element that the stagnation of the liquid occurs on the heat generating element, and eddy flow is not significantly caused in the supply of the liquid.
The supply of the liquid into the bubble generation region may occur through a gap at a side portion of the movable member (slit 35) as indicated by VD1. In order to direct the pressure upon the bubble generation further effectively to the ejection outlet, a large movable member covering the entirety of the bubble generation region (covering the surface of the heat generating element) may be used, as shown in FIG. 2. Then, the flow resistance for the liquid between the bubble generation region 11 and the region of the first liquid flow path 14 close to the ejection outlet is increased by the restoration of the movable member to the first position, so that the flow of the liquid to the bubble generation region 11 along VD1 can be suppressed. However, according to the head structure of this embodiment, there is a flow effective to supply the liquid to the bubble generation region, the supply performance of the liquid is greatly increased, and therefore, even if the movable member 31 covers the bubble generation region 11 to improve the ejection efficiency, the supply performance of the liquid is not deteriorated.
The positional relation between the free end 32 and the fulcrum 33 of the movable member 31 is such that the free end is at a downstream position of the fulcrum as indicated by 6 in the Figure, for example. With this structure, the function and effect of guiding the pressure propagation direction and the direction of the growth of the bubble to the ejection outlet side or the like can be efficiently assured upon the bubble generation. Additionally, the positional relation is effective to accomplish not only the function or effect relating to the ejection but also the reduction of the flow resistance through the liquid flow path 10 upon the supply of the liquid thus permitting the high speed refilling. When the meniscus M retracted b the ejection as shown in
More particularly, in this embodiment, as described hereinbefore, the free end 32 of the movable member 3 is faced to a downstream position of the center 3 of the area which divides the heat generating element 2 into an upstream region and a downstream region (the line passing through the center (central portion) of the area of the heat generating element and perpendicular to a direction of the length of the liquid flow path). The movable member 31 receives the pressure and the bubble which are greatly contributable to the ejection of the liquid at the downstream side of the area center position 3 of the heat generating element, and it guides the force to the ejection outlet side, thus fundamentally improving the ejection efficiency or the ejection force.
Further advantageous effects are provided using the upstream side of the bubble, as described hereinbefore.
Furthermore, it is considered that in the structure of this embodiment, the instantaneous mechanical movement of the free end of the movable member 31, contributes to the ejection of the liquid.
A foundation 34 is provided at each side, and between them, a liquid supply passage 12 is constituted. With this structure, the liquid can be supplied along a surface of the movable member faced to the heat generating element side and from the liquid supply passage having a surface substantially flush with the surface of the heat generating element or smoothly continuous therewith.
When the movable member 31 is at the initial position (first position), the movable member 31 is close to or closely contacted to a downstream wall 36 disposed downstream of the heat generating element 2 and heat generating element side walls 37 disposed at the sides of the heat generating element, so that the ejection outlet 18 side of the bubble generation region 11 is substantially sealed. Thus, the pressure produced by the bubble at the time of the bubble generation and particularly the pressure downstream of the bubble, can be concentrated on the free end side side of the movable member, without releasing the pressure.
In the process of the collapse of bubble, the movable member 31 returns to the first position, and the ejection outlet side of the bubble generation region 31 is substantially sealed, and therefore, the meniscus retraction is suppressed, and the liquid supply to the heat generating element is carried out with the advantages described hereinbefore. As regards the refilling, the same advantageous effects can be provided as in the foregoing embodiment.
In this embodiment, the foundation 34 for supporting and fixing the movable member 31 is provided at an upstream position away from the heat generating element 2, as shown in FIG. 3 and
In this embodiment, the clearance between the movable member 31 and the clearance is 15 μm approx., but the distance may be changed as long as the pressure produced by the bubble generation is sufficiently propagated to the movable member.
In the above described embodiment, the pressure by the generated bubble is concentrated on the free end of the movable member to accomplish the quick movement of the movable member and the concentration of the movement of the bubble to the ejection outlet side. In this embodiment, the bubble is relatively free, while a downstream portion of the bubble which is at the ejection outlet side directly contributable to the droplet ejection, is regulated by the free end side of the movable member.
More particularly, the projection (hatched portion) functioning as a barrier provided on the heat generating element substrate 1 of
In this example, the growth of the bubble is permitted at the downstream leading end portion of the downstream portions having direct function for the liquid droplet ejection, and therefore, the pressure component is effectively used for the ejection. Additionally, the upward pressure in this downstream portion (component forces VB2, VB3 and VB4) acts such that the free end side portion of the movable member is added to the growth of the bubble at the leading end portion. Therefore, the ejection efficiency is improved similarly to the foregoing embodiments. As compared with the embodiment, this embodiment is better in the responsivity to the driving of the heat generating element.
The structure of this embodiment is simple, and therefore, the manufacturing is easy.
The fulcrum portion of the movable member 31 of this embodiment is fixed on one foundation 34 having a width smaller than that of the surface of the movable member. Therefore, the liquid supply to the bubble generation region 11 upon the collapse of bubble occurs along both of the lateral sides of the foundation (indicated by an arrow). The foundation may be in another form if the liquid supply performance is assured.
In the case of this embodiment, the existence of the movable member is effective to control the flow into the bubble generation region from the upper part upon the collapse of bubble, the refilling for the supply of the liquid is better than the conventional bubble generating structure having only the heat generating element. The retraction of the meniscus is also decreased thereby.
In a preferable modified embodiment of the third embodiment, both of the lateral sides (or only one lateral side) are substantially sealed for the bubble generation region 11. With such a structure, the pressure toward the lateral side of the movable member is also directed to the ejection outlet side end portion, so that the ejection efficiency is further improved.
The description will be made as to another example.
The ejection principle for the liquid in this embodiment is the same as in the foregoing embodiment. The liquid flow path has a multi-passage structure, and the liquid (bubble generation liquid) for bubble generation by the heat, and the liquid (ejection liquid) mainly ejected, are separated.
In the liquid ejecting head of this embodiment, a second liquid flow path 16 for the bubble generation is provided on the element substrate 1 which is provided with a heat generating element 2 for supplying thermal energy for generating the bubble in the liquid, and a first liquid flow path 14 for the ejection liquid in direct communication with the ejection outlet 18 is formed thereabove.
The upstream side of the first liquid flow path is in fluid communication with a first common liquid chamber 15 for supplying the ejection liquid into a plurality of first liquid flow paths, and the upstream side of the second liquid flow path is in fluid communication with the second common liquid chamber for supplying the bubble generation liquid to a plurality of second liquid flow paths.
In the case that the bubble generation liquid and ejection liquid are the same liquids, the number of the common liquid chambers may be one.
Between the first and second liquid flow paths, there is a separation wall 30 of an elastic material such as metal so that the first flow path and the second flow path are separated. In the case that mixing of the bubble generation liquid and the ejection liquid should be minimum, the first liquid flow path 14 and the second liquid flow path 16 are preferably isolated by the partition wall. However, when the mixing to a certain extent is permissible, the complete isolation is not inevitable.
A portion of the partition wall in the upward projection space of the heat generating element (ejection pressure generation region including A and B (bubble generation region 11) in FIG. 10), is in the form of a cantilever movable member 31, formed by slits 35, having a fulcrum 33 at the common liquid chamber (15, 17) side and free end at the ejection outlet side (downstream with respect to the general flow of the liquid). The movable member 31 is faced to the surface, and therefore, it operates to open toward the ejection outlet side of the first liquid flow path upon the bubble generation of the bubble generation liquid (direction of the arrow in the Figure). In an example of
As for the positional relation among the fulcrum 33 and the free end 32 of the movable member 31 and the heat generating element, are the same as in the previous example.
In the previous example, the description has been made as to the relation between the structures of the liquid supply passage 12 and the heat generating element 2. The relation between the second liquid flow path 16 and the heat generating element 2 is the same in this embodiment.
Referring to
The used ejection liquid in the first liquid flow path 14 and the used bubble generation liquid in the second liquid flow path 16 were the same water base inks.
By the heat generated by the heat generating element 2, the bubble generation liquid in the bubble generation region in the second liquid flow path generates a bubble 40, by film boiling phenomenon as described hereinbefore.
In this embodiment, the bubble generation pressure is not released in the three directions except for the upstream side in the bubble generation region, so that the pressure produced by the bubble generation is propagated concentratedly on the movable member 6 side in the ejection pressure generation portion, by which the movable member 6 is displaced from the position indicated in
Then, with the contraction of the bubble, the movable member 31 returns to the position indicated in
The major functions and effects as regards the propagation of the bubble generation pressure with the displacement of the movable wall, the direction of the bubble growth, the prevention of the back wave and so on, in this embodiment, are the same as with the first embodiment, but the two-flow-path structure is advantageous in the following points.
The ejection liquid and the bubble generation liquid may be separated, and the ejection liquid is ejected by the pressure produced in the bubble generation liquid. Accordingly, a high viscosity liquid such as polyethylene glycol or the like with which bubble generation and therefore ejection force is not sufficient by heat application, and which has not been ejected in good order, can be ejected. For example, this liquid is supplied into the first liquid flow path, and liquid with which the bubble generation is in good order is supplied into the second path as the bubble generation liquid. An example of the bubble generation liquid a mixture liquid (1-2 cP approx.) of the anol and water (4:6). By doing so, the ejection liquid can be properly ejected.
Additionally, by selecting as the bubble generation liquid a liquid with which the deposition such as kogation does not remain on the surface of the heat generating element even upon the heat application, the bubble generation is stabilized to assure the proper ejections. The above-described effects in the foregoing embodiments are also provided in this embodiment, the high viscous liquid or the like can be ejected with a high ejection efficiency and a high ejection pressure.
Furthermore, liquid which is not durable against heat is ejectable. In this case, such a liquid is supplied in the first liquid flow path as the ejection liquid, and a liquid which is not easily altered in the property by the heat and with which the bubble generation is in good order, is supplied in the second liquid flow path. By doing so, the liquid can be ejected without thermal damage and with high ejection efficiency and with high ejection pressure.
In the foregoing, the description has been made as to the major parts of the liquid ejecting head and the liquid ejecting method according to the embodiments of the present invention. The description will now be made as to further detailed embodiments usable with the foregoing embodiments. The following examples are usable with both of the single-flow-path type and two-flow-path type without specific statement.
<Liquid Flow Path Ceiling Configuration>
As shown in this Figure, the displaced level of the free end of the movable member is made higher than the diameter of the ejection outlet, by which sufficient ejection pressure is transmitted. As shown in this Figure, a height of the liquid flow path ceiling at the fulcrum 33 position of the movable member is lower than that of the liquid flow path ceiling at the free end 32 position of the movable member, so that the release of the pressure wave to the upstream side due to the displacement of the movable member can be further effectively prevented.
<Positional Relation Between Second Liquid Flow Path and Movable Member>
The second liquid flow path 16 of this embodiment has a throat portion 19 upstream of the heat generating element 2 with respect to a general flow of the liquid from the second common liquid chamber side to the ejection outlet through th heat generating element position, the movable member position along the first flow path, so as to provide a chamber (bubble generation chamber) effective to suppress easy release, toward the upstream side, of the pressure produced upon the bubble generation in the second liquid flow path 16.
In the case of the conventional head wherein the flow path where the bubble generation occurs and the flow path from which the liquid is ejected, are the same, a throat portion may be provided to prevent the release of the pressure generated by the heat generating element toward the liquid chamber. In such a case, the cross-sectional area of the throat portion should not be too small in consideration of the sufficient refilling of the liquid.
However, in the case of this embodiment, much or most of the ejected liquid is from the first liquid flow path, and the bubble generation liquid in the second liquid flow path having the heat generating element is not consumed much, so that the filling amount of the bubble generation liquid to the bubble generation region 11 may be small. Therefore, the clearance at the throat portion 19 can be made very small, for example, as small as several μm-ten and several μm, so that the release of the pressure produced in the second liquid flow path can be further suppressed and to further concentrate it to the movable member side. The pressure can be used as the ejection pressure through the movable member 31, and therefore, the high ejection energy use efficiency and ejection pressure can be accomplished. The configuration of the second liquid flow path 16 is not limited to the one described above, but may be any if the pressure produced by the bubble generation is effectively transmitted to the movable member side.
As shown in
In
<Movable Member and Partition Wall>
In the foregoing embodiments, th plate or film movable member 31 and the separation wall 5 having this movable member was made of a nickel having a thickness of 5 μm, but this is not limited to this example, but it may be any if it has anti-solvent property against the bubble generation liquid and the ejection liquid, and if the elasticity is enough to permit the operation of the movable member, and if the required fine slit can be formed.
Preferable examples of the materials for the movable member include durable materials such as metal such as silver, nickel, gold, iron, titanium, aluminum, platinum, tantalum, stainless steel, phosphor bronze or the like, alloy thereof, or resin material having nytril group such as acrylonitrile, butadiene, stylene or the like, resin material having amide group such as polyamide or the like, resin material having carboxyl such as polycarbonate or the like, resin material having aldehyde group such as polyacetal or the like, resin material having sulfon group such as polysulfone, resin material such as liquid crystal polymer or the like, or chemical compound thereof; or materials having durability against the ink, such as metal such as gold, tungsten, tantalum, nickel, stainless steel, titanium, alloy thereof, materials coated with such metal, resin material having amide group such as polyamide, resin material having aldehyde group such as polyacetal, resin material having ketone group such as polyetheretherketone, resin material having imide group such as polyimide, resin material having hydroxyl group such as phenolic resin, resin material having ethyl group such as polyethylene, resin material having alkyl group such as polypropylene, resin material having epoxy group such as epoxy resin material, resin material having amino group such as melamine resin material, resin material having methylol group such as xylene resin material, chemical compound thereof, ceramic material such as silicon dioxide or chemical compound thereof.
Preferable examples of partition or division wall include resin material having high heat-resistive, high anti-solvent property and high molding property, more particularly recent engineering plastic resin materials such as polyethylene, polypropylene, polyamide, polyethylene terephthalate, melamine resin material, phenolic resin, epoxy resin material, polybutadiene, polyurethane, polyetheretherketone, polyether sulfone, polyallylate, polyimide, polysulfone, liquid crystal polymer (LCP), or chemical compound thereof, or metal such as silicon dioxide, silicon nitride, nickel, gold, stainless steel, alloy thereof, chemical compound thereof, or materials coated with titanium or gold.
The thickness of the separation wall is determined depending on the used material and configuration from the standpoint of sufficient strength as the wall and sufficient operativity as the movable member, and generally, 0.5 μm-10 μm approx. is desirable.
The width of the slit 35 for providing the movable member 31 is 2 μm in the embodiments. When the bubble generation liquid and ejection liquid are different materials, and mixture of the liquids is to be avoided, the gap is determined so as to form a meniscus between the liquids, thus avoiding mixture therebetween. For example, when the bubble generation liquid has a viscosity about 2 cP, and the ejection liquid has a viscosity not less than 100 cP, 5 μm approx. slit is enough to avoid the liquid mixture, but not more than 3 μm is desirable.
<Element Substrate>
The description will be made as to a structure of the element substrate provided with the heat generating element for heating the liquid.
On the element substrate 1, a grooved member 50 is mounted, the member 50 having second liquid flow paths 16, separation walls 30, first liquid flow paths 14 and grooves for constituting the first liquid flow path.
The element substrate 1 has, as shown in
The pressure and shock wave generated upon the bubble generation and collapse is so strong that the durability of the oxid film which is relatively fragile is deteriorated. Therefore, metal material such as tantalum (Ta) or the like is used as the anti-cavitation layer.
The protection layer may be omitted depending on the combination of liquid, liquid flow path structure and resistance material. One of such examples is shown in
In the embodiment, the heat generating element has a heat generation portion having the resistance layer which generates heat in response to the electric signal. This is not limiting, and it will suffice if a bubble enough to eject the election liquid is created in the bubble generation liquid. For example, heat generation portion may be in the form of a photothermal transducer which generates heat upon receiving light such as laser, or the one which generates heat upon receiving high frequency wave.
On the element substrate 1, function elements such as a transistor, a diode, a latch, a shift register and so on for selective driving the electrothermal transducer element may also be int grally built in, in addition to the resistance layer 105 constituting the heat generation portion and the electrothermal transducer constituted by the wiring electrode 104 for supplying the electric signal to the resistance layer.
In order to eject the liquid by driving the heat generation portion of the electrothermal transducer on the above-described element substrate 1, the resistance layer 105 is supplied through the wiring electrode 104 with rectangular pulses as shown in
<Head Structure of 2 Flow Path Structure>
The description will be made as to a structure of the liquid ejecting head with which different liquids are separately accommodated in first and second common liquid chamber, and the number of parts can be reduces so that the manufacturing cost can be reduced.
In this embodiment, a grooved member 50 has an orifice plate 51 having an ejection outlet 18, a plurality of grooves for constituting a plurality of first liquid flow paths 14 and a recess for constituting the first common liquid chamber 15 for supplying the liquid (ejection liquid) to the plurality of liquid flow paths 14. A separation wall 30 is mounted to the bottom of the grooved member 50 by which plurality of first liquid flow paths 14 are formed. Such a grooved member 50 has a first liquid supply passage 20 extending from an upper position to the first common liquid chamber 15. The grooved member 50 also has a second liquid supply passage 21 extending from an upper position to the second common liquid chamber 17 through the separation wall 30.
As indicated by an arrow C in
In this example, the second liquid supply passage 21 is extended in parallel with the first liquid supply passage 20, but this is not limited to the exemplification, but it may be any if the liquid is supplied to the second common liquid chamber 17 through the separation wall 30 outside the first common liquid chamber 15.
The (diameter) of the second liquid supply passage 21 is determined in consideration of the supply amount of the second liquid. The configuration of the second liquid supply passage 21 is not limited to circular or round but may be rectangular or the like.
The second common liquid chamber 17 may be formed by dividing the grooved by a separation wall 30. As for the method of forming this, as shown in
In this example, the element substrate 1 is constituted by providing the supporting member 70 of metal such as aluminum with a plurality of electrothermal transducer elements as heat generating elements for generating heat for bubble generation from the bubble generation liquid through film boiling.
Above the element substrate 1, there are disposed the plurality of grooves constituting the liquid flow path 16 formed by the second liquid passage walls, the recess for constituting the second common liquid chamber (common bubble generation liquid chamber) 17 which is in fluid communication with the plurality of bubble generation liquid flow paths for supplying the bubble generation liquid to the bubble generation liquid passages, and the separation or dividing walls 30 having the movable walls 31.
Designated by reference numeral 50 is a grooved, member. The grooved member is provided with grooves for constituting the ejection liquid flow paths (first liquid flow paths) 14 by mounting the separation walls 30 thereto, a recess for constituting the first common liquid chamber (common ejection liquid chamber) 15 for supplying the ejection liquid to the ejection liquid flow paths, the first supply passage (ejection liquid supply passage) 20 for supplying the ejection liquid to the first common liquid chamber, and the second supply passage (bubble generation liquid supply passage) 21 for supplying the bubble generation liquid to the second supply passage (bubble generation liquid supply passage) 21. The second supply passage 21 is connected with a fluid communication path in fluid communication with the second common liquid chamber 17, penetrating through the separation wall 30 disposed outside of the first common liquid chamber 15. By the provision of the fluid communication path, the bubble generation liquid can be supplied to the second common liquid chamber 15 without mixture with the ejection liquid.
The positional relation among the element substrate 1, separation wall 30, grooved top plate 50 is such that the movable members 31 are arranged corresponding to the heat generating elements on the element substrate 1, and that the ejection liquid flow paths 14 are arranged corresponding to the movable members 31. In this example, one second supply passage is provided for the grooved member, but it may be plural in accordance with the supply amount. The cross-sectional area of the flow path of the ejection liquid supply passage 20 and the bubble generation liquid supply passage 21 may be determined in proportion to the supply amount. By the optimization of the cross-sectional area of the flow path, the parts constituting the grooved member 50 or the like can be downsized.
As described in the foregoing, according to this embodiment, the second supply passage for supplying the second liquid to the second liquid flow path and the first supply passage for supplying the first liquid to the first liquid flow path, can be provided by a single grooved top plate, so that the number of parts can be reduced, and therefore, the reduction of the manufacturing steps and therefore the reduction of the manufacturing cost, are accomplished.
Furthermore, the supply of the second liquid to the second common liquid chamber in fluid communication with the second liquid flow path, is effected through the second liquid flow path which penetrates the separation wall for separating the first liquid and the second liquid, and therefore, one bonding step is enough for the bonding of the separation wall, the grooved member and the heat generating element substrate, so that the manufacturing is easy, and the accuracy of the bonding is improved.
Since the second liquid is supplied to the second liquid common liquid chamber, penetrating the separation wall, the supply of the second liquid to the second liquid flow path is assured, and therefore, the supply amount is sufficient so that the stabilized ejection is accomplished.
<Ejection Liquid and Bubble Generation Liquid>
As described in the foregoing embodiment, according to the present invention, by the structure having the movable member described above, the liquid can be ejected at higher ejection force or ejection efficiency than the conventional liquid ejecting head. When the same liquid is used for the bubble generation liquid and the ejection liquid, it is possible that the liquid is not deteriorated, and that deposition on the heat generating element due to heating can be reduced. Therefore, a reversible state change is accomplished by repeating the gassification and condensation. So, various liquids are usable, if the liquid is the one not deteriorating the liquid flow passage, movable member or separation wall or the like.
Among such liquids, the one having the ingredient as used in conventional bubble jet device, can be used as a recording liquid.
When the two-flow-path structure of the present invention is used with different ejection liquid and bubble generation liquid, the bubble generation liquid having the above-described property is used, more particularly, the examples includes: methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-n-hexane, n-heptane, n-octane, toluene, xylene, methylen dichloride, trichloroethylene, Freon TF, Freon BF, ethyl ether, dioxane, cyclohexane, methyl acetate, ethyl acetate, acetone, methyl ethyl ketone, water, or the like, and a mixture thereof.
As for the ejection liquid, various liquids are usable without paying attention to the degree of bubble generation property or thermal property. The liquids which have not been conventionally usable, because of low bubble generation property and/or easiness of property change due to heat, are usable.
However, it is desired that the ejection liquid by itself or by reaction with the bubble generation liquid, does not impede the ejection, the bubble generation or the operation of the movable member or the like.
As for the recording ejection liquid, high viscous ink or the like is usable. As for another ejection liquid, pharmaceuticals and perfume or the like having a nature easily deteriorated by heat is usable. The ink of the following ingredient was used as the recording liquid usable for both of the ejection liquid and the bubble generation liquid, and the recording operation was carried out. Since the ejection speed of the ink is increased, the shot accuracy of the liquid droplets is improved, and therefore, highly desirable images were recorded.
Dye ink viscosity of 2 cp:
Recording operations were also carried out using the following combination of the liquids for the bubble generation liquid and the ejection liquid. As a result, the liquid having a ten and several cps viscosity, which was unable to be ejected heretofore, was properly ejected, and even 150 cps liquid was properly ejected to provide high quality image.
In the case of the liquid which has not been easily ejected, the ejection speed is low, and therefore, the variation in the ejection direction is expanded on the recording paper with the result of poor shot accuracy. Additionally, variation of ejection amount occurs due to the ejection instability, thus preventing the recording of high quality image. However, according to the embodiments, the use of the bubble generation liquid permits sufficient and stabilized generation of the bubble. Thus, the improvement in the shot accuracy of the liquid droplet and the stabilization of the ink ejection amount can be accomplished, thus improving the recorded image quality remarkably.
<Liquid Ejection Head Cartridge>
The description will be made as to a liquid ejection head cartridge having the liquid ejecting head of the foregoing example.
The liquid ejecting head portion 201 comprises an element substrate 1, a separation wall 30, a grooved member 50, a confining spring 78, liquid supply member 90 and a supporting member 70. The element substrate 1 is provided with a plurality of heat generating resistors for supplying heat to the bubble generation liquid, as described hereinbefore. A bubble generation liquid passage is formed between the element substrate 1 and the separation wall 30 having the movable wall. By the coupling between the separation wall 30 and the grooved top plate 50, an ejection flow path (unshown) for fluid communication with the ejection liquid is formed.
The confining spring 78 functions to urge the grooved member 50 to the element substrate 1, and is effective to properly integrate the element substrate 1, separation wall 30, grooved and the supporting member 70 which will be described hereinafter.
Supporting member 70 functions to support an element substrate 1 or the like, and the supporting member 70 has thereon a circuit board 71, connected to the element substrate 1, for supplying the electric signal thereto, and contact pads 72 for electric signal transfer between the device side when the cartridge is mounted on the apparatus.
The liquid container 90 contains the ejection liquid such as ink to be supplied to the liquid ejecting head and the bubble generation liquid for bubble generation, separately. The outside of the liquid container 90 is provided with a positioning portion 94 for mounting a connecting member for connecting the liquid ejecting head with the liquid container and a fixed shaft 95 for fixing the connection portion. The ejection liquid is supplied to the ejection liquid supply passage 81 of a liquid supply member 80 through a supply passage 84 of the connecting member from the ejection liquid supply passage 92 of the liquid container, and is supplied to a first common liquid chamber through the ejection liquid supply passages 83, 71 and 21 of the members. The bubble generation liquid is similarly supplied to the bubble generation liquid supply passage 82 of the liquid supply member 80 through the supply passage of the connecting member from the supply passage 93 of the liquid container, and is supplied to the second liquid chamber through the bubble generation liquid supply passage 84, 71, 22 of the members. In such a liquid ejection head cartridge, even if the bubble generation liquid and the ejection liquid are different liquids, the liquids are supplied in good order. in the case that the ejection liquid and the bubble generation liquid are the same, the supply path for the bubble generation liquid and the ejection liquid are not necessarily separated.
After the liquid is used up, the liquid containers may be supplied with the respective liquids. To facilitate this supply, the liquid container is desirably provided with a liquid injection port. The liquid ejecting head and the liquid container may be integral with each other or separate from each other.
<Liquid Ejecting Apparatus>
When a driving signal is supplied to the liquid ejecting means on the carriage from unshown driving signal supply means, the recording liquid is ejected to the recording material from the liquid ejecting head 201 in response to the signal.
The liquid ejecting apparatus of this embodiment comprises a motor 111 as a driving source for driving the recording material transporting means and the carriage, gears 112, 113 for transmitting the power from the driving source to the carriage, and carriage shaft 185 and so on. By the recording device and the liquid ejecting method, satisfactory print can be provided on various recording materials. When the liquid ejecting method is carried out for various recording materials.
The recording apparatus receives printing data in the form of a control signal from a host computer 300. The printing data is temporarily stored in an input interface 301 of the printing apparatus, and at the same time, is converted into processable data to be inputted to a CPU 302, which doubles as means for supplying a head driving signal. The CPU 302 processes the aforementioned data inputted to the CPU 302, into printable data (image data), by processing them with the use of peripheral units such as RAMs 304 or the like, following control programs stored in an ROM 303.
Further, in order to record the image data onto an appropriate spot on a recording sheet, the CPU 302 generates driving data for driving a driving motor which moves the recording sheet and the recording head in synchronism with the image data. The image data and the motor driving data are transmitted to a head 200 and a driving motor 306 through a head driver 307 and a motor driver 305, respectively, which are controlled with the proper timings for forming an image.
When the ejection power refreshing operation is required as after rest of the head, the CPU302 supplies refreshing operation instructions to the recovering device 310 including the suction recovery device 200. The recovering device 310 having received the ejection power recovery instructions, carries out the series of operations for the recovery of the ejection power of the head on the basis of suction or pressurizing recovery sequence.
As for recording medium, to which liquid such as ink is adhered, and which is usable with a recording apparatus such as the one described above, the following can be listed; various sheets of paper; OHP sheets; plastic material used for forming compact disks, ornamental plates, or the like; fabric; metallic material such as aluminum, copper, or the like; leather material such as cow hide, pig hide, synthetic leather, or the like; lumber material such as solid wood, plywood, and the like; bamboo material; ceramic material such as tile; and material such as sponge which has a three dimensional structure.
The aforementioned recording apparatus includes a printing apparatus for various sheets of paper or OHP sheet, a recording apparatus for plastic material such as plastic material used for forming a compact disk or the like, a recording apparatus for metallic plate or the like, a recording apparatus for leather material, a recording apparatus for lumber, a recording apparatus for ceramic material, a recording apparatus for three dimensional recording medium such as sponge or the like, a textile printing apparatus for recording images on fabric, and the like recording apparatuses.
As for the liquid to be used with these liquid ejection apparatuses, any liquid is usable as long as it is compatible with the employed recording medium, and the recording conditions.
<Recording System>
Next, an exemplary ink jet recording system will be described, which records images on recording medium, using, as the recording head, the liquid ejection head in accordance with the present invention.
These heads are driven in response to the signals supplied from a head driver 307, which constitutes means for supplying a driving signal to each head.
Each of the four color inks (Y, M, C and Bk) is supplied to a correspondent head from an ink container 1204a, 1204b, 1205c or 1204d. A reference numeral 1204e designates a bubble generation liquid container from which the bubble generation liquid is delivered to each head.
Between the container and the each head, the tube is provided with pressurizing recovering device 311e, 311a, 311b, 311c, or 311d, as shown in the Figure. The driving means for the pressurizing recovering device is a pressurizing pump, and when the recovery for the ejection power of the head is necessary, the CPU302 shown in
Below each head, there is a head cap 203a-203d having ink absorption member such as sponge, which covers the ejection outlets of each head when the recording operation is not effected to protect the head.
Designated by reference numeral 206 is a conveyer belt constituting feeding means for feeding a recording material as has been described. The conveyer belt 206 extends along a predetermined path using various rollers, and is driven by a driving roller connected with the motor driver 305.
The ink jet recording system in this embodiment comprises a pre-printing processing apparatus 1251 and a postprinting processing apparatus 1252, which are disposed on the upstream and downstream sides, respectively, of the ink jet recording apparatus, along the recording medium conveyance path. These processing apparatuses 1251 and 1252 process the recording medium in various manners before or after recording is made, respectively.
The pre-printing process and the postprinting process vary depending on the type of recording medium, or the type of ink. For example, when recording medium composed of metallic material, plastic material, ceramic material or the like is employed, the recording medium is exposed to ultra-violet rays and ozone before printing, activating its surface.
In a recording material tending to acquire electric charge, such as plastic resin material, the dust tends to deposit on the surface by static electricity. The dust may impede the desired recording. In such a case, the use is made with ionizer to remove the static charge of the recording material, thus removing the dust from the recording material. When a textile is a recording material, from the standpoint of feathering prevention and improvement of fixing or the like, a pre-processing may be effected wherein alkali property substance, water soluble property substance, composition polymeric, water soluble property metal salt, urea, or thiourea is applied to the textile. The pre-processing is not limited to this, and it may be the one to provide the recording material with the proper temperature.
On the other hand, the post-processing is a process for imparting, to the recording material having received the ink, a h at treatment, ultraviolet radiation projection to promote the fixing of the ink, or a cleaning for removing the process material used for the pre-treatment and remaining because of no reaction.
In this embodiment, the head is a full line head, but the present invention is of course applicable to a serial type wherein the head is moved along a width of the recording material.
In the foregoing, so-called edge shooter type has been describe, but the present invention is not limited to this and is applicable to a so-called side shooter type head, for example, shown in FIG. 23.
The liquid ejecting head of this example is a so-called side shooter type head, wherein the ejection outlet 11 is faced substantially parallel to a heat generation surface of the heat generating element 2. The heat generating element 2 has a size of 48 μm×46 μm and is in the form of a heat generating resistor. It is mounted on a substrate 1, and generates thermal energy used to generate a bubble by film boiling of liquid as disclosed in U.S. Pat. No. 4,723,129. The ejection outlet 18 is formed in an orifice plate 51 which is an ejection outlet portion material. The orifice plate 51 is manufactured from nickel through electro-forming.
A first liquid flow path 14 is provided below the orifice plate 14 so that it is directly in fluid communication with the ejection outlet 11 to flow the liquid therethrough. On the other hand, a second liquid flow path 16 is provided on the substrate 1 to flow the bubble generation liquid. Between the first liquid flow path 3 and the second liquid flow path 16, a separation wall 30 is provided to isolate the liquid flow paths. Separation wall 30 is of a material having an elastic, such as metal. In this example, the separation wall 30 is of nickel having thickness of 5 μm. This separation wall 30 substantially isolates the ejection liquid in the first liquid flow path 14 and the bubble generation liquid in the second liquid flow path 16.
The ejection liquid is supplied to the first liquid flow path 14 through the first supply passage 15a from a first common liquid chamber 5 storing the ejection liquid. The bubble generation liquid is supplied to the second liquid flow path 16 through the second supply passage 17a from a second common liquid chamber 17 storing the bubble generation liquid. The first common liquid chamber 15 and the second common liquid chamber 7 are isolated by the partition 1a. In this example, the ejection liquid to be supplied to the first liquid flow path 14, and the bubble generation liquid to be supplied to the second liquid flow path 16, are of water base ink (a mixed liquid of ethanol and water).
The separation wall 5 is disposed adjacent the portion of the projected space of the heat generation surface of the heat generating element 2 perpendicular to the heat generation surface, and has a pair of movable portions 6 of flat plate cantilever configuration, one of which is a movable member and the other is an opposing member opposed to the movable member. The movable portion 31 and the heat generating surface a disposed with a clearance of 15 μm approx. The free ends 32 a of the movable portions 31 are opposed to each other with a gap of approx. 2 μm (slit 35). Designated by 33 is a base portion functioning as a base portion upon opening of the movable portions 31. Slit 35 is formed in a plane including a line connecting a center portion of the heat generating element 2 and the center portion of the ejection outlet 18. In this example, the slit 8 is so narrow that the bubble does not extend through the slit 8 around the movable portions 6 before the movable portion 5 is displaced, when the bubble growths. At least the free end 32 of the movable portion 31 is disposed within a region to which the pressure due to th bubble extends. In
When heat is generated at the heat generation surface of the heat generating element 2, and a bubble is generated in the region B, the free end 32 of the movable portion 31 is instantaneously moved in the direction of the arrow in
In the side shooter type liquid ejecting head having such a structure, the present invention is capable of providing the advantageous effects that the refilling of the ejection liquid is improved, and the liquid can be ejected with high ejection pressure and with high ejection energy use efficiency.
In this example, the liquid in the second liquid flow path 16 and the liquid in the first liquid flow path 14, are substantially isolated, the paths may be in fluid communication with each other at least at a part thereof, if the liquids are the same, or they may be mixed.
In this example, the free ends 32 of the movable members 31 are opposed to each other, but only one movable member may be enough, depending on the case.
(Embodiments)
The description will be made as to an embodiment wherein mixed liquid of the ejection liquid and the bubble generation liquid, is discharged from the inside, in the separation system wherein the ejection liquid and the bubble generation liquid are supposed to be substantially separated.
When the bubble generation liquid and the ejection liquid are different, and are supposed to be substantially separated, the bubble generation liquid or the ejection liquid may disperse into the other, or they disperse into each other through the slit 35 (
On the other hand, not being limited to the case wherein the ejection liquid and the bubble generation liquid are different, if the rest period of the ejection head is very long, the viscosity of the ejection liquid may be increased to a significant extent due to evaporation of water, depending on the length of the rest period. The viscosity-increased ejection liquid is not desirable for the satisfactory ejection and the recorded image, and therefore, it is desirable to exclude the viscosity-increased ejection liquid to the outside or to decrease the viscosity thereof.
In the separation type ejection head, the ejection liquid having a relatively high viscosity may be satisfactorily ejected. But, depending on the ejection liquid used, it is necessary to set the viscosity of the ejection liquid at a level lower than that at the normal temperature because of the property relative to the recording material.
Furthermore, under a low temperature condition, the liquid viscosity further increases, and under a low humidity condition, the evaporation is promoted. In these conditions, the viscosity-increased of the liquid is accelerated with the result of influence to the ejection or to the printing.
In this example, the exclusion of mixed liquid, the exclusion of the viscosity-increased ejection liquid, and/or the decrease of the viscosity, is accomplished by non-printing ejection from the ejection head. In the following, the ejection not effecting the recording is called “preliminary ejection”.
(First Embodiment)
In this example, the number of the ejections in the preliminary ejection, is determinated in accordance with an initial dynamic viscosity of the ejection liquid. The initial dynamic viscosity represents an initial liquid viscosity after the non-use or rest period, and is dependent upon the length of the rest time period, if the variation of the ambience factors such as the temperature, is not significant. In this embodiment, a relation between the rest time and the initial dynamic viscosity after a rest period, is determinated beforehand (the initial dynamic viscosity is shown in relation to it), and the preliminary ejection is carried out in accordance with the rest period, in the following manner.
According to the preliminary ejection of this example, the temperature rise of the ejection liquid in the ejection head occurs due to the continuous driving of the heat generating element by the preliminary ejection, so that the dynamic viscosity is decreased. Thus, the dynamic viscosity of the ejection liquid increased during the rest period, is decreased to permit satisfactory ejection from the initial ejections. Depending on the ejection liquid used, the operation temperature (the temperature suitable for the ejection) is higher than the normal temperature, but in such a case, the temperature of the liquid is increased quickly to the operation temperature by the continuous ejections by the preliminary ejection. Secondly, even if the mixed liquid has been produced, it is discharged from the ejection nozzle by the preliminary ejection.
Thus, proper preliminary ejection can be carried out in consideration of various ambient conditions, by determinating beforehand the relation between the viscosity increase and the ambient temperature or humidity.
As shown in the Figure, the preliminary ejection of this example is carried out at various timings in the process being executed, and the ejection mode is different if the timing is different, as will be described hereinafter.
The process is started upon hard power ON, that is, by connecting the power supply code to the plug. If the rest period exceeds 72 hours (steps S1, S2), a timer preliminary ejection process is effected (step S3). Upon soft power ON, that is, upon actuation of the main switch of the recording device (step S5), the preliminary ejection for soft power ON is carried out (step S6).
When the head exchange is carried out (step S7), a preliminary ejection for head exchange is carried out (step S8). When suction recovery or wiping is carried out (step S9, S11), preliminary ejection for suction recovery or preliminary ejection for wiping, are carried out (step S10, S12).
After completion of such process upon the soft power ON, a stand-by sequence operations are carried out, and the preliminary ejection is carried out therein (step S13). Upon the start of the recording operation, the preliminary ejection is carried out as a part of the recovery sequence during the recording operation (step S14).
Upon soft power OFF at the recording completion (step S15), the preliminary ejection for the recovery sequence for the soft power OFF, is carried out (step S16).
As shown in
As shown in,
In the sequence at the time of the stand-by state, as shown in
In the four recording operations shown in
In the recovery sequence at the time of the soft power OFF shown in
The preliminary ejection carried out after only the wiping is effected, among the above-described processes, is similar to the preliminary ejection after the wiping shown in step S12 of FIG. 24.
Now, the fundamental using conditions of the preliminary ejection operations in the above-described processes, will be described.
The conditions are usable for the embodiments which will be described hereinafter.
Usable range of the driving frequency: 1 Hz-30 kHz (usable range)
Driving Pulse and Driving Condition:
Drive timing: simultaneous driving is possible with the heater for the head temperature control or with the heater in the liquid chamber such as a rank heater indicating individual recording head property.
Driving position: operable to a preliminary ejection receptor outside the recording region or into a cap.
The timing for the preliminary ejection, is as has been described in conjunction with
(preliminary ejection for recovery from the increased viscosity/deposition, of the ink after rest period)
2 kHz, 50-104 ejections
(preliminary ejection for recovery from ink dry in consideration of the rest period after the power OFF)
500 Hz, 50-104 ejections
(preliminary ejection for preventing initial ejection failure due to the ink dry, in the stand-by state)
500 Hz, 20-104 ejections
(preliminary ejection for assuring initial proper ejection and for ejection defect prevention due to wetting with ink/deposition of foreign matter)
500 Hz, 20-104 ejections
(preliminary ejection at the time of suction recovery (mainly by user))
2 kHz, 20-104 ejections
(preliminary ejection for prevention of the last ejection failure due to a bubble produced in the rest period)
500 Hz, 20-104 ejections
500 Hz, 50-104 ejections
(preliminary ejection for assuring avoiding of ink leakage at the time of exchange with a fresh head)
2 kHz, 50-104 ejections
The description will be made as to some of the examples of the ejection frequencies and the numbers ejections of the preliminary ejections in the above-described timings for the initial dynamic viscosities. As shown in the following Embodiments 1-3, the number of the ejections is larger if the initial dynamic viscosity is larger.
(Embodiment 1)
When the ejection liquid had initial dynamic viscosity of 1-2 cP, the preliminary ejection timings (1)-(5) and (8) were used for each ejection outlet with the following frequencies and numbers of the ejections. The results were that the ejection liquid mixing was removed, and that the first ejection upon the ejection start was satisfactory.
500 Hz, 50 ejections
2 kHz, 50 ejections
500 Hz, 20 ejections
500 Hz, 20 ejections
2 kHz, 20 ejections
2 kHz, 50 ejections
The preliminary ejection of item (5) may be omitted if the suction recovery is good.
(Embodiment 2)
When the ejection liquid had initial dynamic viscosity of 2-20 cP, the preliminary ejection timings (1)-(5) and (8) were used for each ejection outlet with the following frequencies and numbers of the ejections. The results were that the ejection liquid mixing was removed, and that the first ejection upon the ejection start was satisfactory, as in Embodiment 1.
500 Hz, 2000 ejections
2 kHz, 2000 ejections
500 Hz, 800 ejections
500 Hz, 800 ejections
2 kHz, 800 ejections
2 kHz, 2000 ejections
The sequence of (3) is particularly desirable when the viscosity of the ejection liquid is high.
In the foregoing preliminary election operations, the preliminary ejections (1)-(3) are particularly effective to avoid first ejection defect after the increase of the ejection liquid viscosity and the prevention of the mixed liquid ejection printing.
(Embodiment 3)
When the ejection liquid had initial dynamic viscosity of 2-100 cP, the preliminary ejection timings (1)-(5) and (8) were used for each ejection outlet with the following frequencies and numbers of the ejections. The results were that the ejection liquid mixing was removed, and that the first ejection upon the ejection start was satisfactory, as in Embodiment 1.
500 Hz, 5000 ejections
2 kHz, 5000 ejections
500 Hz, 2000 ejections
500 Hz, 2000 ejections
2 kHz, 2000 ejections
2 kHz, 5000 ejections
In the foregoing preliminary ejection operations, the preliminary ejections (1)-(3) are particularly effective to avoid first ejection defect after the increase of the ejection liquid viscosity and the prevention of the mixed liquid ejection printing. Namely, it is effective to avoid the deterioration of the initial image quality of the image recorded on the recording material.
The driving pulse used in Embodiments 1-3, is a single pulse with the pulse width of 3-50 μscc. When the pulse width of 30 μsec approx. was used with Embodiment 3, the decrease of the dynamic viscosity due to the temperature rise is remarkable, and the ejection state of the first ejection was good.
(Embodiment 4)
In this embodiment, the similar process of Embodiment 2 was used, but initial pulse width was 20 μscc, and one half of the entire preliminary ejection was carried out with this pulse width, and the rest thereof was carried out with the pulse width of 5 μscc. First ejections were satisfactory.
(Second Embodiment)
In the second embodiment, the ejection state in the preliminary ejection is detected, and the preliminary election mode is changed on the basis of the detection result.
The dynamic viscosity generally changes mainly depending on the pressure and temperature. In a liquid recording device, the temperature or humidity relatively greatly changes depending on the use ambience or use state. Therefore, the preliminary ejection may be excessive or insufficient, in the first embodiment wherein the dynamic viscosity is predicted from the rest period. Even in the case where the number of the preliminary elections is large because the rest time is relatively long, the dynamic viscosity may be quite low it the ambient temperature is high or if the humidity is high. Therefore, in such a case, the selected number of the preliminary ejections, will be excessively large.
In this example, as shown in
In these Figures, when the ejection is carried out to the cap 84 from the ejection head 160 at the time of the preliminary ejection, light of LED stroboscope is emitted at predetermined timing from the sensor unit 190. The light is reflected by the ejection liquid in the ejection range thereof, and is detected by CCD in the sensor unit 190. The emission timing of the LED stroboscope is set to be delayed by predetermined time from the pulse application timing for the ejections in the preliminary ejection. When the ejected droplet is in the ejection range upon the emission of the LED stroboscope, and therefore, the reflected light is detected, the liquid ejection (ejection frequency) follows the application (driving frequency) of the liquid ejection, and therefore, It is discriminated that the dynamic viscosity is at a predetermined low level.
As shown in the same Figure, LED stroboscope is actuated with a predetermined time delay for each driving pulse application (step S801) in the preliminary ejection, the detection is made at th same timing as to whether there is an ejection liquid in the range where it is supposed to exist (step S802-S804). When the ejected droplets are detected as a result, it is considered that the dynamic viscosity is low enough, and therefore, the preliminary ejection is stopped.
On the other hand, if the ejected droplet is not detected (step S804), and if the selected number of preliminary ejections are completed (step S805), it is considered that the preliminary ejection is insufficient, and the pulse width, the number of ejections of the preliminary ejection is set again (step S806) to carry out the preliminary ejection further.
Thus, according to this embodiment, the preliminary ejection is carried out to proper extent.
In
As shown in this Figure, when it is discriminated that the ejection liquid deposited on the glass plate 91 at step S903 is not less than the predetermined density, the discrimination is made as to whether the head temperature is not less than predetermined temperature or not at step S904. This is made, since even if the mixed liquid is removed, the dynamic viscosity may be high. So, the dynamic viscosity is checked using the head temperature. When the density is not less than a predetermined value, and the head temperature is not less than a predetermined temperature, it is considered that the mixture and the viscosity increase has been obviated, so that the preliminary ejection is stopped.
According to this example, the preliminary ejection can be further reduced.
(Third Embodiment)
The description will be made as to a position of the heat generating element 2a as the heating means.
(Fourth Embodiment)
The second liquid flow path 16 is formed by the liquid flow wall 23, and the element substrate is provided with heat generating elements 2 corresponding to the second liquid flow path. The heat generating element 2a creates a bubble in the liquid in the second liquid flow path 16 by the heat generated thereby. The element substrate, at the position corresponding to the common liquid chamber 17 for supplying the liquid to each second liquid flow path 16, is provision with heating means 2a for heating the bubble generation liquid in the common liquid chamber and for heating the liquid (ejection liquid) in the first liquid flow path through the separation wall disposed on the common liquid chamber. The heating means 2a and the heat generating element 2 are connected with wiring for supplying electric signals thereto.
The common liquid chamber is provided with a columnar member 17 for supporting the separation wall.
In this example, the wall constituting the second liquid flow path and the columnar member, are simultaneously formed by patterning a DRY FILM of photosensitive resin material.
The material of the columnar member, may be polysulfone, polyethylene or anther resin material, or gold, nickel, silicon or another metal, or glass.
For the simplification of the manufacturing step, the material is preferably the same as that of the separation wall.
When the columnar member or the liquid flow passage wall constituting the second liquid flow path, are formed with the material having low thermal conductivity such as resin material, it is preferably separated from the heat generating element 2a by not less than 0.1 mm since then the effect of convection of the liquid is added, so that the heat can be more effectively transferred. In order to feed to the second liquid flow path the liquid uniformly and sufficiently heated in the liquid chamber, the heat generating element 2a is preferably disposed adjacent the liquid chamber separated from the trailing edge of the common liquid chamber of the liquid flow path by not less than 0.5 mm.
A liquid ejecting head provided with the element substrate 1 of the structure shown in
(Fifth Embodiment)
By the integral formation of the columnar member and the separation wall, the efficiency of the heat conduction is further increased.
A liquid ejecting head provided with the element substrate 1 of the structure shown in
(Sixth Embodiment)
The columnar member in this embodiment is formed through the electro-forming method from the same metal as the separation wall, nickel, for example, similarly to the previous embodiment. The material of the columnar member may be any if thermal conductivity thereof is high, as in the previous embodiment.
By the formation of the columnar member on the heating means as in this example, the heat generated by the heating means is efficiently transmitted to the first liquid flow path through the columnar member, and the liquid in the first liquid flow path can be efficiently heated.
In this example, it has been confirmed that by raising the temperature of the heat generating element 2a as the heating means to 25-60° C., the heat is efficiently transmitted to the liquid in the first liquid flow path 14 through the columnar member 17a. A liquid ejecting head provided with the element substrate 1 of the structure shown in
In the foregoing embodiments, the structure below the separation wall, namely, the second liquid flow path and the second common liquid chamber portion in fluid communication with it, is taken.
The first liquid flow path and the first common liquid chamber in fluid communication with it, are formed by coupling a separation wall 30 and a top plate having an orifice plate having the ejection outlets 18, a grooved top plate having grooves for constituting liquid flow paths 14 and a recess for constituting a first common liquid chamber 15 commonly in fluid communication with the liquid flow paths 14 and for supplying the first liquid into the liquid flow paths.
(Seventh Embodiment)
In this ejection head, the movable member 31 is driven by driving the heat generating element 2, and by the resultant displacement of the movable member 31, the ejection liquid is ejected. The heat generation sequence for the heat generating element includes a feature.
When the liquid ejecting head is to be driven, the heat generating element 2 is supplied with a voltage having a pulse width t1, and then, it rests for time t2. Thereafter, the voltage of the pulse width t3 is applied to eject the liquid. In
Therefore, in this embodiment, the movable member is once displaced, by which the displacement of the movable member and the state of the meniscus are constant when the ejecting bubble generation occurs, so that the ejection amount is stabilized. In addition, by once displacing the movable member into the first liquid flow path by the first bubble generation, the bubble generation power upon the second bubble generation may be smaller, and most of the power is directed toward the ejection outlet, so that the ejection amount is larger than when the liquid is ejected with a single pulse. When the ejection amount is desired to be smaller to form a smaller dot, the ejection may be caused when the meniscus is retracted.
When the non-ejection period is long, this operation may be carried out at the initial stage, by which the ambience of the liquid fluid around the movable member, is such that the movable member is easily displaced, and simultaneously therewith, the fixing and viscosity increase of the liquid adjacent the meniscus portion are eased, and therefore, the initial ejection stability and the first ejection occurrence are improved.
Referring to
(Eighth Embodiment)
Referring to
(Ninth Embodiment)
In the control of the driving pulse in this embodiment, as shown in
(Tenth Embodiment)
The meniscus at the ejection outlet 18 for the ejection liquid, vibrates in the similar manner to seventh embodiment shown in FIG. 41. By once displacing the movable member 31, the bubble generation for the ejection occurs with the constant displacement of the movable member 31 and the constant state of the meniscus, so that the ejection amount is stabilized. In addition, most of the bubble generation power for the second heat generating element 2—2 is directed toward the ejection outlet, and therefore, the ejection amount is increased when the liquid is ejected by a single pulse of a single heat generating element.
The control of the driving pulse in this example is as shown in FIG. 52. The first heat generating element 2-1 is first supplied with a rectangular pulse having a width T1 and a voltage V1 (driving pulse for the first heat generating element 2-1) in response to the recording timing signal (a). Subsequently, after the rest period T2, the second heat generating element 2—2 is supplied with a rectangular configuration pulse having a width T2 and a voltage V2 (driving pulse (c) for the second heat generating element 2—2). At this time, V1=V2, and T1<T3, are satisfied.
In the liquid ejecting head, used in this example, the portion of the separation wall 30 between the first liquid flow path 14 and the second liquid flow path 16 and the portion of the separation wall 30 between the adjacent nozzles, are integrally formed of nickel having a thickness of 5 micron through electro-forming, and by coupling with the substrate 1, the second liquid flow path 16 for the bubble generation liquid is formed. The nozzle separation wall and the liquid separation wall may be formed separated and then connected with each other to form the bubble generation liquid flow path 16.
As shown in the Figure, the head driver 102 drive the heat generating elements of the ejection head 60 on the basis of the ejection control signals and the ejection datas transferred from the CPU101, by which the liquid ejection is carried out through the above-described principle of the ejection. The head driver 102 is supplied with pulse data for the driving pulse to be applied to the heat generating element by the pulse generator 105, by which the driving pulse waveform is changed for the initial ejection stabilization which will be described hereinafter.
Designated by 105 in
In
The description will be made as to some embodiments of the ejection stabilization process based on the fundamental structure described above.
(11th Embodiment)
In the normal recording operation, the pulse application period (pulse width) is set to t1, and the voltage is set to V1 (point A in
However, with this said pulse application method, the initial ejection property may vary for a certain period from the record start when high viscosity liquid is used as the ejection liquid or when the rest period is long, and therefore, the ejection liquid may be solidified adjacent to the ejection outlet, or the viscosity thereof may be increased. This is because the liquid flow is not stabilized at this stage. Therefore, the feathering on the adjacent is not uniform.
In embodiment, the process shown in
As shown in this Figure, the ejection speed is lower in the initial stage of the ejection and varies, but after pulses are applied for a certain period (the period required for the stabilization of the motion of the liquid and the operation of the movable member from the drive start), the ejection speed reaches a predetermined level, and the ejection is stabilized. Therefore, the pulses having the predetermined pulse width are applied for a period sufficient for the stabilization of the ejection, and after the ejection is stabilized, the pulses of normal pulse width are applied.
In this example, “(upon) the record start or ejection start” means the time immediately after non-signal indicative of non-ejection, and may be defined as the time of the non-signal. Thus, what is meant by “(upon) the record start or election start” in this example, is different depending on the cause of the decrease of the ejection property. For example, in the case of decrease of the ejection property mainly caused by the solidification or viscosity increase, the top of the page to be recorded can be defined as the “(upon) the record start” if the ejection liquid has a relatively high recovery property, and the pulse width in the period of predetermined length therefrom is changed.
In the case of high viscosity liquid used as the ejection liquid, the top of a line of recording may be defined as “(upon) the record start or ejection start” if the property of the liquid exhibits the reproducibility for each line of recording.
When the liquid has a further high viscosity, the pulse width is further increased upon the record start, so that the temperature of the liquid is raised to lower the viscosity, by which the initial ejection property is improved to provide satisfactory image quality.
(12th Embodiment)
In the driving pulse conditions similar to those of the 11th embodiment, a larger driving voltage is used for a predetermined time from the record start or until a predetermined number of pulses are applied, by which the generated bubble pressure is increased to improve the initial ejection property.
As shown in
With this, the deterioration in the initial ejection property can be suppressed, as in the 11th embodiment. When a further higher viscosity liquid is used, the applied voltage upon the record start is increased, so that the temperature of the liquid is increased to lower the viscosity, thus improving the initial ejection property to provide satisfactory image quality.
(13th Embodiment)
In this example, the application and the pulse width of the driving voltage are made higher for a predetermined time from the record start as shown in
Normally, as shown in
(14th Embodiment)
In this example, two heat generating elements are provided for one movable member, and this structure is utilized for the ejection stabilization,
In
When two heat generating elements are driven, the total generated bubble pressure is higher so that the movable member 6 is displacement to a greater extent. Therefore, as shown in
Similarly to the foregoing embodiment, the initial ejection property is improved to provide the satisfactory images.
The description will be made as to a further embodiment for the control for the ejection performance improvement of the ejection head.
As shown in
The number N of ejections in th preliminary ejection, is determined by N=N0×f (t, T). Here, N0 is the number of ejections with which the viscosity-increased liquid and the mixture liquid can be satisfactorily discharged when the non-printing time is less than 12 hours, and the head temperature is not less than 10° C. and less than 20° C., for example. The f (t, T) is an operator for determinating the coefficient determined by the non-printing time t and the head temperature T, and is determined by referring to the processing table on the basis of the time t and the temperature T.
As described in the foregoing, in this embodiment, the state of the ink or the like in the head is superposedly improved by the driving structure of the head per se, so that the stabilization of the initial ejection performance is improved.
Particularly, by combining these sequential operations, the stability improvement of the ejection performance and the stabilization effect for the feathering of the liquid on the recording material, are synergetically provided, and therefore, the property at the initial recording stage after the rest period is recovered, and in addition, even better property is accomplished to provide very high reliability and image quality.
In the foregoing embodiments, the the operation before the ejection start, that is, in the rest period, has been described, the operation may be carried out during the ejecting operations to provide the effects.
As described in the foregoing, according to the present invention, a large part of the pressure by generation of the bubble resulting from the heat generation of the heat generating element is efficiently transmitted directly to the ejection outlet side by the movable member, and therefore, the liquid can be ejected with high ejection energy use efficiency and with high ejection pressure.
Particularly, according to an aspect of the present invention, the heating means for adjusting the temperatures of the bubble generation liquid and the ejection liquid at a liquid chamber position in fluid communication with the second liquid flow path containing the bubble generation liquid, by which the bubble generation liquid can be controlled to a predetermined temperature. The heat is efficiently transmitted to the ejection liquid through the separation wall, so that the viscosity decrease of the liquid and the proper initial ejection can be accomplished. In addition, in the case that the ejection liquid is heated through the bubble generation liquid, the bubble generation power of the bubble generation liquid can be enhanced.
Further, according to an aspect of the present invention, there is provided a thermally conductive columnar member in contact with said heating means, the member is usable as a heat transfer member for the ejection liquid, and therefore, the heat transfer from the heating means is improved.
According to an aspect of the present invention, the bubble generating energy is increased during a period until the ejection property such as the ejection speed at the initial ejection is ejection propertied, so that the ejection speed can be increased against the resistance by the movable member or by the ejection liquid. As a results, the satisfactory recording is accomplished from the record start.
Furthermore, according to an aspect of the present invention, the increase of the liquid ejection amount and the stabilization of the liquid ejection amount can be simultaneously assured. In addition, the ejection property upon the record start can be improved. The improvement in the ejection property is particularly remarkable when the ejection liquid has a high viscosity. Further, the meniscus vibration at the ejection outlet for the ejection liquid can be suppressed, so that high frequency recording is accomplished.
As regards the mixture of the ejection liquid and bubble generation liquid occurred in the ejection head, according to an aspect of the present invention, the so-called preliminary ejection not effecting recording, is carried out on the basis of the information relating to the viscosity such as the dynamic viscosity which is an index of the mixture or on the basis of mixture information directly indicative of the degree of the mixture, so that the mixed liquid can be discharged together with viscosity-increased ejection liquid. As a result, satisfactory recording is accomplished with proper density at all times.
Using these features in combination, the ejection performance can be stably enhanced, and in addition, the properties of the liquid per se, such as density or feathering property, are improved, so that the image quality is improved.
Number | Date | Country | Kind |
---|---|---|---|
7-244989 | Sep 1995 | JP | national |
7-251602 | Sep 1995 | JP | national |
7-265886 | Oct 1995 | JP | national |
7-335505 | Dec 1995 | JP | national |
8-146319 | Jun 1996 | JP | national |
This is a divisional application of application Ser. No. 08/717,072, filed on Sep. 20, 1996 now U.S. Pat. No. 6,709,090.
Number | Name | Date | Kind |
---|---|---|---|
4409596 | Ishii | Oct 1983 | A |
4480259 | Kruger et al. | Oct 1984 | A |
4496960 | Fischbeck | Jan 1985 | A |
4723129 | Endo et al. | Feb 1988 | A |
4965608 | Shinohara et al. | Oct 1990 | A |
4994825 | Saito et al. | Feb 1991 | A |
5095321 | Saito et al. | Mar 1992 | A |
5109233 | Nishikawa | Apr 1992 | A |
5124716 | Roy et al. | Jun 1992 | A |
5208604 | Watanabe et al. | May 1993 | A |
5278585 | Karz et al. | Jan 1994 | A |
5302971 | Ohba et al. | Apr 1994 | A |
5389957 | Kimura et al. | Feb 1995 | A |
5548312 | Asai | Aug 1996 | A |
5821962 | Kudo et al. | Oct 1998 | A |
5861895 | Tajika et al. | Jan 1999 | A |
6007187 | Kashino et al. | Dec 1999 | A |
6062680 | Yoshihira et al. | May 2000 | A |
6074543 | Yoshihira et al. | Jun 2000 | A |
6205508 | Asakawa et al. | Mar 2001 | B1 |
6270199 | Kimura et al. | Aug 2001 | B1 |
6305789 | Nakata et al. | Oct 2001 | B1 |
6312111 | Kimura et al. | Nov 2001 | B1 |
6331050 | Nakata et al. | Dec 2001 | B1 |
6334669 | Kudo et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
326 428 | Aug 1989 | EP |
0 436 047 | Jul 1991 | EP |
443 801 | Aug 1991 | EP |
448 967 | Oct 1991 | EP |
657 290 | Jun 1995 | EP |
668 165 | Aug 1995 | EP |
55-81172 | Jun 1980 | JP |
61-69467 | Apr 1986 | JP |
61-110557 | May 1986 | JP |
62-156969 | Jul 1987 | JP |
63-197652 | Aug 1988 | JP |
63-199972 | Aug 1988 | JP |
3-81155 | Apr 1991 | JP |
5-124189 | May 1993 | JP |
6-87214 | Mar 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040056929 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08717072 | Sep 1996 | US |
Child | 10656379 | US |