Information
-
Patent Grant
-
6170811
-
Patent Number
6,170,811
-
Date Filed
Thursday, December 17, 199825 years ago
-
Date Issued
Tuesday, January 9, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Oberleitner; Robert J.
- Kramer; Devon
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 267 1411
- 267 1401
- 267 14013
- 267 14014
- 267 219
- 267 1904
- 267 1414
- 267 1413
- 248 562
- 248 638
- 248 636
-
International Classifications
-
Abstract
There are provided an inward-bent part 14 slightly extending to one end side of a cylindrical member 10 inwardly in a radial direction, and a thin rubber member coated part 22 on an inner peripheral surface of the cylindrical member, which the rubber member coated part has an inner diameter equal to or smaller than an inner diameter of the inward-bent part. An orifice member 32 and a diaphragm member 33 are inserted into the rubber member coated part on one end side of the cylindrical member to close thereby an opening portion on the one end side thereof. A rubber member 21 subjected to vulcanization and bonding and a fitting member 31 fixed to the rubber member 21 are provided on the other end side of the cylindrical member to close thereby an opening portion on the other end side thereof Since the inner diameter of the inward-bent part is made smaller than the outer diameter of the diaphragm member by conducting drawing to the cylindrical member, the diaphragm member is stopped by the inward-bent part. As a result, even if the fastening force is lowered by, for example, the fatigue of the rubber member coated part, it is possible to ensure preventing the diaphragm member and the like from slipping out of the cylindrical member.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a liquid filled vibration isolator for use in, for example, an engine mount of a vehicle.
The conventional liquid filled vibration isolator of this type has, as shown in
FIG. 8
, for example a rubber member
2
coupled on the upper end side of a cylindrical member
1
, and the rubber member
2
is provided with a fitting member
3
fixed coaxially to the cylindrical member
1
. The cylindrical member
1
has a thin rubber member coated part
4
disposed continuous to the rubber member
2
on the inner peripheral surface thereof, and has an orifice member
5
and a diaphragm member
6
disposed on inner peripheral portion of the lower end side thereof from inside sequentially in the axial direction. The orifice member
5
and the diaphragm member
6
thus close the lower end side opening portion of the cylindrical member
1
, and tight seal a liquid chamber E provided between them and the rubber member
2
. In addition, by drawing the lower end side of the cylindrical member
1
(diameter-reducing processing) thereof, the orifice member
5
and the diaphragm member
6
are fixed to the cylindrical member
1
.
Meanwhile, in the above-stated liquid filled vibration isolator, the orifice member
5
and the diaphragm member
6
are fixed to the cylindrical member
1
only by the reactive force of the rubber member coated part
4
resulting from the drawing of the cylindrical member
1
. Due to this, there is a fear that the diaphragm member
6
and the like slip out of the cylindrical member
1
as a result of, for example, the fatigue of the rubber member coated part
4
if the vibration isolator are used for a long period of time.
SUMMARY OF THE INVENTION
The present invention has been made to solve the above problem. It is therefore an object of the present invention to provide a liquid filled vibration isolator capable of ensuring that the diaphragm member and the orifice member are prevented from undesirably slipping out of the cylindrical member.
A liquid filled vibration isolator according to the present invention comprises a cylindrical member made of a metal material; an inward-bent part slightly extending to one end side of the cylindrical member inwardly in a radial direction; a thin rubber member coated part provided on an inner peripheral surface of the cylindrical member, the rubber member coated part having an inner diameter equal to or smaller than an inner diameter of the inward-bent part; a bottom wall member inserted into the rubber member coated part on the one end side of the cylindrical member to close thereby an opening portion on the one end side thereof; a rubber member subjected to vulcanization and bonding and a fitting member fixed to the rubber member provided on the other end side of the cylindrical member to close thereby an opening portion on the other end side thereof; and a liquid chamber for vibration isolation thereby formed inside the cylindrical member, and is characterized in that the inner diameter of the inward-bent part is made smaller than an outer diameter of the bottom wall member by conducting drawing to the cylindrical member. An diaphragm member, an orifice member and the like are used as the bottom wall member.
With the above-stated structure of the present invention, if one end side of the cylindrical member is subjected to drawing and the diameter of the inward-bent part, which has been provided on one end portion of the cylindrical member in advance, is reduced, then the inner diameter of the inward-bent part is smaller than the outer diameter of the bottom wall member. Due to this, the outer peripheral portion of the bottom wall member is stopped by the inward-bent part. As a result, the present invention can ensure that the bottom wall member is prevented from slipping out of the cylindrical member even if the fastening force is lowered by, for example, the fatigue of the rubber member coated part.
The inward-bent part may be formed by conducting blanking to a collar-shaped inner bottom wall part formed integral with one end side of the cylindrical member while the cylindrical member is formed by press-molding a metal plate material, the inner bottom wall part extending inwardly in an radial direction. If so, it is possible to easily form the inward-bent part at low cost.
A cylindrically protruding part which slightly protrudes within a prescribed range from a prescribed position of the rubber member coated part in an axial direction to the other end side, along a circumferential direction and toward a radial direction, may be provided. In addition, a stepped part may be provided at a boundary between the rubber coated part and the cylindrically protruding part. This stepped part can be used for positioning of the bottom wall member, thereby enabling the easy and accurate insertion of the bottom wall member.
A liquid filled vibration isolator according to the second invention comprises a cylindrical member made of a metal material; a thin rubber member coated part provided on an inner peripheral surface of the cylindrical member; a bottom wall member inserted into the rubber member coated part on one end side of the cylindrical member to close thereby an opening portion on the one end side thereof; a rubber member subjected to vulcanization and bonding and a fitting member fixed to the rubber member provided on the other end side of the cylindrical member to close thereby an opening on the other end side thereof; and a liquid chamber for vibration isolation thereby formed inside the cylindrical member, and is characterized in that an diameter of the one end side of the cylindrical member is reduced by drawing and the one end portion of the cylindrical member is bent inwardly in a radial direction by bending, thereby forming an inward-bent part having an inner diameter of the one end portion almost equal to an outer diameter of the bottom wall member; one end side of the rubber member coated part is compressed and an end portion of the one end side thereof is expanded between the inner-bent part and the bottom wall member to cover a one end-side outer peripheral portion of the bottom wall member; and an inner diameter of the expanded end portion of the rubber member coated part is smaller than the outer diameter of the bottom wall member.
With the above-stated structure of the second invention, the diameter of the one end side of the cylindrical member is reduced by drawing and the end portion of the cylindrical member is subjected to bending, thereby forming an inward-bent part having an inner diameter almost equal to the outer diameter of the bottom wall member at one end portion of the cylindrical member. Following the drawing and bending, the one end side portion of the rubber member coated part is compressed. The one end side portion is then expanded between the inward-bent part and the bottom wall member to thereby cover the one end-side outer peripheral portion of the bottom wall member. The inner diameter of the expanded portion is smaller than the outer diameter of the bottom wall member. Due to this, the outer peripheral portion of the bottom wall member is stopped by the tip end portion of the rubber member coated part. As a result, according to the second invention, even if the fastening force is lowered by, for example, the fatigue of the rubber member coated part, it is ensured that the bottom wall member is prevented from slipping out of the cylindrical member.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a cross sectional view showing a liquid filled vibration isolator in one embodiment according to the present invention;
FIG. 2
is a partially cross sectional view showing an important part of the liquid filled vibration isolator;
FIG. 3
is a cross sectional view showing a vibration isolator molding;
FIG. 4
is a cross sectional view showing the final shape of the liquid filled vibrator isolator;
FIG. 5
is a cross sectional view showing a liquid filled vibrator isolator in the second embodiment according to the present invention;
FIG. 6
is a partially cross sectional view showing an important part of the liquid filled vibration isolator;
FIG. 7
is a cross sectional view showing a vibration isolator molding; and
FIG. 8
is a cross sectional view showing a conventional liquid filled vibration isolator.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
One embodiment of the present invention will now be described with reference to the accompanying drawings.
FIG. 1
is a cross-sectional view of a liquid filled vibration isolator in the first embodiment according to the present invention.
The liquid filled vibration isolator shown therein has a cylindrical member
10
made of a metal material. The cylindrical member
10
has a wider diameter part
11
having the upper end (the other end) side diameter is conically widened. A flange part
12
extending outward is provided on the peripheral edge portion of the opening of the wider diameter part
11
. The cylindrical member
10
is formed by press-molding (drawing) of a metal plate material and provided with a reduced diameter part
13
on the lower end side thereof (one end side). The tip end portion of the reduced diameter part
13
is provided with an inward-bent part
14
bent inwardly in the radial direction formed by blanking a lower end side inner bottom wall during drawing step in the press molding. If the shape thus obtained during the press-molding (drawing step) of the metal plate material is used as it is and the inward-bent part
14
of the cylindrical member
10
is formed in advance, then it is possible to reduce the cost of manufacturing a vibration isolator.
A rubber member
21
is provided by vulcanization and bonding on the upper end portion of the cylindrical member
10
to thereby close the opening portion thereby. The rubber member
21
is so formed as to be expanded in a hill form outward in the axial direction with respect to the upper end portion of the cylindrical member
10
and to extend almost at a point where the diameter starts widening inside the cylindrical member
10
almost in parallel to the right angle direction of the axis of the wider diameter part
11
. A fitting member
31
made of a metal material is disposed coaxially at the central position of the rubber member
21
. The fitting member
31
is of cylindrical shape and has a flange part
31
a
provided at the center in the axial direction. One side of the fitting member
31
with respect to the flange part
31
a
is buried into the rubber member
21
and the other side thereof protruding from the rubber member
21
is provided with a screw hole
31
b
for screwing a bolt at a coaxial position. A rubber member coated part
22
continuous to the rubber member
21
is provided on the inner peripheral surface of the cylindrical member
10
by vulcanization and bonding treatment. The rubber member coated part
22
has a thick intermediate coated part
22
a
ranging from the inside of the rubber member
21
to the almost axially central position of the cylindrical member
10
, and a thin tip end coated part
22
b
ranging from the intermediate coated part
22
a
to the lower end of the part
22
. A stepped part
22
c
is thereby formed at a boundary between the intermediate coated part
22
a
and the tip end coated part
22
b.
An orifice member
32
and a diaphragm member
33
, which serve as bottom wall members, are sequentially and coaxially inserted into the tip end coated part
22
b
of the rubber member coated part
22
from the axially inside toward the outside. The orifice member
32
is disc-shaped and has a thick annular part
32
a
on the peripheral edge portion thereof and a thin disc-shaped part
32
b
inside of the annular part
32
a
. A ring-shaped passage
32
c
is formed at the central position of the annular part
32
a
in the thickness direction thereof. Opening portions
32
d
and
32
e
leading to the passage
32
c
are provided in portions of both surfaces of the annular part
32
a
in the thickness direction, respectively. The diaphragm member
33
is provided with a thin film
33
b
made of rubber and bulging inward of a ring-shaped member
33
a
made of metal in the one axial direction. The thin film
33
b
is arranged to be expanded in the direction of the orifice member
32
. A liquid chamber E is formed to be surrounded by the orifice member
32
, the rubber member
21
and the rubber member coated part
22
.
As shown in
FIG. 2
, the inward-bent part
14
has a reduced diameter by the drawing of the cylindrical member
10
such that the inward-bent part
14
has an inner diameter of the tip end portion which is slightly smaller than the outer diameter of the member
33
a
of the diaphragm member
33
. Owing to this, the lower end portion of the diaphragm member
33
is stopped by the inward-bent part
14
and prevented from slipping out of the cylindrical member
10
.
The formation of the above-stated liquid filled vibration isolator will now be described. First, as shown in
FIG. 3
, the cylindrical member
10
previously processed to be provided with the inward-bent part
14
on the lower end thereof and the fitting member
31
are installed into a predetermined mold (not shown). Then, the rubber member
21
and the rubber member coated part
22
are vulcanized and bonded by injecting a rubber material into the mold and are formed integral with each other, thereby obtaining a vibration isolator molding S before the diameter is reduced. A liquid chamber E of the molding S is filled with liquid and the orifice member
32
and the diaphragm member
33
are inserted into the tip end coated part
22
b
. In this case, since positioning is made by contacting the orifice member
32
with the stepped part
22
c
, the orifice member
32
and the diaphragm member
33
can be easily and accurately inserted into the tip end coated part
22
b
. Thereafter, drawing (diameter-reducing processing) is conducted to the lower end side cylindrical member
10
. As a result, the cylindrical member
10
is fastened and the diameter of the inward-bent part
14
is reduced to thereby make the inner diameter of the part
14
smaller than the outer diameter of the member
33
a
of the diaphragm member
33
. The liquid filled vibration isolator shown in
FIG. 1
is thus obtained.
As shown in
FIG. 4
, in this liquid filled vibration isolator, a cylindrical fixing member
41
made of a metal material is installed on the outer peripheral surface of the cylindrical member
10
and a flange part
41
a
of the fixing member
41
is overlapped by the flange part
12
of the cylindrical member
10
. A stopper member
42
made of a metal material is covered on the rubber member
21
side. By bending a flange part
42
a
of the stopper member
42
, the overlapped flange parts
12
and
41
a
are fastened and the stopper member
42
, the fixing member
41
and the vibration isolator molding S are assembled integral with one another.
In the first embodiment having the above-stated structure, the inner diameter of the inward-bent part
14
on the lower end side of the cylindrical member
10
is smaller than the outer diameter of the member
33
a
of the diaphragm member
33
, thereby allowing the member
33
a
of the diaphragm member
33
to be stopped by the inward-bent part
14
. Thanks to this, even if the fastening force is lowered by the fatigue or the like of the rubber member coated part
22
, it is ensured preventing the diaphragm member
33
from slipping out of the cylindrical member
10
.
Next, the second embodiment according to the present invention will be described.
In the second embodiment, as shown in
FIG. 7
, an orifice member
32
and a diaphragm member
33
are inserted into a tip end coated part
22
b
on the lower end side of the a cylindrical member
10
having the straight lower end. The lower end side cylindrical member
10
is then subjected to drawing (diameter-reducing processing) to thereby fasten the cylindrical member
10
. The lower end of the cylindrical member
10
is also subjected to bending to thereby form an inward-bent part
15
. As shown in
FIG. 5
, therefore, the inner diameter of the inward-bent part
15
is almost equal to the outer diameter of the diaphragm member
33
. By conducting drawing and bending at the same time, the tip end coated part
22
b
of the rubber member coated part
22
is compressed and, as shown in
FIG. 6
, expanded outward between the inward-bent part
15
and the diaphragm member
33
. The expanded portion
22
c
of the tip end coated part
22
b
covers the lower-side outer peripheral portion of the diaphragm member
33
and the inner diameter of the tip end of the expanded portion
22
c
is smaller than the outer diameter of the diaphragm member
33
.
The formation of the above-stated liquid filled vibration isolator will be described. First, as shown in
FIG. 7
, a rubber member
21
and a rubber member coated part
22
are formed integral with the cylindrical member
10
having a straight lower end and the fitting member
31
, thereby forming a vibration isolator molding T before a diameter is reduced. A liquid chamber E of the molding T is filled with liquid and the orifice member
32
and the diaphragm member
33
are inserted into the tip end coated part
22
b
. At this time, the straight tip end of the cylindrical member
10
slightly protrudes from the diaphragm member
33
and so does the tip end coated part
22
b
. In this state, the drawing is conducted to the tip end side of the cylindrical member
10
, thereby fastening the tip end side. Further, as shown in
FIG. 6
, the tip end side is bent, thereby bending the tip end of the cylindrical member
10
at right angle and forming the inward-bent part
15
having an inner diameter almost equal to the outer diameter of the member
33
a
of the diaphragm member
33
. Following drawing and bending, as shown in
FIG. 6
, the tip end of the tip end coated part
22
b
is compressed and an expanded portion
22
c
expanded from the diaphragm member
33
and the inward-bent part
15
is formed. Thus, the expanded portion
22
c
covers the lower-side outer peripheral portion of the diaphragm member
33
and the inner diameter of the expanded portion
22
c
is made smaller than the outer diameter of the member
33
a
of the diaphragm member
33
. This allows the diaphragm member
33
to be stopped by the expanded part
22
c
of the tip end coated part
22
b.
As in the case of the first embodiment stated before, in this liquid filled vibration isolator, the cylindrical fixing member
41
is mounted on the outer peripheral surface of the cylindrical member
10
and the rubber member
21
side is covered with a stopper member
42
. By bending a flange part
42
a
of the stopper member
42
, the stopper member
42
, the fixing member
41
and the vibration isolator molding T are incorporated integral with one another.
In the second embodiment having a structure stated above, the member
33
a
of the diaphragm member
33
is stopped by the expanded portion
22
c
of the tip end coated part
22
b
of the rubber member coated part
22
. Due to this, even if the fastening force is lowered by, for example, the fatigue of the rubber member coated part
22
, it is ensured preventing the diaphragm member
33
from slipping out of the cylindrical member
10
.
It is noted that specific appearance and the like of the liquid filled vibration isolator according to the present invention should not be limited to the above-stated embodiments. It is possible to appropriately modify shapes of, for example, the cylindrical member
10
, the rubber member
21
and the fitting member
31
.
Claims
- 1. A liquid filled vibration isolator comprising:a cylindrical member made of a metal material; an inward-bent part slightly extending to one end side of said cylindrical member inwardly in a radial direction; a thin rubber member coated part provided on an inner peripheral surface of the cylindrical member, said rubber member coated part having an inner diameter equal to or smaller than an inner diameter of said inward-bent part; a bottom wall member inserted into from one end side of said cylindrical member and mounted on an inner peripheral surface of said rubber member coated part to close thereby an opening portion on the one side thereof; a rubber member subjected to vulcanization and bonding and a fitting member fixed to said rubber member provided on the other end side of said cylindrical member to close thereby an opening portion on the other end side thereof; and a liquid chamber for vibration isolation thereby formed inside the cylindrical member, wherein said inward-bent part is formed on said cylindrical member in advance prior to providing said thin rubber member coated part on the inner peripheral surface of the cylindrical member, and after said bottom wall member is inserted into the inner peripheral surface of said thin rubber member coated part, the inner diameter of said inward-bent part is made smaller than the outer diameter of said bottom wall member by pressing the cylindrical portion of said cylindrical member inwardly in a radial direction thereof to reduce the diameter of the cylindrical portion.
- 2. The liquid filled vibration isolator according to claim 1, wherein said inward-bent part is formed by conducting blanking to a collar-shaped inner bottom wall part formed integral with one end side of the cylindrical member while the cylindrical member is formed by press-molding a metal plate material, said inner bottom wall part extending inwardly in an radial direction.
- 3. The liquid filled vibration isolator according to claim 1 or 2, wherein a cylindrically protruding part slightly protrudes within a prescribed range from a prescribed position of said rubber member coated part in an axial direction to the other end side, along a circumferential direction and toward a radial direction, anda stepped part is provided at a boundary between the rubber coated part and the cylindrically protruding part.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9-359897 |
Dec 1997 |
JP |
|
US Referenced Citations (6)
Foreign Referenced Citations (6)
Number |
Date |
Country |
0 088 682 |
Sep 1983 |
EP |
2 122 718 |
Jan 1984 |
GB |
2 206 668 |
Jan 1989 |
GB |
2206668 |
Jan 1989 |
GB |
8-334146 |
Dec 1996 |
JP |
WO 8603813 |
Jul 1986 |
WO |