This application is the U.S. national phase of International Application PCT/RU2013/000998 filed Nov. 8, 2013 which designated the U.S., the entire content of this application is incorporated by reference.
The invention relates to fuel combustion in a gas turbine, and particularly to fuel nozzles for a Dry Low NOx (DLN) combustor.
A gas turbine combustor mixes large quantities of fuel and compressed air, burns the resulting mixture and generates combustion gases to drive a turbine. Conventional combustors for industrial gas turbines typically include an annular array of cylindrical combustion “cans” in which air and fuel are mixed and combustion occurs. Compressed air from a compressor, e.g., an axial compressor, flows into the combustor, and fuel is injected through fuel nozzle assemblies that extend into each can.
A DLN system developed by the assignee utilizes a two-stage premixed combustor designed for use with natural gas fuel and capable of operating with liquid fuel. In a conventional, exemplary configuration, six primary fuel nozzles surround a center fuel nozzle in each of an annular array of combustors. Briefly, one exemplary DLN combustion system operates in four distinct modes:
1. Primary—Fuel to the primary nozzles only. Flame is in the primary stage only. This mode of operation is used to ignite, accelerate and operate the machine over low-to mid-loads, up to a pre-selected combustion reference temperature.
2. Lean-Lean—Fuel to both the primary and secondary nozzles. Flame is in both the primary and secondary stages. This mode of operation is used for intermediate loads between two pre-selected combustion reference temperatures.
3. Secondary—Fuel to the secondary nozzle only. Flame is in the secondary zone only. This mode is a transition state between lean-lean and premix modes. This mode is necessary to extinguish the flame in the primary zone, before fuel is reintroduced into what becomes the primary premixing zone.
4. Premix—Fuel to both primary and secondary nozzles. Flame is in the secondary stage only. This mode of operation is achieved at and near the combustion reference temperature design point. Optimum emissions are generated in premix mode.
It will be appreciated that both the primary and secondary nozzles can be dual-fuel nozzles, allowing automatic transfer from gas to oil throughout the load range. With regard to the secondary or center nozzle, when operating on liquid fuel, the fuel is supplied to the center nozzle as a mixture (mixed externally of the combustor) of fuel and water. The fuel and water must be mixed well because a low-quality mixture may provide too much water and insufficient fuel or vice versa (or a non-uniform distribution of both throughout the supply stream), which has a negative impact on combustion, leading to higher NOx emissions. There is a need, therefore, to provide a mechanism by which a higher-quality emulsion of water and fuel is achieved before injection into the combustion chamber.
In one exemplary but nonlimiting embodiment, a liquid fuel cartridge for a gas turbine fuel nozzle comprises a tube having an inlet end and an outlet end provided with one or more fuel exit orifices; and a homogenizer located within the tube, adjacent and upstream of the outlet end, the homogenizer formed by a substantially-cylindrical body open at opposite ends, with a first row of circumferentially-spaced flanges projecting radially outwardly from the substantially cylindrical body, and with radially-outer edges of the flanges engaged with an interior surface of the tube.
In another exemplary aspect the invention provides a liquid fuel cartridge for a gas turbine fuel nozzle comprising a tube having an inlet end and an outlet end with one or more fuel exit orifices; a homogenizer located within the tube, adjacent and upstream of the outlet end, the homogenizer formed by three adjacent but axially-spaced disks including a first upstream disk provided with a relatively-small center opening; a second intermediate disk provided with a relatively-large center opening; and a third downstream disk provided a center opening smaller than the first center and surrounded by a plurality of outer openings.
In still another aspect the invention a fuel nozzle for a gas turbine comprising a nozzle body configured to include annular, concentric fuel and air passages about a center centrally located liquid fuel cartridge; the liquid fuel cartridge comprising a tube having an inlet end and an outlet end with one or more fuel exit orifices; and a homogenizer located within the tube, adjacent and upstream of the outlet end, the homogenizer formed by a substantially-cylindrical body open at opposite ends, and a first row of circumferentially-spaced flanges projecting radially outwardly from the substantially cylindrical body with radially-outer edges of the flanges engaged with an inner surface of the tube.
The invention will now be described in more detail in connection with the drawings identified below.
Each combustor 14 has an outer cylindrical casing 34. Compressed air from the compressor, e.g., the working fluid 18, flows through an annular duct 40 in the combustor formed between a cylindrical flow sleeve 36 and a cylindrical combustion liner 38. The combustion chamber 26 is within the hollow liner of the combustor. The compressed air flows in a counter-current direction to the flow of combustion gases through the combustion zone and is supplied to the fuel nozzle assemblies 24 at the head end of the combustor.
A combustor end cover 42 supports a pipe branch 44 to manifolds (not shown) that provide the liquid fuel 20 and passive purge air 22 to each combustor. The end cover 42 also includes passages which direct the liquid fuel 20 and purge air 22 to the fuel nozzle assemblies 24.
With particular reference to
Centered within the fuel nozzle is a liquid fuel cartridge 66 which defines an assistance-air passage 68 radially between the cartridge 66 and the second inner tube 60. The assistance air exits the fuel nozzle at an annular exit opening 70. The liquid fuel cartridge 66 itself provides or forms the liquid fuel passage 72 having a closed end 74 but provided with an array of fuel exit orifices 76. Upstream of the exit orifices 76 there is a homogenizer 78 with features that cause the water/fuel mixture within the liquid fuel cartridge 66 to become homogenized before injection into the combustion chamber via the orifices 76.
At the upstream end of the body 80, there is a plurality of radially-extending, circumferentially-spaced flanges 90, thus forming circumferentially-spaced slots 92 between the flanges. When installed within the cartridge 66, the slots 92 are closed at their radially-outermost ends by the cartridge wall, thus creating a series of apertures through which the liquid fuel can flow in the axial direction. It will be appreciated that the water/fuel mixture flowing into the passage 86 of the liquid fuel cartridge 66 will be broken up into several streams extending both axially (via hole 84 and closed slots or apertures 92) and radially via orifices 88. The flow patterns created by this configuration of axial and radial passages provide for high-quality homogenization of the water/fuel mixture before the mixture is injected into the combustion chamber.
In the embodiment shown in
A homogenizer 150 is fitted to the inner tube 130 upstream of the internal flange 140. The homogenizer 150 is similar to that shown in
The double rows of staggered flanges/slots 162, 164 and 166, 168 serve to homogenize the main fuel in passage 132 before exiting via orifices 142.
While various embodiments are described herein, it will be appreciated from the specification that various combinations of elements, variations or improvements therein may be made by those skilled in the art, and are within the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2013/000998 | 11/8/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/069131 | 5/14/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6378787 | Buchi | Apr 2002 | B1 |
20090211256 | Williams | Aug 2009 | A1 |
20090255262 | McMasters | Oct 2009 | A1 |
20100275604 | Hall | Nov 2010 | A1 |
20110005230 | Bailey | Jan 2011 | A1 |
20120291447 | Boardman et al. | Nov 2012 | A1 |
20130186094 | Parsania et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
201344532 | Nov 2009 | CN |
S61-242624 | Oct 1986 | JP |
H11-159757 | Jun 1999 | JP |
2010-138797 | Jun 2010 | JP |
2012-132672 | Jul 2012 | JP |
2007061055 | May 2007 | WO |
WO-2007061055 | May 2007 | WO |
2011052416 | May 2011 | WO |
2013115671 | Aug 2013 | WO |
Entry |
---|
Machine translation and Notification of Reasons for Refusal issued in connection with corresponding JP Application No. 2016-527249 dated Aug. 29, 2017. |
First Office Action and Search issued in connection with corresponding CN Application No. 201380080821.4 dated Apr. 5, 2017. |
International Search Reported dated Jul. 8, 2014, two pages. |
Number | Date | Country | |
---|---|---|---|
20170176000 A1 | Jun 2017 | US |