The present invention relates generally to a mechanical fuel pump for an internal combustion engine. More particularly, the invention provides a fuel pump useful with a stock car racing engine that is lighter than prior art fuel pumps and requires a smaller push rod force to provide a higher rate of fuel flow at a greater fuel pressure.
Stock car racing engines are typically required to use mechanical fuel pumps for moving fuel from a fuel tank to a carburetor or fuel injector. Typically, conventional diaphragm pumps are used on these engines. The conventional pumps may be heavy and transfer a significant quantity of heat to the fuel while pumping. They also may require 125 pounds of push rod force to drive the pump. Therefore, a lightweight mechanical fuel pump that transfers a smaller amount of heat to the fuel while providing fuel at a higher rate and at a higher fuel pressure than fuel pumps typically used with stock car racing engines is needed. Also, having the pump operate with variable displacement is advantageous.
The present invention fulfills one or more of these needs in the art by providing a liquid fuel pump having a body having a bore with an inlet and an outlet transverse to the bore. A shaft is mounted for reciprocation in the bore and has a first end upstream of the inlet, a piston downstream of the first end, and a perforated plate downstream of the piston. A first O-ring engages the shaft downstream of the perforated plate and upstream of the outlet, an annular shoulder extends into the bore downstream of the perforated plate and upstream of the first O-ring, and a second O-ring movably engages the inside of the bore between the piston and the perforated plate downstream of the inlet. Reciprocation of the shaft toward the upstream end causes the first O-ring to engage the annular shoulder and the piston to separate from the second O-ring and allow liquid fuel to pass from the inlet past the piston and through the perforations in the perforated plate but not past the first O-ring. Reciprocation of the shaft toward the downstream end causes the first O-ring to separate from the annular shoulder to enable liquid fuel to flow from upstream of the shoulder to the outlet and causes the piston to engage the second O-ring and thereby occlude the bore to force liquid fuel that is downstream of the piston to move toward the outlet.
In a preferred embodiment the second O-ring is moved downstream by the piston during movement of the shaft toward the downstream end and is moved upstream by the perforated plate during movement of the shaft toward the upstream end.
Typically, the bore extends upstream of the inlet to a closed end and the shaft includes a second piston reciprocating toward and away from the closed end. The closed end need not be sealed to the atmosphere outside the bore. A spring between the closed end and the second piston may be included to cause the reciprocation toward the downstream end. The second piston preferably has a third O-ring to seal the inlet from the closed end.
In many embodiments the bore extends downstream of the outlet to an open end and the shaft includes a portion extending out of the open end to engage a linkage for reciprocation toward the upstream end. The portion extending out of the open end is desirably packed to prevent liquid fuel leakage from the open end.
A spring can be positioned to urge the first O-ring toward the annular shoulder.
The invention can also be considered as a liquid fuel system for an internal combustion engine including a liquid fuel supply line, a liquid fuel pump connected to the liquid fuel supply line and having an outlet to a liquid fuel metering device for an internal combustion engine selected from the group consisting of a carburetor and a liquid fuel injector. A mechanical contact between the liquid fuel pump and a component of the internal combustion engine transmits a cyclic motion from the engine to the pump to cause the pump to pump at a cyclic rate determined by the engine. The liquid fuel pump is a variable displacement pump, so the output liquid fuel flow rate of the pump is diminished by a sufficient backpressure at the outlet of the pump. The pump may include a reciprocating shaft, and the backpressure damps the shaft's movement enough so that the shaft and engine component lose mechanical contact with one another. Typically, the engine component is a pushrod or a cam.
The invention can also be considered as a method of pumping liquid fuel including supplying liquid fuel into a bore in a body through an inlet in the body and then through a first O-ring and perforated plate, moving a shaft in a first direction in the bore to cause a piston to engage the first O-ring and occlude the bore and move a second O-ring out of contact with an annular shoulder in the bore to open a path to an outlet, continuing movement of the shaft to force liquid fuel downstream of the first O-ring towards the outlet, and moving the shaft in a second direction in the bore to disengage the piston from the first O-ring and provide a liquid fuel flow path between them and move the second O-ring into contact with the annular shoulder to block the path to the outlet to resume supplying liquid fuel into the bore through the inlet and through the first O-ring and perforated plate. Movement of the shaft in the first direction may be caused by the force of a spring. Movement of the shaft in the second direction is typically the result of a force imposed by an engine component.
Movement of the shaft in the first direction may be caused by the force of a spring and restrained by backpressure in a liquid fuel line connected to the outlet, causing a variable displacement. The backpressure may damp the shaft's movement in the first direction enough so that the shaft and engine component lose contact with one another.
The invention will be better understood by a reading of the Detailed Description of the Examples of the Invention along with a review of the drawings, in which:
The illustrations are for the purpose of describing an embodiment of the invention and are not intended to limit the invention to the embodiments of the illustrations and descriptions. Those of ordinary skill will recognize that the invention defined by the claims as capable of various and numerous configurations.
A floating seal, or O-ring 52 is downstream of the substantially wedge shaped portion 51. Preferably, the O-ring is a Viton® fluoroelastomer O-ring available from DuPont Dow Elastomers. A stop 53 is also formed on the rod 30 downstream of the O-ring 52. The stop 53 may take the form of a ring coupled in concentric relationship with the rod 30. Spokes extend radially from the rod 30, so the spokes and the ring 56 define a plurality of openings 55 for fuel flow, while also limiting downstream movement of the O-ring 52. The openings can be of various shapes and sizes.
The inside radius of the O-ring 52 is greater than the radius 38 of the second cylindrical portion 32 of the rod 30 to define a passage through which fuel can flow, and is smaller than a greatest radius of the wedge shaped portion 51 of the rod. The outside radius of the O-ring 52 is typically about equal to the radius 27 of the portion of the bore 14 forming the fuel chamber 23, such that when the wedge shaped portion 51 of the rod 30 contacts the O-ring 52, the wedge shaped portion of the rod 51 and the O-ring 52 occlude the chamber to fuel flow.
The annular shoulder 63 at the downstream end of the fuel chamber 23 surrounds an opening 61. A seal, preferably an O-ring, 71 has an outside radius greater than the outside radius of the circular opening 61. A spring 74 biases the O-ring 71 towards the shoulder 63. The O-ring 71 has an inside radius 73 so it stays affixed to and moves with the rod 30 such that when the O-ring 71 contacts the annular shoulder 63 (as in
Where the motor driving the rod 30 is a rotating camshaft, the cam drives the rod 30 to a maximum distance to the left (as seen in
Where the force opposing the spring 40 between the housing 20 and the piston 35 is large enough, the force exerted by the spring 40 between the housing 20 and the piston 35 is insufficient to fully overcome the forces opposing it. This may occur when the fuel pressure in the chamber 23 is relatively high because of a relatively small or closed throttle opening yielding low flow through a downstream carburetor or fuel injector. Since the wedge shaped portion 51 does not travel as far as is shown in
Again the wedge shaped portion 151 of the rod together with the O-ring 152 push the fuel toward the outlet 124 on a O-ring 171 has separated from shoulder 163 to open a flow path. On the return stroke the plate 153 restores O-ring 152 to position to the right.
Preferred embodiments work on the same principle as a master cylinder but with an ingenious floating O-Ring mechanism that automatically adjusts for the amount of fuel needed by the engine. It typically supplants the need for a return line on a fuel injected engine. This enables use of the pump on any engine from 200-2800 HP. An added benefit is that the pump does not add heat into the fuel from internal friction like other pumps do. The preferred embodiment also consumes less horsepower, requiring only 25 lbs of pushrod pressure compared to 125 lbs pressure of conventional pumps. The preferred embodiment also has these features:
The construction and operation of the fuel pump described offers numerous advantages. For example, the pump is lightweight, and can be constructed smaller than conventional diaphragm pumps, offering increased chassis clearance. In addition, the pump can be used for both methanol and gasoline applications. Also, certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. All such modifications and improvements, whether or not they are described or illustrated herein, may certainly fall within the scope of the following claims.
The embodiment of the pump of
Certain modifications and improvements will occur to those skilled in the art upon reading the foregoing description. It should be understood that all such modifications and improvements have been omitted for the sake of conciseness and readability, but are properly within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2064750 | Hurst | Dec 1936 | A |
2179354 | Scott | Nov 1939 | A |
2720842 | Downing | Oct 1955 | A |
3655296 | McDougall | Apr 1972 | A |
4141675 | O'Neill | Feb 1979 | A |
4229148 | Richmond et al. | Oct 1980 | A |
4295414 | Mochizuki et al. | Oct 1981 | A |
4479759 | Zeitz | Oct 1984 | A |
4721247 | Perr | Jan 1988 | A |
5024587 | Maurer | Jun 1991 | A |
5310252 | Stewart, Jr. | May 1994 | A |
5350223 | Stewart, Jr. | Sep 1994 | A |
5415134 | Stewart, Jr. | May 1995 | A |
5472320 | Weisbrodt | Dec 1995 | A |
5630656 | Stewart, Jr. | May 1997 | A |
5649746 | Stewart, Jr. | Jul 1997 | A |
5701869 | Richardson et al. | Dec 1997 | A |
6347614 | Evers et al. | Feb 2002 | B1 |
6499974 | Bach | Dec 2002 | B2 |
6764286 | Hunnicutt et al. | Jul 2004 | B2 |
7134424 | Pehrson et al. | Nov 2006 | B2 |