This application claims priority under 35 U.S.C. §119 on Patent Application No. 2004-229534 filed in Japan on Aug. 5, 2004, the entire contents of which are hereby incorporated by reference. The entire contents of Patent Application No. 2005-77350 filed in Japan on Mar. 17, 2005 are also incorporated by reference.
(1) Field of the Invention
The present invention relates to a liquid heating apparatus for providing a heated cleaning solution, a cleaning apparatus for cleaning objects, such as semiconductor substrates, using the heated cleaning solution, and a cleaning method using the same.
(2) Description of Related Art
In a semiconductor device fabrication process, yield reduction due to particles and metal impurities both deposited on semiconductor substrates has conventionally been a large problem. Therefore, the step of cleaning semiconductor substrates using a cleaning solution to remove these particles and metal impurities has been essential and significant for the fabrication of semiconductor devices.
There are typically used, as cleaning solutions for semiconductor substrates, cleaning solutions obtained by blending two or three kinds of solutions selected from the group of alkaline chemical solutions such as ammonia water, acidic chemical solutions such as sulfuric acid solution and hydrochloric acid solution, oxidizing-agent chemical solutions such as hydrogen peroxide solution and ozone water, and pure water at a predetermined mixing ratio. Furthermore, typically, the temperature of the cleaning solutions is increased to a predetermined temperature by heating these cleaning solutions using a heater, resulting in the improved cleaning performance of the cleaning solutions. In this way, contamination due to particles or metal impurities is effectively removed in a shorter time.
A known heating apparatus for heating cleaning solutions and chemical solutions and a known hot water production apparatus for heating pure water are disclosed in, for example, Japanese Unexamined Patent Publication No. 5-190523 and Japanese Unexamined Patent Publication No. 5-074755. In these known arts, an immersion heater tube is put into a tub containing a cleaning solution, a chemical solution or pure water to heat the cleaning solution, the chemical solution or the pure water. This has been well known.
As an example of known arts relating to a method for heating a cleaning or chemical solution or pure water, a heating apparatus for a cleaning or chemical solution and a hot water production apparatus, a heating method for, in particular, pure water and a hot water production apparatus will be described with reference to the drawings. The apparatuses each have the same structure even when a cleaning solution obtained by mixing a chemical solution and pure water is heated.
In the known hot water production apparatus shown in
After pure water is stored in the pure water tank 105 to a predetermined amount, the heater power supply 103 is turned ON to heat the heater wire 113, and heat is transferred through the heater tube 112 to the pure water, thereby heating the pure water to a predetermined temperature. In order to prevent the heater wire 113 from coming into direct contact with the pure water and thus becoming electrically continuous with the pure water, the heater wire 113 is encapsulated in the heater tube 112. A metal resistance wire, such as a Nichrome wire and a Kanthal wire, is used for the heater wire 113, and quartz hardly causing contamination is often used for the heater tube 112. The temperature of the pure water in the pure water tank 105 is measured using the temperature-measuring sensor 110.
After the temperature of the pure water in the pure water tank 105 reaches a predetermined temperature, the output of the heater power supply 103 is controlled to maintain, at a predetermined temperature, hot water in the pure water tank 105. In order to prepare a cleaning solution, the pure water is drained from the drain 108, and then a chemical solution and the heated pure water are put into a separate preparation tank or cleaning tank at a predetermined mixing ratio. Thereafter, semiconductor substrates are put into the cleaning tank containing this cleaning solution and immersed in the cleaning solution for a predetermined period, thereby cleaning the semiconductor substrates.
Furthermore, another known art (second known art) is disclosed in, for example, Japanese Unexamined Patent Publication No. 7-302778. It is a system for heating a cleaning solution, a chemical solution and pure water using an infrared radiator, such as a halogen lamp, or a heater comprising an infrared radiator. This heater is obtained by replacing the heater wire 113 and heater tube 112 of the heater shown in
Furthermore, still another known art (third known art) is disclosed in, for example, Japanese Unexamined Patent Publication No. 57-148846. A heating apparatus of the third known art has a structure in which a cleaning solution is heated by applying microwaves from the outside of a pipe through which the cleaning solution flows to the cleaning solution.
When a pinhole is produced in the heater tube 112 of the heating apparatus of the system in which the heater wire 113 surrounded by the heater tube 112 is put into the pure water tank 105 as shown in
A system of the second known art for emitting an infrared ray, such as a halogen lamp, has permitted the heating of not only pure water in a pure water tank but also an ambient atmosphere, such as ambient air. This has reduced the heating efficiency. Furthermore, since a heating apparatus cannot be installed in a cleaning apparatus dealing with a volatile chemical solution and thus need be installed outside the cleaning apparatus, space could not be saved.
It was difficult to heat a cleaning solution from room temperature to, for example, a high temperature of about 80° C. In a system of a third known art for heating the cleaning solution by irradiating the cleaning solution with microwaves from the periphery of a pipe through which the cleaning solution flows, because the cleaning solution is flowing. It is conceivable that, in order to heat, using the above system, the cleaning solution to a high temperature enough to clean semiconductor substrates, the flow rate of the cleaning solution should be reduced. However, it is difficult to reduce the flow rate of the cleaning solution, because the performance of the cleaning apparatus is decreased. Alternatively, it is also conceivable to irradiate the cleaning solution with high-power microwaves. However, since a high-power microwave heating apparatus is very expensive, it is practically difficult to employ the high-power microwave heating apparatus.
In view of the above, it is an object of the present invention to provide a liquid heating apparatus and a liquid heating method both for effectively heating pure water or a cleaning solution without any contamination, and cleaning apparatus and method utilizing the heating method.
The present invention is characterized in that liquid stored in a reservoir is heated by applying microwaves from the outside of the reservoir to the liquid in a non-contact manner.
More specifically, a liquid heating apparatus of the present invention comprises: a first reservoir for storing a first liquid; a supply passage for supplying the first liquid to the first reservoir; a drain for draining the first liquid from the first reservoir; a microwave oscillator for generating microwaves that can heat the first liquid; a waveguide for transmitting microwaves to the first reservoir and applying the microwaves to the first liquid past the first reservoir; and a microwave blocker for preventing microwaves from leaking out of the first reservoir.
Therefore, the first liquid can be heated without making contact with a heating unit. This can prevent contaminants from entering from the heating unit into the first liquid unlike the use of a thermally conductive heating unit, such as a heater, resulting in the first liquid heated with high efficiency. Furthermore, heating can start at the instant of applying microwaves and stop at the instant of stopping the microwave application, resulting in the first liquid heated with more excellent responsibility as compared with a thermally conductive heating method. Since the first liquid can be heated in a non-contact manner, the first reservoir can be sealed. This can further reduce the risk of contaminating the first liquid. Furthermore, the generated heat in the vicinity of the first reservoir can be reduced as compared with a heating method using an infrared lamp. This makes it possible to place the liquid heating apparatus in a cleaning apparatus for semiconductor substrates. Therefore, the use of the liquid heating apparatus of the present invention can make the cleaning apparatus compact.
The liquid heating apparatus of the present invention may further comprise a choke pipe attached to at least one of joints between the supply passage and the first reservoir and between the drain and the first reservoir and preventing the leakage of microwaves. This can reduce microwaves leaking out of the supply passage or the drain.
At least one of the supply passage and the drain may have a plurality of branches at the joint with the first reservoir, the diameter of each said branch being a quarter or less of the microwave wavelength. This can prevent microwaves from leaking out of the supply passage or the drain.
The liquid heating apparatus of the present invention may further comprise a chemical-agent barrier of a chemical-resistant material attached to a microwave radiation exit of the waveguide to prevent a chemical solution from entering into the waveguide. This can prevent a vaporized chemical solution from passing through the waveguide and reaching the microwave oscillator and the microwave oscillator from being broken.
The liquid heating apparatus of the present invention may further comprise a stirrer attached to a microwave radiation exit of the waveguide to scatter microwaves applied to the first reservoir. Therefore, microwaves can be applied to a wider area, resulting in the liquid heated with excellent efficiency.
The inner and outer surfaces of the waveguide may be coated with a chemical-resistant material. This can prevent the inner and outer surfaces of the waveguide from being attacked by the chemical solution.
The microwave blocker may be coated with a chemical-resistant material. This can prevent the microwave blocker from being attacked by the chemical solution.
A gas inlet duct may be provided for the waveguide, and a gas may be taken from the gas inlet duct to provide a positive pressure inside the waveguide. This can prevent a vaporized chemical solution from entering from a crack in the joint between the waveguide and the gas inlet duct into the waveguide. As a result, the waveguide can be prevented from being attacked by the vaporized chemical solution and the microwave oscillator can be prevented from being broken.
An inert gas is preferably used as a gas taken from the air inlet duct.
The liquid heating apparatus of the present invention may further comprise: a second reservoir for storing a second liquid; a branch waveguide that is branched from the waveguide to transmit microwaves generated by the microwave oscillator to the second reservoir and apply the microwaves to the second liquid past the second reservoir; and a movable microwave reflector element disposed at the junction between the waveguide and the branch waveguide and made of a material that reflects microwaves. Therefore, the second liquid in the second reservoir can be heated using microwaves during the period during which heating is not carried out in the first reservoir, thereby efficiently heating the liquid. Furthermore, even if the waveguide is extended to several tens of m, microwaves can be guided without being caused to attenuate. Therefore, this liquid heating apparatus is suitable for being combined with a cleaning apparatus having a plurality of reservoirs as compared with heating apparatuses using the other heating methods.
The waveguide is preferably made of a metal material.
The microwave blocker is preferably made of a metal material.
The first reservoir is preferably made of fluoroplastic or quartz.
In particular, the chemical-agent barrier is preferably made of fluoroplastic.
The waveguide may be connected to the bottom of the reservoir. Therefore, the first liquid can be heated while being stirred because of convection, resulting in the uniformly heated first liquid. This can make the temperature distribution of the first liquid uniform.
A cleaning apparatus of the present invention comprises a liquid heating unit for heating liquid and a cleaning unit having a cleaning tank for storing a cleaning solution, wherein the liquid heating unit comprises: a reservoir mounted in the cleaning unit to store liquid; a supply passage for supplying the liquid to the reservoir; a drain for draining the liquid from the reservoir; a microwave oscillator for generating microwaves that can heat the liquid; and a waveguide for transmitting microwaves to the reservoir and applying the microwaves to the liquid past the reservoir.
Therefore, the liquid can be heated without making contact with the heating unit. This can prevent contaminants from entering from the heating unit into the liquid unlike the use of a thermally conductive heating unit, such as a heater, resulting in the liquid heated with high efficiency. Therefore, for example, semiconductor substrates can be cleaned using the heated cleaning solution. Furthermore, heating can start at the instant of applying microwaves to the liquid and stop at the instant of stopping the microwave application, resulting in the liquid heated with more excellent responsibility as compared with a thermally conductive heating method. Moreover, when the microwave oscillator and its power supply are placed outside the cleaning unit, this improves the flexibility in the arrangement of the cleaning apparatus.
The whole liquid heating unit is preferably placed in the cleaning unit. This can make the cleaning apparatus compact.
The liquid stored in the reservoir may be one selected from the group of pure water, chemical solutions and the cleaning solution. Therefore, a hot cleaning solution can be prepared through various methods. For example, a cleaning solution may be prepared by mixing heated pure water with a chemical solution. Alternatively, a previously prepared cleaning solution may be heated.
The cleaning apparatus of the present invention may further comprise a circulating line which is connected to the cleaning tank and through which the cleaning solution in the cleaning tank circulates, wherein the reservoir may be placed somewhere along the circulating line and stores the cleaning solution circulated through the circulating line. This reduces the flow rate of the liquid as compared with the method in which the liquid is heated through the circulating line, resulting in the liquid heated with excellent efficiency. This can make the power of the microwave oscillator relatively small, leading to the reduced cost required for facilities for cleaning semiconductor substrates.
A cleaning method of the present invention uses a cleaning apparatus comprising a reservoir for storing liquid, a cleaning unit having a cleaning tank for storing a cleaning solution, a microwave oscillator for generating a first type of microwaves that can heat the liquid, a waveguide for transmitting the first type of microwaves to the reservoir and applying the first type of microwaves to the liquid past the reservoir. The method comprises the steps of: (a) storing the liquid in the reservoir; (b) applying the first type of microwaves to the liquid in the reservoir to heat the liquid; (c) delivering the liquid heated in the step (b) to the cleaning tank; and (d) storing the cleaning solution containing the liquid to the cleaning tank and cleaning an object to be cleaned.
With this method, the liquid can be heated without making contact with the heating unit. This can prevent contaminants from entering from the heating unit into the liquid as compared with the use of a thermally conductive heating unit, such as a heater. As a result, the liquid can be heated with high efficiency.
When the reservoir is placed somewhere along the circulating line, this can provide a cleaning solution efficiently heated using a relatively inexpensive microwave oscillator, because the cleaning solution delivered from the cleaning tank to the reservoir has already reached a desired processing temperature.
When the reservoir is provided separately from the cleaning tank, the cleaning apparatus may further comprise a first preparation tank, and the method may further comprise the step of, before the step (a), preparing the cleaning solution in the first preparation tank and delivering the cleaning solution to the reservoir.
Alternatively, the step (a) may include the step of supplying pure water and a chemical solution to the reservoir. Thus, a cleaning solution itself for cleaning can be heated to a desired temperature, resulting in the temperature of the cleaning solution controlled with high accuracy.
The liquid stored in the reservoir may be pure water, and the method may further comprise the step (e) of, between the steps (c) and (d), mixing the pure water and a chemical solution in the cleaning tank to prepare the cleaning solution.
The cleaning apparatus may further comprise a second preparation tank, the liquid stored in the reservoir may be pure water, and the method may further comprise the steps of: (f) delivering the heated pure water to the second preparation tank immediately after the step (b); (g) mixing the pure water and a chemical solution in the second preparation tank to prepare the cleaning solution; and (h) delivering the cleaning solution prepared in the step (g) to the cleaning tank.
In the step (b), a second type of microwaves with a different frequency from that of the first type of microwaves may be applied to the liquid in the reservoir. Therefore, a large amount of liquid can be heated or a liquid can be heated at high speed. The shift of the frequency of the first type of microwaves from that of the second type of microwaves can prevent the two microwaves from canceling each other.
A liquid heating apparatus (hot water production apparatus/cleaning solution heating apparatus), a cleaning apparatus and a cleaning method of the present invention are characterized by indirectly heating liquid stored in a tank using microwaves. A liquid heating apparatus (hot water production apparatus), a cleaning apparatus and a cleaning method according to each of embodiments of the present invention will be described hereinafter with reference to the drawings.
As shown in
In order to produce hot water, pure water is supplied through the supply pipe 7 to the pure water tank 5 shown in
In order to fill the pure water tank 5 with pure water or drain pure water in a shorter time, a supply pipe 7 and a drain 8 both connected to the pure water tank 5 normally require a flow rate of a few tens of L/min. This increases the diameters of the supply pipe 7 and the drain 8. Therefore, it is difficult to set the pipe and drain to each have a diameter of a quarter or less of the microwave wavelength, i.e., the diameter that allows microwaves to be blocked. Therefore, in order to reduce the leakage of microwaves from the supply pipe 7 and the drain 8, the hot water production apparatus of this embodiment is provided with choke pipes 11 to reflect microwaves entering into the supply pipe 7 and the drain 8, resulting in the reduced leakage of microwaves.
After pure water is stored in the pure water tank 5 to a predetermined amount, a power supply 3 is turned ON to operate a microwave oscillator 1, thereby generating microwaves from a magnetron 2. The generated microwaves move into a waveguide 4 while reflecting thereon and is applied from the exit of the waveguide 4 to the pure water tank 5. The applied microwaves penetrate through the pure water tank 5 so as to be absorbed in the pure water, resulting in vibrated water molecules of the pure water. As a result, the pure water is heated. The pure water in the pure water tank 5 is measured in temperature using a temperature-measuring sensor 10. In order to prevent the leakage of microwaves from the pure water tank 5 to the outside, the entire surfaces of the pure water tank 5 are surrounded by the microwave blocking plate 6.
The waveguide 4 is made of a material that does not allow microwaves to penetrate therethrough and be absorbed therein but reflects microwaves. The microwave blocking plate 6 is also made of a material that reflects microwaves without allowing microwaves to penetrate therethrough like the waveguide 4. Although a metal material is typically used as the material that reflects microwaves, in particular, aluminum or copper is preferably used as constituent materials of the waveguide 4 and the microwave blocking plate 6. However, when the hot water production apparatus is placed in a cleaning apparatus for semiconductor devices and the metal material is used as the material that reflects microwaves, a chemical atmosphere in the cleaning apparatus might attack the metal material. Therefore, as shown in
In order to prevent a chemical atmosphere in the cleaning apparatus from entering into the waveguide 4, as shown in
If an inactive gas, such as nitrogen, is used as a gas taken from the gas inlet duct 29, this cannot only prevent the inside of the waveguide 4 and the magnetron 2 from being exposed to the chemical atmosphere but also can prevent the inside of the waveguide 4 from being attacked by the taken gas. This widens the range of choice of metals used for the waveguide 4.
The microwave blocking plate 6 may have a flat shape. However, it preferably has a shape with punched holes, because the status of the inside of the pure water tank 5 can be visually checked. In this case, the diameter of each punched hole is set at a quarter or less of the microwave wavelength, which allows microwaves to be blocked.
A material through which microwaves penetrate and with which liquid stored in the pure water tank 5 is not contaminated is used as a material of the pure water tank 5. The reason for this is that very-high-purity pure water is required to prepare a cleaning solution for semiconductor devices. Representative materials of the pure water tank 5 include quartz and fluoroplastic (PFA, PTFE or the like). Although both quartz and fluoroplastic permit the penetration of microwaves, they have different properties. If quartz is used as a material of the pure water tank 5, not only pure water but also most acids other than a hydrofluoric acid and alkalis can be used for the cleaning solution, and the transparency of quartz allows the status of the inside of the pure water tank 5 to be visually checked. On the other hand, if fluoroplastic is used as a material of the pure water tank 5, most acids including hydrofluoric acid and alkalis can be used for the cleaning solution. Therefore, a material of the pure water tank 5 need be selected in accordance with intended purposes.
The pure water tank 5 is sealed except for holes which are located in the top section of the pure water tank 5 and through which the supply pipe 7 and various sensors pass. In order to seal the pure water tank 5, a lid may be provided. Alternatively, it is also possible that through holes are opened in the top section and parts of the pure water tank 5 making contact with the pipe and sensors are welded. The exit of the waveguide 4 is placed in the vicinity of at least one of the top section, the side sections and the bottom section of the pure water tank 5. In this way, the pure water in the pure water tank 5 is heated in a non-contact manner by applying microwaves to the pure water past at least one of the top section of the pure water tank 5, the side sections thereof and the bottom section thereof.
A cleaning solution quantity of about 35 L is generally required for cleaning apparatuses for cleaning 8-inch semiconductor substrates. Therefore, about 35 liters of pure water is to be heated also in the pure water tank 5 for producing hot water. A cleaning solution is typically used which has been heated to about 70° C. As seen from the above, about 80 through 85° C. Hot water is required to prepare a cleaning solution. For example, in order to heat pure water from room temperature (25° C.) To 85° C. The temperature of the pure water is increased by 60° C. (=85−25). This requires a heat quantity of 4.18 cal/(g° C.)×60° C.×35000 g=8778 kcal. When the pure water is to be heated for 30 minutes, a necessary heat quantity can be calculated as follows: 8778 kcal/(30×60 sec)=4.88 kW. In this case, it can be determined that a microwave oscillator 1 and a magnetron 2 having a power of 4.88 kW or more, for example, a 6-kW product, is required for hot water production. This can be expressed in the following formula:
P=4.18×W×C×ΔT/t[Watt]
P: magnetron power required for hot water production, W: pure water weight [g], C: specific heat of pure water [cal/(g° C.)], ΔT: elevated temperature [° C.], t: time during which temperature is elevated
After the temperature of the pure water in the pure water tank 5 reaches a predetermined temperature, the power of the microwave oscillator 1 is controlled to maintain hot water in the pure water tank 5 at a predetermined temperature. For example, power of the microwave oscillator 1 required to restore the temperature of 35-liter hot water to the predetermined temperature within a maximum range of 0.5° C. In 60 seconds can be calculated as 1.2 kW. Thus, it can be seen that, when a 6-kW product is used, the temperature of the hot water in the pure water tank 5 can sufficiently be controlled under 1.2 kW/6 kW=20% of the power of the product.
In order to prepare a hot cleaning solution using hot water heated to a predetermined temperature, the hot water drained from the drain 8 is put into a separate preparation tank or cleaning tank with a cleaning solution, and the hot water and the chemical solution are mixed at a predetermined mixing ratio. Thereafter, semiconductor substrates are put into a cleaning tank containing this cleaning solution and immersed in the cleaning solution for a predetermined period, thereby cleaning the semiconductor substrates.
As described above, according to the hot water production apparatus of this embodiment shown in
According to the hot water production apparatus of this embodiment, operations, such as an instant starting of application of microwaves and an instant stop thereof, can be performed. Therefore, the use of this hot water production apparatus permits heating with more excellent responsibility than the use of a heating apparatus of a heat conduction system, resulting in the improved temperature controllability. Furthermore, since the pure water tank need not be opened during the maintenance or exchange of the magnetron, this facilitates operations for the maintenance or exchange and can prevent contaminants from entering into the water due to the operations.
Although in this embodiment a description was given of the case where pure water is heated to produce hot water, the structure of the hot water production apparatus of this embodiment also permits the heating of a prepared cleaning solution stored in a preparation tank. Alternatively, the heated pure water in the pure water tank of this embodiment may be mixed with a chemical solution or a plurality of cleaning solutions to prepare a cleaning solution and then the prepared cleaning solution may be delivered to the cleaning tank.
With the cleaning apparatus, methods for obtaining a heated cleaning solution include a method in which a chemical solution is mixed into a heated pure water, a method in which, after a chemical solution is mixed into pure water to prepare a cleaning solution, the cleaning solution is heated, and a method in which a heated chemical solution is mixed into heated pure water to prepare a cleaning solution. The above-mentioned structure of the heating apparatus in which liquid is heated in a non-contact manner by microwaves is applicable to the heating of any of a chemical solution, a cleaning solution and pure water.
The hot water production apparatus shown in
A hot water production apparatus of this embodiment comprises a pure water tank 5, a power supply 3, the microwave oscillator 1 connected through a cable to the power supply 3 and having a magnetron 2 that generates microwaves, the waveguide 4 that transmits microwaves generated from the microwave oscillator 1 to the pure water tank 5 and irradiates the pure water tank 5 with microwaves, and a microwave blocking plate 6 surrounding the entire surfaces of the pure water tank 5 to prevent the leakage of microwaves. Some members, such as a supply pipe 7, a drain 8, a liquid-level sensor 9, a temperature-measuring sensor 10, and choke pipes 11 are not shown.
In the hot water production apparatus of this embodiment, the pure water tank 5 and the microwave blocking plate 6 are placed inside a cleaning apparatus 21 while the microwave oscillator 1 having the magnetron 2 and the power supply 3 are placed outside the cleaning apparatus 21. The microwave oscillator 1 (magnetron 2) is connected through the waveguide 4 to the pure water tank 5.
In order to heat pure water stored in the pure water tank 5, the power supply 3 placed outside the cleaning apparatus 21 is turned ON to operate the microwave oscillator 1, thereby generating microwaves from the magnetron 2. The generated microwaves are delivered through the inside of the waveguide 4 to the pure water tank 5 placed inside the cleaning apparatus 21 and applied to pure water in the pure water tank 5. In this way, the pure water is heated in a non-contact manner. The other basic operations are identical with those described in the first embodiment of the present invention.
As seen from the above, in the hot water production apparatus and the cleaning apparatus of this embodiment, the pure water tank 5 and the microwave blocking plate 6 are placed inside the cleaning apparatus 21, the microwave oscillator 1 having the magnetron 2 and the power supply 3 are placed outside the cleaning apparatus 21, and the microwave oscillator 1 is connected through the waveguide 4 to the pure water tank 5. Thus, only essential members are placed inside the cleaning apparatus 21. This can make the cleaning apparatus 21 itself compact and improve the flexibility in design for placing the cleaning apparatus 21 inside a clean room.
A hot water production apparatus of this embodiment comprises a first pure water tank 5a, a second pure water tank 5b, a power supply 3, a microwave oscillator 1 connected through a cable to the power supply 3 and having a magnetron 2 that generates microwaves, a waveguide 4 that transmits microwaves generated from the microwave oscillator 1 to the first and second pure water tanks 5a and 5b and irradiates the first and second pure water tanks 5a and 5b with microwaves, a reflector (microwave reflector element) 22 disposed at a branch point of the waveguide 4 and made of a material that reflects microwaves, and a microwave blocking plate 6 surrounding the entire surfaces of the first and second pure water tanks 5a and 5b to prevent the leakage of microwaves. The hot water production apparatus of this embodiment is characterized by applying microwaves generated by the one magnetron 2 to two or more pure water tanks.
According to the hot water production apparatus of this embodiment, in order to heat pure water stored in the first pure water tank 5a, the power supply 3 is turned ON to operate the microwave oscillator 1, thereby generating microwaves from the magnetron 2. Next, the reflector 22 disposed at a branch point of the waveguide 4 is turned from the first pure water tank 5a side toward the second pure water tank 5b side to reflect microwaves, thereby transmitting microwaves toward the first pure water tank 5a. Thus, microwaves are applied from the exit of the waveguide 4 located at the first pure water tank 5a side to the first pure water tank 5a. As a result, the pure water in the first pure water tank 5a can be heated in a non-contact manner.
In order to heat pure water stored in the second pure water tank 5b after the heating of pure water in the first pure water tank 5a to a predetermined temperature, the reflector 22 disposed at the branch point of the waveguide 4 is turned from the second pure water tank 5b side toward the first pure water tank 5a side. In this way, the direction in which microwaves reflected on the reflector 22 is transmitted is switched to transmit the microwaves to the second pure water tank 5b. Thus, microwaves are applied from the exit of the waveguide 4 located at the second pure water tank 5b side to the second pure water tank 5b, thereby heating the pure water in the second pure water tank 5b in a non-contact manner.
In order to control the temperature of hot water in the first pure water tank 5a also during the heating of pure water in the second pure water tank 5b, the reflector 22 disposed in the waveguide 4 is operated as necessary to apply microwaves to the first pure water tank 5a. If microwaves are thus applied to the first or second pure water tank 5a or 5b with the traveling direction of microwaves switched as necessary, this can make it possible to heat pure water in the first and second pure water tanks 5a and 5b simultaneously or with a time lag and control the temperature of the pure water therein simultaneously.
A description was given of the case where two pure water tanks are provided for the hot water production apparatus of this embodiment. However, even when three or more pure water tanks are provided, pure water can be heated likewise. The other basic operations and structures are identical with those described in the first embodiment of the present invention.
As seen from the above, according to the hot water production apparatus of this embodiment shown in
Even when the waveguide 4 has a length of a few tens of m (for example, 30 m), microwaves hardly attenuate. This permits the routing of the waveguide 4 and increases the flexibility in installing the hot water production apparatus.
Although in this embodiment an apparatus for producing hot water by heating pure water was described, a cleaning or chemical solution prepared in a preparation tank can also be heated as described above.
The cleaning apparatus of this embodiment shown in
The cleaning solution heating apparatus is obtained by replacing the pure water tank of the hot water production apparatus shown in
In the cleaning apparatus of this embodiment, the cleaning solution 28 flows from the outer tank of the cleaning tank 27 into the circulating line 26, then passes through the circulating pump 24 and is delivered to the heating tank 23 located in the cleaning solution heating apparatus. In the heating tank 23, microwaves generated from the magnetron 2 located in the microwave oscillator 1 passes through the inside of the waveguide 4 and penetrates through the heating tank 23 so as to be applied to the cleaning solution 28. In this way, the cleaning solution 28 is heated. The heated cleaning solution 28 flows from the heating tank 23 into the circulating line 26 to reach the filter 25. Particles in the cleaning solution 28 are removed by the filter 25, and then the cleaning solution 28 returns to the inner tank of the cleaning tank 27. The repetition of the above procedure allows the cleaning solution 28 to be heated while being circulated. The temperature of the cleaning solution 28 is controlled by controlling the oscillatory power of microwaves to maintain the cleaning solution 28 at a predetermined temperature.
There is used, as the cleaning solution 28 for cleaning semiconductor substrates, cleaning solutions obtained by blending two or three kinds of solutions selected from the group of alkaline chemical solutions such as ammonia water, acidic chemical solutions such as sulfuric acid and hydrochloric acid, oxidizing-agent chemical solutions such as hydrogen peroxide and ozone water, and pure water at a predetermined mixing ratio. Since commercial alkaline and acidic chemical solutions are mostly aqueous solutions, the cleaning solution 28 is also an aqueous solution. Therefore, the application of microwaves to the cleaning solution 28 allows water molecules in the cleaning solution 28 to vibrate and thus generate heat, resulting in the heated cleaning solution 28.
In order to effectively remove contaminants, such as particles and metal impurities, from the top surfaces of semiconductor substrates in a shorter time with the cleaning efficiency of the cleaning solution improved, a cleaning solution is to be used which has been heated to a predetermined temperature, for example, 70° C. In this relation, in order to shorten the period required for the heating of a cleaning solution, it is typical that a cleaning solution previously heated in a preparation tank or previously heated hot water and a previously heated chemical solution are supplied to a cleaning tank. Therefore, in many cases, the heating of the cleaning solution in the cleaning tank increases the temperature of the cleaning solution by about 2 through 3° C. To control the temperature thereof or increases the temperature thereof at the time of the supply thereof by about 10° C. Therefore, a high-power microwave oscillator is not required. The temperature of the cleaning solution can sufficiently be increased by, for example, a several-kW low-power microwave oscillator.
According to the cleaning apparatus of the present invention, microwaves are applied not to the cleaning solution 28 with a pipe for the circulating line 26 interposed therebetween but to the cleaning solution 28 temporarily stored in the heating tank 23. Therefore, the cleaning solution 28 can more effectively be heated by an inexpensive lower-power microwave oscillator 1. When microwaves are applied to the cleaning solution 28 with the pipe for the circulating line 26 interposed therebetween, the flow velocity of the cleaning solution 28 is so fast that the cleaning solution 28 can stay at the site to which microwaves are applied only for a short time. This makes it difficult to increase the temperature of the cleaning solution 28 to a desired temperature without increasing the microwave power. As a result, according to the known heating method, an expensive high-power microwave oscillator is required. On the other hand, according to the heating method of the present invention, the temporary storage of the cleaning solution 28 in the heating tank 23 sharply decreases the flow velocity of the cleaning solution 28 in the heating tank 23. This can increase the period during which microwaves are applied to the cleaning solution 28. As a result, a cleaning solution can be heated using an inexpensive lower-power microwave oscillator.
It is difficult that the pipe of the circulating line 26 for the cleaning solution 28, which is connected to the heating tank 23, has a diameter of a quarter or less of the microwave wavelength, which allows microwaves to be blocked. The reason for this is that a flow rate of 10 through 20 L/min is usually required for the circulating line 26. In view of the above, if the choke pipes 11 are attached to pipe joints for the circulating line 26, this reduces the leakage of microwaves from these joints.
Furthermore, as described above, the waveguide 4 must be made of a material that does not allow microwaves to penetrate therethrough and be absorbed therein but reflects microwaves. The microwave blocking plate 6 must also be made of a material that reflects microwaves without allowing microwaves to penetrate therethrough and be absorbed therein like the waveguide 4. Therefore, metals are used as materials of the waveguide 4 and the microwave blocking plate 6. In order to prevent the waveguide 4 and the microwave blocking plate 6 from being attacked due to a chemical atmosphere in the cleaning apparatus, a coating made of a chemical-resistant material through which microwaves penetrate (for example, fluoroplastic) is preferably applied to the inner and outer surfaces of the waveguide 4 and the microwave blocking plate 6.
The heating tank 23 is made of a material through which microwaves penetrate and which does not dissolve into the cleaning solution 28 and react with the cleaning solution 28 and can provide high cleanliness to the extent that the material can be used for the purpose of cleaning semiconductor substrates (for example, quartz or fluoroplastic). Microwaves are applied through at least one of the top of the heating tank 23, the sides thereof and the bottom thereof to the heating tank 23. If microwaves are applied to the cleaning solution 28 in the direction opposed to the flow direction of the cleaning solution 28 (i.e., through the top of the heating tank 23), the cleaning solution 28 can more effectively be heated.
As seen from the above, according to the cleaning apparatus of this embodiment shown in
The heating of the cleaning solution 28 in a non-contact manner can prevent metal contaminants from entering from a heater into the cleaning solution 28 and can provide a high heating efficiency. Furthermore, since the generated heat in the vicinity of the heating tank 23 can be reduced, the cleaning solution heating apparatus can be placed in the cleaning apparatus. As a result, space for the cleaning apparatus can be saved. In addition, since heating can instantly be started or stopped with the starting or stop of application of microwaves, this can provide excellent response to a heating operation as compared with the heating method using thermal conductivity and improve the temperature controllability. Furthermore, since the circulating line 26 need not be opened during the maintenance and exchange of the magnetron 2, this facilitates operations for the maintenance and exchange thereof and can prevent contaminants from entering into the cleaning solution 28 due to the operations.
As described above, the liquid heating apparatus of the present invention is widely used not only for the purpose of providing a heated cleaning solution for semiconductor substrates or the like but also for the purpose of heating liquid including water.
Number | Date | Country | Kind |
---|---|---|---|
2004-229534 | Aug 2004 | JP | national |