The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2018-138118, filed on Jul. 24, 2018 and Japanese Patent Application No. 2019-107165, filed on Jun. 7, 2019. The contents of which are incorporated herein by reference in their entirety.
An aspect of this disclosure relates to a liquid jet device.
When painting a rectangular painting area, which has, for example, a length of about 200 mm and a width of about 1,000 mm, on an object by using a liquid jet head held on an XY driving table, paint dots discharged from the liquid jet head are placed on the object at regular intervals in both the vertical and horizontal directions.
In the X-direction, the nozzle head mounted on the XY driving table moves at a constant speed from side to side, and discharges dots when entering the target painting area. In the Y direction, the liquid jet head is moved by the Y-axis movement of the XY table so that dots are arranged at 0.2-mm intervals. A related-art painting method performed by a liquid jet head is described above.
However, the related-art painting method described above has problems as described below. These problems are described below with reference to
Reasons why such “noise dots” are generated are described below. For example, “Advanced Display Technology Series 8, Digital Hardcopy Technology, KYORITSU SHUPPAN CO., LTD., November 2000, pp. 151-154, Responsible Editors Iwamoto and Kodera” describes a mechanism for discharging paint dots from nozzles of a liquid jet head. However, when a paint (ink) dot discharged from a nozzle of a liquid jet head is more closely examined using, for example, a stroboscopic microscope, the dot changes as illustrated in
Each of
In actual painting, the liquid jet head moves in the X direction, for example, rightward at a constant speed. Accordingly, as indicated by vector velocities in
For example, when paint was discharged from a nozzle having a diameter of 0.15 mm and moving at a constant speed of 640 mm/s in the X direction, the vertical fall velocity of the parent dot 2b was 5,850 mm/s, the vertical fall velocity of the satellite dot 2c was 4,300 mm/s, the diameter of the parent dot 2b fallen onto the object 100 located 10 mm below the nozzle was 2.0 mm, the diameter of the satellite dot 2c was 0.1 mm, and the position of the satellite dot 2c was at a distance of 0.4 mm from an edge of the parent dot 2b.
Japanese Patent No. 4210014 discloses a method for solving the above-described problem of satellite dots. According to an inkjet printing method disclosed in Japanese Patent No. 4210014, in a printing process where an inkjet print head including multiple nozzles is positioned adjacent to a sheet of a printing medium and the sheet or the print head is moved in a scanning axis direction, ink droplets (satellite dots) are discharged from one of the nozzles in a direction inclined relative to a direction that is orthogonal to the scanning axis, and parameters and the scanning speed are selected such that the body and the tail of each ink droplet falls onto the same position on the sheet.
However, with the method disclosed in Japanese Patent No. 4210014, it is necessary to configure a nozzle such that the center of the inlet of the orifice of the nozzle defines a normal axis and the center of the outlet of the orifice is shifted from the normal axis by an offset amount. Thus, this configuration requires a dedicated nozzle.
According to an aspect of this disclosure, a liquid jet device includes a head that discharges liquid to an object; a moving mechanism that moves at least one of the object and the head; and a controller that causes the head to discharge the liquid while moving the at least one of the object and the head in a first direction to form a first row of dots, and causes the head to discharge the liquid while moving the at least one of the object and the head in a second direction opposite the first direction to form a second row of dots that overlaps the first row of dots. The controller causes the center of the first dot in the second row of dots to be shifted from the center of the last dot in the first row of dots by a distance greater than or equal to a distance d.
An aspect of this disclosure makes it possible to improve image quality by controlling the discharge of paint dots. A liquid jet device and painting methods performed by the liquid jet device according to embodiments are described below with reference to the accompanying drawings.
First, an inkjet printer that performs painting methods according to the embodiments is described.
As illustrated in
The nozzle head 2 is caused to move in the X and Y directions above the surface of the painting area 101 of the object 100 by the X-axis moving mechanism 3 and the Y-axis moving mechanisms 4. While the nozzle head 2 is being moved, inkjet nozzles (not shown) of the nozzle head 2 discharge paint dots toward the painting area 101 to be painted and thereby form a paint film on the painting area 101.
The PLC 71 that operates under the control of the computer 70 and the nozzle control circuit 73 is connected to a touch panel display 75 that displays various types of information and enables a user to input instructions by touching the screen and to a motor controller 76 that controls driving motors (not shown) of the X-axis moving mechanism 3 and the Y-axis moving mechanisms 4. The motor controller 76 is connected to a motor drive circuit 77 that drives the driving motors under the control of the motor controller 76.
When the painting area 101 has dimensions of about 200 mm×about 1,000 mm, the painting area 101 is covered by an array of 5,000×1,000=5×106 dots as described above. In this case, the nozzle head 2 mounted on the X-axis moving mechanism 3 is moved right and left at a constant speed in the X direction, and discharges dots when the nozzle head 2 enters the target painting area. In the Y-axis direction, the Y-axis moving mechanisms 4 are driven to move the nozzle head 2 such that dots are arranged at an interval of 0.2 mm.
The computer 70 controls the PLC 71 and the nozzle control circuit 73 according to a pre-stored program and thereby drives the X-axis moving mechanism 3, the Y-axis moving mechanisms 4, and the nozzle head 2 to form a print pattern. During this process, the nozzle head 2 discharges paint dots onto the object 100 at regular intervals in both the vertical and horizontal directions.
Next, painting methods using the liquid jet head of the present embodiment are described. First, a painting method according to a first embodiment is described.
In the painting method according to the first embodiment, when dots (which may be hereafter referred to as “right-to-left dots”) are formed in a row at regular intervals (pitch) from right to left such that the right-to-left dots overlap a row of dots (which may be hereafter referred to as “left-to-right dots”) formed from left to right, a satellite dot protruding from an edge of the last left-to-right dot is hidden by shifting the center of each right-to-left dot from the center of the corresponding left-to-right dot to the right by a distance greater than or equal to a distance d between the edge of the last left-to-right dot and the satellite dot. This is explained in more detail with reference to
As illustrated in
A control program for controlling the PLC 71, the nozzle control circuit 73, and the motor controller 76 to shift the dots by the distance d may be installed beforehand in the computer (PC) 70. According to the control program, the computer 70 causes the motor controller 76 to control the X-axis moving mechanism 3 and the Y-axis moving mechanisms 4 of the XY table to move the nozzle head 2 at an optimum speed, causes the nozzle control circuit 73 to control the timing of discharging paint and the amount of paint to be discharged, and thereby performs the above control process.
Also, according to the present embodiment, an image of a recording head moved at a predetermined speed may be captured with, for example, a camera (not shown), and the controller may determine the distance d based on the captured image and store the determined distance d in a storage (not shown). Also, when the recording head is moved at a speed different from the predetermined speed, the controller may change the distance d based on the predetermined speed and the speed of the recording head.
In the painting method using the liquid jet head according to the first embodiment, a first row of dots is formed by causing the nozzle head 2 to discharge paint at regular intervals while moving the nozzle head 2 in a first direction, and a second row of dots is formed to overlap the first row of dots by causing the nozzle head 2 to discharge the paint at the same regular intervals while moving the nozzle head 2 in a second direction opposite the first direction such that the center of the first dot in the second row of dots is shifted from the center of the last dot in the first row of dots toward a satellite dot by a distance greater than or equal to the distance d. This method makes it possible to form a painting area with a clear edge with no noise dot while using the nozzle head 2 with a normal shape, i.e., without changing the nozzle head 2 to have a special shape.
In the present embodiment, paint is discharged while moving the head held on the XY table in the XY directions. However, the present invention is not limited to this embodiment. For example, the head may be fixed and an object to be painted may be moved in the XY directions, or both of the head and the object may be moved. Also, liquid may be discharged while moving the head in the YZ directions or the XZ directions.
Next, a painting method according to a second embodiment is described.
d+(r−√{square root over (r2−p2)}) (1)
This method is described in more detail with reference to
As illustrated in
d′=r−√{square root over (r2−p2)} (2)
For example, when r=1.0 mm and p=0.2 mm, d′ becomes 0.02 mm, and the center of the right-to-left dot is shifted by (d+d′), i.e., 0.4+0.02 mm=0.42 mm.
Formulas (3) below indicate a process of calculating d′.
Similarly to the first embodiment, a control program for controlling the PLC 71, the nozzle control circuit 73, and the motor controller 76 to shift the dots by the distance d may be installed beforehand in the computer (PC) 70. According to the control program, the computer 70 causes the motor controller 76 to control the X-axis moving mechanism 3 and the Y-axis moving mechanisms 4 of the XY table to move the nozzle head 2 at an optimum speed and an optimum pitch, causes the nozzle control circuit 73 to control the timing of discharging paint and the amount of paint to be discharged, and thereby performs the above control process.
In the painting method using the liquid jet head according to the second embodiment, a first row of dots is formed by causing the nozzle head 2 to discharge paint at regular intervals while moving the nozzle head 2 in a first direction, and a second row of dots is formed at a position shifted from the first row of dots by the pitch P in a direction orthogonal to the first direction by causing the nozzle head 2 to discharge the paint at the same regular intervals as the first row of dots while moving the nozzle head 2 in a second direction opposite the first direction. In this method, when r indicates the radius of the main dot discharged from the nozzle head 2 to the object surface, the center of the first dot in the second row of dots is shifted from the center of the last dot in the first row of dots toward a satellite dot by a distance greater than or equal to a value calculated by formula (1) below. This method makes it possible to form a painting area with a clear edge with no noise dot while using the nozzle head 2 with a normal shape, i.e., without changing the nozzle head 2 to have a special shape.
d+(r−√{square root over (r2−p2)}) (1)
A liquid jet device and a painting method according to embodiments of the present invention are described above. However, the present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-138118 | Jul 2018 | JP | national |
JP2019-107165 | Jun 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5661507 | Sperry | Aug 1997 | A |
6299270 | Merrill | Oct 2001 | B1 |
9033464 | Kaiba et al. | May 2015 | B2 |
20060109291 | De Pena | May 2006 | A1 |
20060125865 | Shibata | Jun 2006 | A1 |
20070019031 | Murayama | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
2004-255806 | Sep 2004 | JP |
2004255806 | Sep 2004 | JP |
2007-216475 | Aug 2007 | JP |
4210014 | Jan 2009 | JP |
2011-148113 | Aug 2011 | JP |
2013-052627 | Mar 2013 | JP |
2018-122225 | Aug 2018 | JP |
Entry |
---|
Machine generated English translation of JP2004255806A to Nunokawa, “Printer, Method for Printing, and Printing System”; generated via www.espacenet.com on Mar. 16, 2021; 14pp. (Year: 2021). |
Extended European Search Report for 19186744.9 dated Nov. 22, 2019. |
Iwamoto et al., “Advanced Display Technology Series 8, Digital Hardcopy Technology”, Kyoritsu Shuppan Co., Ltd., Nov. 2000, Chapter 7 Ink Jet Records, pp. 151-154 with English Translation. |
Number | Date | Country | |
---|---|---|---|
20200031117 A1 | Jan 2020 | US |