1. Technical Field
The present invention relates to a liquid jet head and liquid jet apparatus that are configured to jet droplets onto a recording medium to record information.
2. Related Art
In an ink-jet-method currently in use, a liquid jet head is configured to jet ink droplets, for example, onto recording paper to record a character or a figure, or to eject a liquid material to form a functional thin film on the surface of an element substrate. In the method, liquid such as ink or a liquid material is led to a channel from a liquid tank through a supply pipe, and a pressure is applied to the liquid filled in the channel such that the liquid is ejected as droplets from a nozzle communicating with the channel. When the droplets are ejected, the liquid jet head and the recording medium are moved to record a character or a figure or to form a functional thin film or three-dimensional structure having a predetermined shape.
The liquid jet head as described above is described in JP 2011-245833 A. FIG. 8 (FIG. 8 in JP 2011-245833 A) is a schematic top view of a liquid jet head 101 from which the cover plate is removed. An actuator substrate 102 includes ejection grooves C and non-ejection grooves D that are alternately arranged on the top surface, drive electrodes 109 that are installed on the side surfaces of the ejection grooves C and non-ejection grooves D, first terminal electrodes 110a that are electrically connected to the drive electrodes 109 of the ejection grooves C, and second terminal electrodes 110b that each are electrically connected to the drive electrode 109 installed on the side surface on the ejection groove C side of the two non-ejection grooves D holding an ejection groove C therebetween. Each of the ejection grooves C is formed from a front end FE to a position short of a rear end RE, and each of the non-ejection grooves D is formed from the front end FE to the rear end RE. A nozzle plate 105 is installed on the front end FE of the actuator substrate 102. A flexible substrate 103 is installed on a substrate surface 115 near the rear end RE of the actuator substrate 102.
A common wiring electrode 111a and a plurality of individual wiring electrodes 111b are formed on the surface on the actuator substrate 102 side of the flexible substrate 103. The common wiring electrode 111a is electrically connected to each of the first terminal electrodes 110a at each of the first connection points 116a. Each of the individual wiring electrodes 111b is electrically connected to each of the second terminal electrodes 110b at each of the second connection points 116b. Note that a cover plate (not illustrated in the drawing) is bonded to the substrate surface 115 of the actuator substrate 102. The cover plate covers a part of an upper opening in each of the ejection grooves C so as to form a channel that is to be filled with liquid. The cover plate includes a liquid chamber to be capable of supplying the liquid to each of the ejection grooves C. Nozzles 114 communicating with the ejection grooves C are formed on the nozzle plate 105. Note that an insulating layer 117 is installed between the common wiring electrode 111a and each of the non-ejection grooves D so as to prevent an electric short-circuit between the common wiring electrode 111a and each of the drive electrodes 109 installed on the side surfaces of the non-ejection grooves D.
The liquid jet head 101 is driven as described below. Liquid is filled in each of the ejection grooves C from the liquid chamber of the cover plate (not illustrated in the drawing). The common wiring electrode 111a is installed on a GND to supply a drive signal to the individual wiring electrodes 111b. This thickness-shear deforms a partition 107 among an ejection groove C and two non-ejection grooves D that hold the ejection groove C therebetween. This causes to eject the droplets from the nozzles 114 communicating with the ejection grooves C. Accordingly, supplying a drive signal to an arbitrary individual wiring electrodes 111b can simultaneously eject the droplets from the corresponding nozzles 114.
JP 2011-93105 A describes a liquid jet head on which a plurality of pressure chambers configured to eject droplets by applying a pressure to liquids, piezoelectric body layers bonded to the pressure chambers through vibrating plates, and a common wiring and individual wirings configured to apply a drive signal to the piezoelectric body layer are installed. The common wiring is commonly connected to the piezoelectric body layers whereas the individual wirings are individually connected to the piezoelectric body layers. Supplying a drive signal between the common wiring and the individual wiring deforms the piezoelectric body layer. The deformation momentarily changes the volume of the pressure chamber by deforming the vibrating plate. This causes to eject the droplets from the nozzle communicating with the pressure chamber.
JP 2011-93105 A describes that there is a problem in that heat is generated at the joint portion between the pad portion of the common wiring and the terminal portion of a film-shaped wiring board bonded to the pad portion because the increase in the number of the piezoelectric body layers driving the liquid jet head increases the current flowing through the common wiring.
The liquid jet head 101 in JP 2011-245833 A ejects the droplets simultaneously from the nozzles 114 communicating with the corresponding ejection grooves C by supplying the drive signal simultaneously to the individual wiring electrodes 111b. However, similarly to JP 2011-93105 A, the common wiring electrode 111a is electrically connected to all of the first terminal electrodes 110a. Thus, driving many ejection grooves C simultaneously causes overcurrent. This sometimes causes the common wiring electrode 111a to generate heat. When the common wiring electrode 111a is extended in width to avoid the overcurrent, the first terminal electrode 110a needs to be extended in the direction of the groove of the ejection groove C. This increases the size of the actuator substrate 102.
The liquid jet head of the present invention includes: a head chip including a plurality of common terminals arranged in a reference direction; and a circuit board connected to the head chip. The circuit board includes: a plurality of shared terminals installed on a lower surface on the head chip side and electrically connected to the common terminals, respectively; a upper common wiring installed on a top surface opposite to the head chip side and extending in the reference direction; and a through electrode electrically connecting each of the shared terminals to the upper common wiring.
The head chip includes a plurality of active terminals arranged parallel to the common terminals and in the reference direction. The circuit board includes a plurality of individual terminals installed on the lower surface and arranged parallel to the shared terminals and in the reference direction. The active terminals are electrically connected to the individual terminals, respectively.
The upper common wiring covers upper portions of the active terminals.
The circuit board includes a lower common wiring extending on the lower surface in the reference direction and electrically connected to the shared terminals.
The electrode width of the upper common wiring in a direction perpendicular to the reference direction is larger than the electrode width of the lower common wiring in a direction perpendicular to the reference direction.
The cross-sectional area of the upper common wiring in a direction perpendicular to the reference direction is larger than the cross-sectional area of the lower common wiring in a direction perpendicular to the reference direction.
The density of installation of the through electrodes in the reference direction near both ends of a sequence of the common terminals is higher than near a center of the sequence.
The density of installation of the through electrodes in the reference direction is approximately constant.
Each of the through electrodes is installed at an intersection at which the shared terminal intersects the lower common wiring.
The head chip includes a concavity between the common terminals and the active terminals. The lower common wiring faces an upper end opening of the concavity.
In a planar view in a vertical direction of a substrate surface of the circuit board, the shared terminals protrude from the upper common wiring.
On the head chip, ejection grooves and non-ejection grooves are alternately arranged in the reference direction. The common terminals are electrically connected to drive electrodes installed on side surfaces of the ejection grooves. Each of the active terminals is electrically connected to a drive electrode installed on a side surface on an ejection groove side of two non-ejection grooves holding the ejection groove therebetween.
The liquid jet apparatus of the present invention includes: the liquid jet head; a moving mechanism configured to move the liquid jet head and a recording medium relatively; a liquid supply pipe configured to supply liquid to the liquid jet head; and a liquid tank configured to supply the liquid to the liquid supply pipe.
The liquid jet head according to the present invention includes: a head chip including a plurality of common terminals arranged in a reference direction; and a circuit board connected to the head chip. The circuit board includes: a plurality of shared terminals installed on a lower surface on the head chip side and electrically connected to the common terminals, respectively; an upper common wiring installed on a top surface opposite to the head chip side and extending in the reference direction; and a through electrode electrically connecting each of the shared terminal to the upper common wiring. This can further reduce the wiring resistance in comparison to when a common wiring is installed only on the lower surface of the circuit board.
(First Embodiment)
As illustrated in
The head chip 2 further includes active terminals 5 electrically separating from the common terminals 4 on the surface between the common terminals 4 and the rear end RE. The active terminals 5 are formed correspondingly to the common terminals 4 and are arranged parallel to the common terminals 4 in the reference direction K (see
In that case, the active terminals 5 are installed nearer to the rear end RE side than the common terminals 4. Thus, when the common wiring commonly connecting the shared terminals 6 is installed on the lower surface LP side, the electrode width is limited. In the present embodiment, installing the upper common wiring 9 on the top surface TP of the circuit board 3 can form the electrode having a wide width regardless of the active terminals 5 or the individual terminals 7.
The liquid jet head 1 will concretely be described using
As illustrated in
In that case, a glass substrate, a glass epoxy substrate, or a flexible circuit board using a plastic material such as polyimide can be used as the circuit board 3. For example, layering a Cu film, an Ni film, and an Au film with a plating method can form the shared terminals 6, the individual terminals 7 and the upper common wiring 9. Forming a through hole in, the circuit board 3 and filling a conductive material such as Cu, Ni, Au, or Ag into the through hole with a plating method can form the through electrode 10. The head chip 2 is formed, for example, of a piezoelectric body substrate which is made of PZT ceramics or the like. A metal material such as Al, Ti, Ni, Au, and Ag can be used as the common terminals 4 and the active terminals 5. Placing an anisotropic conductive material between the common terminals 4 and the shared terminals 6, and between the active terminals 5 and the individual terminals 7 and thermal-compression bonding them can electrically connect the terminals to each other.
It is noted that the liquid jet head 1 of the present invention is not limited to one of an edge shoot type as described in the present embodiment, and can be of a side shoot type in which the nozzle plate 22 is installed on a surface of the piezoelectric body substrate 21 opposite to the cover plate 23. The shared terminals 6 and the individual terminals 7 can be installed on the surface of the piezoelectric body substrate 21 opposite to the cover plate 23. The piezoelectric body element can be of a flexural mode type or a longitudinal mode type other than of the shearing type as described in the present embodiment.
(Second Embodiment)
As illustrated in
As further illustrated in
In that case, a glass substrate, a glass epoxy substrate, or a flexible circuit board using a plastic material such as polyimide can be used as the circuit board 3. For example, layering a Cu film, an Ni film, and an Au film with a plating method can form the shared terminals 6, the individual terminals 7 and the upper common wiring 9. Forming a through hole in the circuit board 3 and filling a conductive material such as Cu, Ni, Au, or Ag into the through hole with a plating method can form the through electrode 10. The head chip 2 is formed, for example, of a piezoelectric body substrate which is made of PZT ceramics or the like. A metal material such as Al, Ti, Ni, Au, and Ag can be used as the common terminals 4 and the active terminals 5. Placing an anisotropic conductive material between the common terminals 4 and the shared terminals 6, and between the active terminals 5 and the individual terminals 7 and thermal-compression bonding them can electrically connect the terminals to each other.
It is not necessary to form the through electrodes 10 as many as the shared terminals 6. Reducing the number of the through electrodes 10 to less than the number of the shared terminals 6 reduces the manufacturing cost. Furthermore, similarly to the first embodiment, the electrode of the upper common wiring 9 can be formed so as to have a wide width regardless of the active terminals 5 or the individual terminals 7. This can reduce the wiring resistance.
As illustrated in
(Third Embodiment)
As illustrated in
As further illustrated in
In that case, a glass substrate, a glass epoxy substrate, or a flexible circuit board using a plastic material such as polyimide can be used as the circuit board 3. For example, layering a Cu film, an Ni film, and an Au film with a plating method can form the shared terminals 6, the individual terminals 7 and the upper common wiring 9. Forming a through hole in the circuit board 3 and filling a conductive material such as Cu, Ni, Au, or Ag into the through hole with a plating method can form the through electrode 10. The head chip 2 is formed, for example, of a piezoelectric body substrate which is made of PZT ceramics or the like. A metal material such as Al, Ti, Ni, Au, and Ag can be used as the common terminals 4 and the active terminals 5. Placing an anisotropic conductive material between the common terminals 4 and the shared terminals 6, and between the active terminals 5 and the individual terminals 7 and thermal-compression bonding them can electrically connect the terminals to each other.
Note that it is not necessary to form the through electrodes 10 as many as the shared terminals 6. Reducing the number of the through electrodes 10 to less than the number of the shared terminals 6 reduces the manufacturing cost. There is not a short-circuit between the lower common wiring 8 and the exposed electrode even when another electrode or the like is exposed to the surface of the head chip 2 because the lower common wiring 8 corresponds to the upper end opening OP of the concavity 12 as described above. As illustrated in
In the third embodiment, the concavity 12 is formed on the head chip 2 and the lower common wiring 8 corresponds to the upper end opening OP of the concavity 12. However, alternatively, the concavity can be formed on the surface on the head chip 2 side of the circuit board 3 such that the lower common wiring 8 can be installed on the bottom surface of the concavity. This separates the lower common wiring 8 from the piezoelectric body substrate 21, and thus prevents an electric short-circuit between the lower common wiring 8 and the drive electrodes KD installed on the side surfaces of the non-ejection grooves D.
(Fourth Embodiment)
As illustrated in
In a planar view in the vertical direction of the substrate side of the circuit board 3, the shared terminals 6 protrude from the upper common wiring 9. More specifically, the shared terminals 6 protrude from the upper common wiring 9 in a direction J perpendicular to the reference direction K in the planar view. Accordingly, when the circuit board 3 is made of a translucent material, for example, a translucent plastic material such as a polyimide film, the positions of the shared terminals 6 can be visible from above. This facilitates the alignment of the shared terminals 6 on the circuit board 3 with the common terminals 4 on the head chip 2. The lower common wiring 8 faces the upper end opening OP of the concavity 12. Concretely, in the direction J perpendicular to the reference direction K, the electrode width W8 of the lower common wiring 8 is smaller than the width of the upper end opening OP of the concavity 12, and is positioned in the upper region of the upper end opening OP. Thus, even when another electrode is exposed to the surface of the piezoelectric body substrate 21, an electric short-circuit between the exposed electrode and the lower common wiring 8 can be prevented.
The circuit board 3 further includes the plurality of individual terminals 7 arranged in the reference direction K and parallel to the shared terminals 6 on the lower surface LP. The active terminals 5 are electrically connected to the individual terminals 7, respectively. The individual terminals 7 are electrically connected to the individual wirings 11, respectively. The upper common wiring 9 covers the upper portions of the active terminals 5. As described above, when the upper common wiring 9 is installed while having a wide width so as to reach the end portion on the rear end RE side of the active terminals 5 or protrude toward the rear side over the end portion on the rear end RE side, the positions of the active terminals 5 are not visible in the planar view in the vertical direction of the circuit board 3. Even in that case, the positions of the shared terminals 6 on the circuit board 3 and the positions of the common terminals 4 on the head chip 2 can simultaneously be visible. This can facilitate the alignment of the circuit board 3 with the head chip 2.
The above will be described more concretely. As illustrated in
Each of the drive electrodes KD of the non-ejection grooves D is formed to the corner between the side surface of the non-ejection groove D and the surface of the piezoelectric body substrate 21 while the side surface intersecting the lower common wiring 8 is recessed downward because of the concavity 12. Thus, there is not an electric short-circuit between the lower common wiring 8 and the drive electrodes KD of the non-ejection groove D. In the present embodiment, similarly to the second and third embodiments, the electrode of the upper common wiring 9 can be formed so as to have a wide width regardless of the active terminals 5 and the individual terminals 7. This further reduces the wiring resistance and softens the local concentration of the current. This suppresses the heat generation. Instead of forming the concavity 12 on the head chip 2, the concavity can be formed on the surface on the head chip 2 side of the circuit board 3 such that the lower common wiring 8 can be installed on the bottom surface of the concavity. This separates the lower common wiring 8 from the piezoelectric body substrate 21. Thus, there is not an electric short-circuit between the lower common wiring 8 and the drive electrodes KD installed on the side surfaces of the non-ejection grooves D.
In that case, a glass substrate, a glass epoxy substrate, or a flexible circuit board using a plastic material such as polyimide can be used as the circuit board 3. For example, layering a Cu film, an Ni film, and an Au film with a plating method can form the shared terminals 6, the individual terminals 7 and the upper common wiring 9. Forming a through hole in the circuit board 3 and filling a conductive material such as Cu, Ni, Au, or Ag into the through hole with a plating method can form the through electrode 10. The head chip 2 is formed, for example, of a piezoelectric body substrate which is made of PZT ceramics or the like. A metal material such as Al, Ti, Ni, Au, and Ag can be used as the common terminals 4 and the active terminals 5. Placing an anisotropic conductive material between the common terminals 4 and the shared terminals 6, and between the active terminals 5 and the individual terminals 7 and thermal-compression bonding them can electrically connect the terminals to each other.
(Fifth Embodiment)
The liquid jet apparatus 30 includes: a pair of conveying units 41 and 42 configured to convey a recording medium 44 such as paper in a main scanning direction; the liquid jet heads 1 and 1′ configured to jet liquid onto the recording medium 44; a carriage unit 43 placing the liquid jet heads 1 and 1′ thereon; the liquid pumps 33 and 33′ configured to supply the liquid stored in the liquid tanks 34 and 34′ to the flow path portions 35 and 35′ by pressing the liquid; and the moving mechanism 40 configured to scan the liquid jet heads 1 and 1′ in a vertical scanning direction perpendicular to the main scanning direction. A control unit (not illustrated in the drawings) controls and drives the liquid jet heads 1 and 1′, the moving mechanism 40, and the conveying units 41 and 42.
The pair of conveying units 41 and 42 extends in the vertical scanning direction, and includes a grid roller and pinch roller configured to rotate while the roller surfaces contact each other. A motor (not illustrated in the drawings) moves the grid roller and pinch roller by causing the rollers to rotate around the shafts to convey the recording medium 44 held between the rollers in the main scanning direction. The moving mechanism 40 includes: a pair of guide rails 36 and 37 extending in the vertical scanning direction; the carriage unit 43 slidable along the pair of guide rails 36 and 37; an endless belt 38 coupled to the carriage unit 43 and configured to move the carriage unit 43 in the vertical scanning direction; and a motor 39 configured to cause the endless belt 38 to revolve through a pulley (not illustrated in the drawings).
The carriage unit 43 places a plurality of liquid jet heads 1 and 1′ thereon so as to jet four types of droplets, for example, yellow, magenta, cyan, and black. The liquid tanks 34 and 34′ store corresponding color liquid and supply the liquid through the liquid pumps 33 and 33′, and the flow path portions 35 and 35′ to the liquid jet heads 1 and 1′. Each of the liquid jet heads 1 and 1′ jets the droplets of which color corresponds to the drive signal. Controlling the timing to jet liquid from the liquid jet heads 1 and 1′, the rotation of the motor 39 driving the carriage unit 43, and the speed at which the recording medium 44 is conveyed can record an arbitrary pattern on the recording medium 44.
Note that, although the liquid jet apparatus 30 of the present embodiment records information by moving the carriage unit 43 and the recording medium 44 using the moving mechanism 40, the liquid jet apparatus can record information by moving the recording medium two-dimensionally while fixing the carriage unit using the moving mechanism, alternatively. In other words, the moving mechanism may move the liquid jet head and the recording medium relatively.
Number | Date | Country | Kind |
---|---|---|---|
2013-252411 | Dec 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20070285470 | Kanaya | Dec 2007 | A1 |
20090315957 | Koseki | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
2011093105 | May 2011 | JP |
2011245833 | Dec 2011 | JP |
2012011704 | Jan 2012 | JP |
2012002131 | Jan 2012 | WO |
2012176874 | Dec 2012 | WO |
Entry |
---|
IPO Search Report mailed Jun. 4, 2015 issued in Appln. No. GB1421486.0. |
Number | Date | Country | |
---|---|---|---|
20150158299 A1 | Jun 2015 | US |