This application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2017-212924 filed Nov. 2, 2017, the entire content of which is hereby incorporated by reference.
The present disclosure relates to a liquid jet head and a liquid jet recording device.
As one of liquid jet recording devices, there is provided an inkjet type recording device for ejecting (jetting) ink (liquid) on a recording target medium such as recording paper to perform recording of images, characters, and so on. In the liquid jet recording device of this type, it is arranged that the ink is supplied from an ink tank to an inkjet head (a liquid jet head), and then the ink is ejected from nozzles of the inkjet head toward the recording target medium to thereby perform recording of the images, the characters, and so on.
Further, such an inkjet head is provided with a head chip for ejecting the ink. Such a head chip and the driver integrated circuit (IC) for performing the drive control of the head chip involve heat generation when the inkjet head operates in some cases. Therefore, the applicant of the invention has already proposed the liquid jet head arranged to perform cooling of a control circuit including the driver IC by circulating the ink as a refrigerant (see JP-A-2015-171806).
The liquid jet head is capable of jetting a variety of types of liquid on the one hand, and is required to be easy to handle on the other hand. In other words, it is desired to provide a liquid jet head and a liquid jet recording device capable of dealing with jet of a variety of types of liquid, and at the same time superior in easiness in handling.
A liquid jet head according to an embodiment of the present disclosure is provided with a main body part, an inflow side connection unit and an outflow side connection unit. The main body part has a liquid jet head chip including a liquid flow channel through which a liquid passes, and adapted to jet the liquid, and a cooling section including a refrigerant flow channel through which a refrigerant passes. The inflow side connection unit is configured so as to be selectively attached to and detached from the main body part on an upstream side in the liquid flow channel and an upstream side in the refrigerant flow channel. The outflow side connection unit is configured so as to be selectively attached to and detached from the main body part on a downstream side in the liquid flow channel and a downstream side in the refrigerant flow channel.
Here, a first inflow side cover unit including a liquid inflow tube branched into a liquid relay path connectable to a liquid inflow port of the liquid flow channel and a refrigerant relay path connectable to a refrigerant inflow port of the refrigerant flow channel, and a second inflow side cover unit separately including a liquid inflow tube connected to the liquid relay path connectable to the liquid inflow port and a refrigerant inflow tube connected to the refrigerant relay path connectable to the refrigerant inflow port of the refrigerant flow channel are selectable as the inflow side connection unit.
On the other hand, a first outflow side cover unit including a liquid outflow tube where a liquid relay path connectable to a liquid outflow port of the liquid flow channel and a refrigerant relay path connectable to a refrigerant outflow port of the refrigerant flow channel are merged with each other, and a second outflow side cover unit separately including a liquid outflow tube connected to the liquid relay path connectable to the liquid outflow port and a refrigerant outflow tube connected to the refrigerant relay path connectable to the refrigerant outflow port of the refrigerant flow channel are selectable as the outflow side connection unit.
A liquid jet recording device according to an embodiment of the present disclosure is equipped with the liquid jet head according to an embodiment of the present disclosure, and a carriage to which the liquid jet head is attached.
According to the liquid jet head and the liquid jet recording device related to the embodiment of the present disclosure, it is possible to deal with the jet of a variety of types of liquid, and at the same time, the excellent handling can be ensured.
An embodiment of the present disclosure will hereinafter be described in detail with reference to the drawings.
As shown in
Here, the printer 1 corresponds to a specific example of the “liquid jet recording device” in the present disclosure, and the inkjet heads 4 (the inkjet heads 4Y, 4M, 4C, and 4B described later) each correspond to a specific example of the “liquid jet head” in the present disclosure.
The carrying mechanisms 2a, 2b are each a mechanism for carrying the recording paper P along the carrying direction d (an X-axis direction) as shown in
The ink tanks 3 are each a tank for containing the ink inside. As the ink tanks 3, there are disposed 4 types of tanks for individually containing 4 colors of ink, namely yellow (Y), magenta (M), cyan (C), and black (B), in this example as shown in
It should be noted that the ink tanks 3Y, 3M, 3C, and 3B have the same configuration except the color of the ink contained, and are therefore collectively referred to as ink tanks 3 in the following description.
The inkjet heads 4 are each a head for jetting (ejecting) the ink having a droplet shape from a plurality of nozzles H1, H2 described later to the recording paper P to thereby perform printing of images, characters, and so on. As the inkjet heads 4, there are disposed 4 types of heads for individually jetting the 4 colors of ink respectively contained by the ink tanks 3Y, 3M, 3C, and 3B described above in this example as shown in
It should be noted that the inkjet heads 4Y, 4M, 4C, and 4B have the same configuration except the color of the ink used, and are therefore collectively referred to as inkjet heads 4 in the following description. Further, the detailed configuration of the inkjet heads 4 will be described later in detail.
The circulation mechanism 5 is configured including ink circulation channels 50 for circulating the ink between the ink tanks 3 and the head chips 403 (described later) included in the inkjet heads 4, and a refrigerant circulation channel 55 for circulating the refrigerant between a refrigerant tank 7 and cooling sections 404 (described later) included in the inkjet heads 4. It should be noted that the detailed configuration of the circulation mechanism 5 will be described later (see
The scanning mechanism 6 is a mechanism for making the inkjet heads 4 perform a scanning operation along the width direction (the Y-axis direction) of the recording paper P. As shown in
The pulleys 631a, 631b are respectively disposed in areas corresponding to the vicinities of both ends in each of the guide rails 61a, 61b along the Y-axis direction. To the endless belt 632, there is connected the carriage 62. The carriage 62 has a pedestal 62a having a plate-like shape for mounting the four types of inkjet heads 4Y, 4M, 4C, and 4B described above, and a wall section 62b erected vertically (in the Z-axis direction) from the pedestal 62a. On the pedestal 62a, the inkjet heads 4Y, 4M, 4C, and 4B are arranged side by side along the Y-axis direction.
It should be noted that it is arranged that a moving mechanism for moving the inkjet heads 4 relatively to the recording paper P is constituted by such a scanning mechanism 6 and the carrying mechanisms 2a, 2b described above.
In each of the ink circulation channels 50, the ink supply tube 51 and the ink discharge tube 52 are disposed so as to connect the ink tank 3 and the head chip 403 to each other. It should be noted that the ink inflow tube 56 and the ink relay pipe 66S for connecting the ink supply tube 51 and the head chip 403 to each other are disposed between the ink supply tube 51 and the head chip 403, and the ink relay pipe 66E and the ink outflow tube 57 for connecting the head chip 403 and the ink discharge tube 52 to each other are disposed between the head chip 403 and the ink discharge tube 52. On the other hand, in the refrigerant circulation channel 55, the refrigerant supply tube 53 and the refrigerant discharge tube 54 are disposed so as to connect the refrigerant tank 7 and the cooling sections 404 to each other. It should be noted that the refrigerant inflow tube 58 and the refrigerant relay pipe 65S for connecting the refrigerant supply tube 53 and the cooling section 404 to each other are disposed between the refrigerant supply tube 53 and the cooling section 404, and the refrigerant relay pipe 65E and the refrigerant outflow tube 59 for connecting the cooling section 404 and the refrigerant discharge tube 54 to each other are disposed between the cooling section 404 and the refrigerant discharge tube 54. It should be noted that the refrigerant tank 7 can be installed inside or outside the printer 1. Further, it is preferable for the refrigerant discharge tube 54 to be arranged to pass through a heat exchanger for cooling the refrigerant flowing inside the heat exchanger.
The circulation mechanism 5 is further provided with a pressure pump 51P provided to the ink supply tube 51, a suction pump 52P provided to the ink discharge tube 52, a pressure pump 53P provided to the refrigerant supply tube 53, and a suction pump 54P provided to the refrigerant discharge tube 54. The ink supply tubes 51, the ink discharge tubes 52, the refrigerant supply tube 53 and the refrigerant discharge tube 54 are each formed of, for example, a flexible hose having flexibility to the extent of being capable of following the motion of the scanning mechanism 6 for supporting the inkjet heads 4.
Further, in the circulation mechanism 5, it is arranged that either one of the connection between the refrigerant inflow tube 58 and the refrigerant supply tube 53 and the connection between the refrigerant relay pipe 65S and the ink inflow tube 56 can selectively be achieved. Similarly, it is arranged that either one of the connection between the refrigerant outflow tube 59 and the refrigerant discharge tube 54 and the connection between the refrigerant relay pipe 65E and the ink outflow tube 57 can selectively be achieved.
It should be noted that the ink inflow tube 56, the ink outflow tube 57, the refrigerant inflow tube 58 and the refrigerant outflow tube 59 are specific examples corresponding respectively to a “liquid inflow tube,” a “liquid outflow tube,” a “refrigerant inflow tube,” and a “refrigerant outflow tube” of the present disclosure.
Then, the detailed configuration example of the head chip 4 will be described with reference to
As shown in
The main body part 400 has a base plate 400P to be attached to the pedestal 62a of the carriage 62, and a head chip 403 disposed on the side opposed to the recording paper P viewed from the base plate 400P. The base plate 400P is a plate-like member having the Y-axis direction as the longitudinal direction and the X-axis direction as the short-side direction, and extending along the X-Y plane. The head chip 403 includes the ink circulation channel 50 through which the ink as the liquid passes, and for jetting the ink from the plurality of nozzles H1, H2. In the present specification, the head chip 403 is disposed on the lower side in the vertical direction of the base plate 400P. Further, a part of the main body part 400 located on the opposite side to the head chip 403 viewed from the base plate 400P is covered with a cover member 400C.
As shown in
The pair of cooling plates 408, 409 are provided with grooves 408U, 409U each having a semicircular cross-sectional shape corresponding to the outside diameter of the cooling pipe 407 formed on the respective surfaces opposed to each other so that the inner surfaces of the grooves 408U, 409U have contact with the outer surface of the cooling pipe 407. It should be noted that the pair of cooling plates 408, 409 are arranged to clamp only straight parts as parts of the cooling pipe 407 in the present embodiment, but can also be arranged to also clamp curved parts of the cooling pipe 407. It is preferable for the pair of cooling plates 408, 409 to be formed of a highly heat-conductive material having a higher thermal conductivity than the thermal conductivity of the corrosion-resistant material constituting the cooling pipe 407. Specifically, it is preferable for the pair of cooling plates 408, 409 to be formed of, for example, a simple body of aluminum or an aluminum alloy.
The cooling pipe 407 has a refrigerant inflow port 407S in which the refrigerant inflows, and a refrigerant outflow port 407E from which the refrigerant outflows. Here, it is preferable for the cooling pipe 407 to be installed so that the height position of the refrigerant inflow port 407S is lower than the height position of the refrigerant outflow port 407E. As shown in
As shown in
On the axis J70, the inside cap 71 has an opening 71K, and the inside sleeve 72 has an opening 72K. As shown in
The cap 81 has the opening 81K, and the sleeve 82 has the opening 82K. It is arranged that the end part of the ink relay pipe 66S, 66E is inserted into the opening 82K of the sleeve 82 through the opening 81K of the cap 81, and the ink relay pipe 66S, 66E is held by the sleeve 82 in the state in which the inside surface of the sleeve 82 and the outside surface of the ink relay pipe 66S, 66E have close contact with each other.
As shown in
As shown in
As shown in
The ink inflow tubes 56L, 56R are respectively housed in the grooves 331L, 331R of the cover main body 301. On the side surface of the ink inflow tube 56L, there is erected the ink relay pipe 66SL, and on the side surface of the ink inflow pipe 56R, there is erected the ink relay pipe 66SR. The ink relay pipes 66SL, 66SR are both guided from the inside of the cover main body 301 to the outside of the cover main body 301 so as to penetrate the side surface 341 (the bottom surfaces of the grooves 331L, 331R) of the cover main body 301, and are connected respectively to the ink inflow tubes 56L, 56R. The other ends of the ink relay pipes 66SL, 66SR are respectively connected to the base joints 80SL, 80SR of the main body part 400. It should be noted that the ink inflow tube 56L and the ink inflow tube 56R are those branched from the single ink inflow tube 56 between the pressure pump 51P (
As shown in
The ink outflow tubes 57L, 57R are respectively housed in the grooves 332L, 332R of the cover main body 302. On the side surface of the ink outflow tube 57L, there is erected the ink relay pipe 66EL, and on the side surface of the ink outflow pipe 57R, there is erected the ink relay pipe 66ER. The ink relay pipes 66EL, 66ER are both guided from the inside of the cover main body 302 to the outside of the cover main body 302 so as to penetrate the side surface 342 (the bottom surfaces of the grooves 332L, 332R) of the cover main body 302, and are connected respectively to the ink outflow tubes 57L, 57R. The other ends of the ink relay pipes 66EL, 66ER are respectively connected to the base joints 80EL, 80ER of the main body part 400. It should be noted that the ink outflow tube 57L and the ink outflow tube 57R are those merging into the single ink outflow tube 57 between the suction pump 52P (
As described above, in the present embodiment, the relative positions between the tip parts (refrigerant inflow port connection end parts to be inserted into the joints 70SL, 70SR) of the refrigerant relay pipes 65SL, 65SR and the tip parts (liquid inflow port connection end parts to be inserted into the base joints 80SL, 80SR) of the ink relay pipes 66SL, 66SR in the cover unit 401A are substantially the same as the relative positions between the tip parts of the refrigerant relay pipes 65SL, 65SR and the tip parts of the ink relay pipes 66SL, 66SR in the cover unit 401B. Similarly, the relative positions between the tip parts (refrigerant outflow port connection end parts to be inserted into the joints 70EL, 70ER) of the refrigerant relay pipes 65EL, 65ER and the tip parts (refrigerant outflow port connection end parts to be inserted into the base joints 80EL, 80ER) of the ink relay pipes 66EL, 66ER in the cover unit 402A are substantially the same as the relative positions between the tip parts of the refrigerant relay pipes 65EL, 65ER and the tip parts of the ink relay pipes 66EL, 66ER in the cover unit 402B.
It should be noted that in the inkjet head 4, the cover unit 402A is mounted in the case of mounting the cover unit 401A on the main body part 400, and the cover unit 402B is mounted in the case of mounting the cover unit 401B on the main body part 400.
As shown in
The nozzle plate 41 is formed of a film member made of polyimide or the like having a thickness of, for example, about 50 μm, and is bonded to a lower surface of the actuator plate 42 as shown in
The nozzle column 411 has a plurality of nozzles H1 formed in alignment with each other at predetermined intervals along the X-axis direction. These nozzles H1 each penetrate the nozzle plate 41 along the thickness direction (the Z-axis direction) of the nozzle plate 41, and are communicated with the respective ejection channels C1e in the actuator plate 42 as shown in, for example,
The nozzle column 412 similarly has a plurality of nozzles H2 formed in alignment with each other at predetermined intervals along the X-axis direction. Each of these nozzles H2 also penetrates the nozzle plate 41 along the thickness direction of the nozzle plate 41, and is communicated with the ejection channel C2e in the actuator plate 42 described later. Specifically, as shown in
The actuator plate 42 is a plate formed of a piezoelectric material such as lead zirconate titanate (PZT). In the actuator plate 42, the polarization direction is set to one direction along the thickness direction (the Z-axis direction). Further, although the actuator plate 42 is provided with four channel columns each extending along the X-axis direction in reality, the two channel columns 421, 422 among those are shown alone in
In such an actuator plate 42, as shown in
As shown in
The channel column 422 similarly has the plurality of channels C2 extending along the Y-axis direction. These channels C2 are arranged side by side so as to be parallel to each other at predetermined intervals along the X-axis direction. Each of the channels C2 is also partitioned with the drive walls Wd described above, and forms a groove section having a recessed shape in a cross-sectional view.
Here, as shown in
Similarly, in the channels C2, there exist the ejection channels C2e for ejecting the ink, and dummy channels C2d not ejecting the ink. In the channel column 422, the ejection channels C2e and the dummy channels C2d are alternately arranged along the X-axis direction. Each of the ejection channels C2e is communicated with the nozzle H2 in the nozzle plate 41 on the one hand, but each of the dummy channels C2d is not communicated with the nozzle H2, and is covered with the upper surface of the nozzle plate 41 from below on the other hand.
Further, as shown in
Here, as shown in
The pair of common electrodes Edc opposed to each other in the same ejection channel C1e (or the same ejection channel C2e) are electrically connected to each other in a common terminal (not shown). Further, the pair of active electrodes Eda opposed to each other in the same dummy channel C1d (or the same dummy channel C2d) are electrically separated from each other. In contrast, the pair of active electrodes Eda opposed to each other via the ejection channel C1e (or the ejection channel C2e) are electrically connected to each other in an active terminal (not shown).
Here, in the tail part 420 described above, there is mounted a flexible printed circuit board 44 for electrically connecting the drive electrodes Ed and the control circuit 430 (
As shown in
As shown in
The ink chamber 431A is formed in the vicinity of an inner end part along the Y-axis direction in each of the channels C1, and forms a groove section having a recessed shape. In areas corresponding respectively to the ejection channels C1e in the ink chamber 431A, there are respectively formed supply slits Sa penetrating the cover plate 43 along the thickness direction (the Z-axis direction) of the cover plate 43. Similarly, the ink chamber 431B is formed in the vicinity of an inner end part along the Y-axis direction in each of the channels C2, and forms a groove section having a recessed shape. In this ink chamber 431B, the area corresponding to each of the ejection channels C2e is also provided with the supply slit Sa described above.
As shown in
In such a manner, the ink chamber 431A and the ink chamber 432A are each communicated with the ejection channel C1e via the supply slit Sa and the discharge slit Sb on the one hand, but are not communicated with the dummy channels C1d on the other hand. Specifically, each of the dummy channels C1d is arranged to be closed by bottom parts of the ink chamber 431A and the ink chamber 432A.
Similarly, the ink chamber 431B and the ink chamber 432B are each communicated with the ejection channel C2e via the supply slit Sa and the discharge slit Sb on the one hand, but are not communicated with the dummy channels C2d on the other hand. Specifically, each of the dummy channels C2d is arranged to be closed by bottom parts of the ink chamber 431B and the ink chamber 432B.
In the printer 1, a recording operation (a printing operation) of images, characters, and so on to the recording paper P is performed in the following manner. It should be noted that as an initial state, it is assumed that the four types of ink tanks 3 (3Y, 3M, 3C, and 3B) shown in
In the printer 1, it is possible to arbitrarily perform switching between a first mode in which the cover units 401A, 402A are mounted on the main body part 400 and a second mode in which the cover units 401B, 402B are mounted on the main body part 400. The first mode is a mode for circulating the ink between the ink tank 3, the head chip 403 and the cooling sections 404 using the circulation mechanism 5. In other words, the first mode is a mode for using the ink not only as a raw material for printing but also as a refrigerant for cooling the control circuit 430 and so on. In contrast, the second mode is a mode for circulating the ink between the ink tank 3 and the head chip 403, and at the same time circulating the refrigerant between the refrigerant tank 7 and the cooling sections 404 using the circulation mechanism 5. In other words, the second mode is a mode for cooling the control circuit 430 and so on by circulating the refrigerant different from the ink independently of the circulation of the ink.
In the first mode shown in
In contrast, in the second mode shown in
It is sufficient for the switching between the first mode and the second mode to arbitrarily be selected in accordance with, for example, the physicality of the ink used. Specifically, in the case in which the ink can be used at the temperature suitable as the refrigerant such as the case in which the ink has relatively low viscosity at room temperature and is not required to be heated when performing the recording operation, it is sufficient to select the first mode. In contrast, in the case in which the ink has relatively high viscosity at room temperature, and is required to be heated when performing the printing operation, it is sufficient to select the second mode. It should be noted that in the case of mounting the cover units 401A, 402A on the main body part 400, the refrigerant relay pipes 65S, 65E and the ink relay pipes 66S, 66E are respectively connected to the joints 70 and the base joints 80, and at the same time, the ink supply tube 51 and the ink discharge tube 52 are respectively connected to the ink inflow tubes 56 and the ink outflow tubes 57. Further, in the case of mounting the cover units 401B, 402B on the main body part 400, the refrigerant supply tube 53 and the refrigerant discharge tube 54 are respectively connected to the refrigerant inflow tube 58 and the refrigerant outflow tube 59 in addition to the above. After the exchange, by sufficiently circulating the ink (and the refrigerant), there is created the state in which the inkjet head 4 is sufficiently filled with the desired ink (and the refrigerant).
In such an initial state, when operating the printer 1, the grit rollers 21 in the carrying mechanisms 2a, 2b rotate to thereby carry the recording paper P along the carrying direction d (the X-axis direction) between the grit rollers 21 and the pinch rollers 22. Further, at the same time as such a carrying operation, the drive motor 633 in the drive mechanism 63 respectively rotates the pulleys 631a, 631b to thereby operate the endless belt 632. Thus, the carriage 62 reciprocates along the width direction (the Y-axis direction) of the recording paper P while being guided by the guide rails 61a, 61b. Then, on this occasion, the four colors of ink are appropriately ejected on the recording paper P by the respective inkjet heads 4 (4Y, 4M, 4C, and 4B) to thereby perform the recording operation of images, characters, and so on to the recording paper P.
Then, the detailed operation (the jet operation of the ink) in the inkjet head 4 will be described with reference to
Firstly, when the reciprocation of the carriage 62 (see
Here, as described above, in the actuator plate 42, the polarization direction is set to the one direction, and at the same time, the drive electrodes Ed are not formed beyond the intermediate position in the depth direction on the inner side surfaces in the drive walls Wd. Therefore, by applying the drive voltage using the control section 40, it results that the drive wall Wd makes a flexion deformation to have a V shape centered on the intermediate position in the depth direction in the drive wall Wd. Further, due to such a flexion deformation of the drive wall Wd, the ejection channel C1e, C2e deforms as if the ejection channel C1e, C2e bulges.
As described above, due to the flexion deformation caused by a piezoelectric thickness-shear effect in the pair of drive walls Wd, the capacity of the ejection channel C1e, C2e increases. Further, due to the increase of the capacity of the ejection channel C1e, C2e, it results that the ink retained in the entrance side common ink chamber 431a, 432a is induced into the ejection channel C1e, C2e (see
Subsequently, the ink having been induced into the ejection channel C1e, C2e in such a manner turns to a pressure wave to propagate to the inside of the ejection channel C1e, C2e. Then, the drive voltage to be applied to the drive electrodes Ed becomes 0 (zero) V at the timing at which the pressure wave has reached the nozzle H1, H2 of the nozzle plate 41. Thus, the drive walls Wd are restored from the state of the flexion deformation described above, and as a result, the capacity of the ejection channel C1e, C2e having once increased is restored again (see
When the capacity of the ejection channel C1e, C2e is restored in such a manner, the internal pressure of the ejection channel C1e, C2e increases, and the ink in the ejection channel C1e, C2e is pressurized. As a result, the ink having a droplet shape is ejected (see
In particular, the nozzles H1, H2 of the present embodiment each have the tapered shape gradually decreasing in diameter in the downward direction (see
Then, the functions and the advantages in the inkjet head 4 and the printer 1 according to the present embodiment will be described in detail.
In the present embodiment, the cover unit 401A and the cover unit 401B can selectively be attached and detached on the inflow side of the main body part 400. Here, the cover unit 401A includes the ink inflow tubes 56 branched into the ink relay pipes 66S which can be connected to the base joints 80S provided to the inflow holes 471 of the inside flow channel plate 47 (the liquid flow channel), and the refrigerant relay pipes 65S which can be connected to the refrigerant inflow ports 407S via the joints 70S. Further, the cover unit 401B includes the ink inflow tubes 56 connected to the ink relay pipes 66S which can be connected to the base joints 80S provided to the inflow holes 471, and the refrigerant inflow tubes 58 connected to the refrigerant relay pipes 65S which can be connected to the refrigerant inflow ports 407S via the joints 70S as separated bodies. Further, in the present embodiment, it is arranged that the cover unit 402A and the cover unit 402B can selectively be attached and detached on the outflow side of the main body part 400. Here, the cover unit 402A includes the ink outflow tubes 57 where the ink relay pipes 66E which can be connected to the base joints 80E provided to the outflow holes 472 of the inside flow channel plate 47 (the liquid flow channel), and the refrigerant relay pipes 65E which can be connected to the refrigerant outflow ports 407E via the joints 70E are merged with each other. Further, the cover unit 402B includes the ink outflow tubes 57 connected to the ink relay pipes 66E which can be connected to the base joints 80E provided to the outflow holes 472, and the refrigerant outflow tubes 59 connected to the refrigerant relay pipes 65E which can be connected to the refrigerant outflow ports 407E via the joints 70E as separated bodies. Due to such a configuration, in the present embodiment, by appropriately selecting and mounting the appropriate cover units 401, 402 in accordance with the usage and the aptitude such as the physicality of the ink, it is possible to perform the jet of a variety of types of liquid (ink) without changing the main body part 400. For example, if the cover units 401A, 402A are selected, it is possible to supply the ink to the liquid flow channel of the head chip 403, and at the same time supply the ink to the refrigerant flow channels of the cooling sections 404 as the refrigerant. In contrast, if the cover units 401B, 402B are selected, it is possible to supply the ink to the liquid flow channel of the head chip 403, and at the same time supply the refrigerant other than the ink to the refrigerant flow channels of the cooling sections 404. Therefore, according to the inkjet head 4 and the printer 1 of the present embodiment, it is possible to deal with the jet of a variety of types of ink by changing only the cover units 401, 402, and it is possible to ensure the excellent handling.
Further, in the present embodiment, it is arranged that each of the cooling sections 404 has the cooling pipe 407 for forming the refrigerant flow channel, and the cooling plates 408, 409 having contact with the outer surface of the cooling pipe 407, the cooling pipe 407 is made of the corrosion-resistant material having the corrosion resistance to the ink, and the cooling plates 408, 409 are made of the highly heat-conductive material having the higher thermal conductivity than the thermal conductivity of the corrosion-resistant material of the cooling pipe 407. The corrosion-resistant material is, for example, stainless steel, and the highly heat-conductive material is, for example, an aluminum simple substance or an aluminum alloy. By providing such a configuration, it is possible to obtain high cooling efficiency while avoiding the corrosion by the ink. Therefore, the present embodiment is advantageous to miniaturization of the inkjet head 4, and by extension to miniaturization of the printer 1.
Further, in the present embodiment, the cooling pipe 407 is installed so that the height position of the refrigerant inflow port 407S of the cooling pipe 407 becomes lower than the height position of the refrigerant outflow port 407E of the cooling pipe 407 in the vertical direction. According to this configuration, the refrigerant inflow port 407S is located on the lower side in the vertical direction of the refrigerant outflow port 407E in the posture in which the inkjet head 4 is installed as a result. Therefore, when supplying the refrigerant to the cooling pipe 407, it becomes difficult for the bubbles to enter the cooling pipe 407, and it is possible to obtain higher cooling efficiency.
Further, in the present embodiment, there is provided the outside sleeve 74 having a ring-like shape including the opening 74K in which the refrigerant relay pipe 65S, 65E as a refrigerant relay path is inserted, and in the detached state in which the refrigerant relay pipe 65S, 65E is detached, the outside diameter D65 of the refrigerant relay pipe 65S, 65E is larger than the inside diameter D74E of the inside end part 74E, and is smaller than the inside diameter D74S of the outside end part 74S of the outside sleeve 74. Further, the outside end part 74S of the outside sleeve 74 has the thick wall part 74S1 and the thin wall part 74S2 located on an inner side (a position close to the inside end part 74E) of the thick wall part 74S1, and the thickness T1 of the thick wall part 74S1 is thicker than the thickness T2 of the thin wall part 74S2 (T1>T2). Due to the presence of the thick wall part 74S1, it is possible to effectively prevent the ink and the refrigerant from being leaked from the connection place (the joint 70) between the main body part 400 and the cover unit 401, 402. Further, due to the presence of the thin wall part 74S2, since the outside diameter of the refrigerant relay pipe 65S, 65E to be inserted into the opening 74K is smaller than the inside diameter of the outside end part 74S of the outside sleeve 74, even if some displacement exists between the joint 70 and the refrigerant relay pipe 65S, 65E, the error thereof can be absorbed. Further, since the duckbill valve is adopted as the inside end part 74E of the outside sleeve 74 and the inside end part of the sleeve 82, it is possible to prevent dripping of the ink and the refrigerant from the main body part 400 in the state in which the cover units 401, 402 are detached.
Further, in the present embodiment, it is arranged that the ink inflow tubes 56 and the ink outflow tubes 57 are guided from the inside of the cover main body 301, 302 to the outside of the cover main body 301, 302 through the side surface 341, 342. Therefore, it is possible to prevent the ink leaked when replacing the cover units 401, 402 from contaminating the inside of the cover main body 301, 302 and the vicinity of the joint 70, 80 compared to the case in which, for example, the ink inflow tubes 56 and the ink outflow tubes 57 are guided to the outside from the top surface of the cover main body 301, 302.
Further, in the present embodiment, the relative positions between the tip parts (the refrigerant inflow port connection end parts to be inserted into the joints 70SL, 70SR) of the refrigerant relay pipes 65SL, 65SR and the tip parts (the liquid inflow port connection end parts to be inserted into the base joints 80SL, 80SR) of the ink relay pipes 66SL, 66SR in the cover unit 401A are substantially the same as the relative positions between the tip parts of the refrigerant relay pipes 65SL, 65SR and the tip parts of the ink relay pipes 66SL, 66SR in the cover unit 401B. Therefore, it is possible to easily perform the replacing work between the cover unit 401A and the cover unit 401B to the main body part 400. Similarly, the relative positions between the tip parts (refrigerant outflow port connection end parts to be inserted into the joints 70EL, 70ER) of the refrigerant relay pipes 65EL, 65ER and the tip parts (refrigerant outflow port connection end parts to be inserted into the base joints 80EL, 80ER) of the ink relay pipes 66EL, 66ER in the cover unit 402A are substantially the same as the relative positions between the tip parts of the refrigerant relay pipes 65EL, 65ER and the tip parts of the ink relay pipes 66EL, 66ER in the cover unit 402B. Therefore, it is possible to easily perform the replacing work between the cover unit 402A and the cover unit 402B to the main body part 400.
The present disclosure is described hereinabove citing the embodiment and some modified examples, but the present disclosure is not limited to the embodiment and so on, and a variety of modifications can be adopted.
For example, in the embodiment described above, the description is presented specifically citing the configuration examples (the shapes, the arrangements, the number and so on) of each of the members in the printer, the inkjet head and the head chip, but those described in the above embodiment and so on are not limitations, and it is possible to adopt other shapes, arrangements, numbers and so on.
Specifically, although the two cooling sections 404L, 404R, for example, are disposed in the inkjet head 4 in the embodiment described above, it is also possible to adopt a configuration having just one cooling section, or three or more cooling sections in the present disclosure.
Further, although the configuration of jetting one color of ink from one inkjet head 4 is described in the above embodiment, it is also possible to adopt a configuration of jetting two colors of ink from one inkjet head 4 in the present disclosure. Specifically, two sets of the ink tank 3, the ink supply tube 51, the pressure pump 51P, the ink discharge tube 52 and the suction pump 52P are provided. Then, one of the ink tanks 3 is connected to the ink inflow tube 56L via one of the ink supply tubes 51 and one of the pressure pumps 51P, and the other of the ink tanks 3 is connected to the ink inflow tube 56R via the other of the ink supply tubes 51 and the other of the pressure pumps 51P. Further, the ink outflow tube 57L is connected to the one of the ink tanks 3 via one of the ink discharge tubes 52 and one of the suction pumps 52P, and the ink outflow tube 57R is connected to the other of the ink tanks 3 via the other of the ink discharge tubes 52 and the other of the suction pumps 52P. By adopting this configuration, it is possible to independently supply the ink to the ink inflow tube 56L and the ink inflow tube 56R. Therefore, by making the color of the ink different between the two ink tanks 3, it is possible to supply the ink inflow tube 56R with the ink different in color from the ink to be supplied to the ink inflow tube 56L.
Further, in the above embodiment, the description is presented citing the printer 1 (the inkjet printer) as a specific example of the “liquid jet recording device” in the present disclosure, but this example is not a limitation, and it is also possible to apply the present disclosure to other devices than the inkjet printer. In other words, it is also possible to arrange that the “liquid jet head” (the inkjet head 4) of the present disclosure is applied to other devices than the inkjet printer. Specifically, for example, it is also possible to arrange that the “liquid jet head” of the present disclosure is applied to a device such as a facsimile or an on-demand printer.
It should be noted that the advantages described in the specification are illustrative only but are not a limitation, and another advantage can also be provided.
The present disclosure may be embodied as described below.
<1>
A liquid jet head comprising a main body part having a liquid jet head chip including a liquid flow channel through which a liquid passes, and adapted to jet the liquid; and a cooling section including a refrigerant flow channel through which a refrigerant passes; an inflow side connection unit configured so as to be selectively attached to and detached from the main body part on an upstream side in the liquid flow channel and an upstream side in the refrigerant flow channel; and an outflow side connection unit configured so as to be selectively attached to and detached from the main body part on a downstream side in the liquid flow channel and a downstream side in the refrigerant flow channel, wherein a first inflow side cover unit including a liquid inflow tube branched into a liquid relay path connectable to a liquid inflow port of the liquid flow channel and a refrigerant relay path connectable to a refrigerant inflow port of the refrigerant flow channel, and a second inflow side cover unit separately including a liquid inflow tube connected to the liquid relay path connectable to the liquid inflow port and a refrigerant inflow tube connected to the refrigerant relay path connectable to the refrigerant inflow port of the refrigerant flow channel are selectable as the inflow side connection unit, and a first outflow side cover unit including a liquid outflow tube where a liquid relay path connectable to a liquid outflow port of the liquid flow channel and a refrigerant relay path connectable to a refrigerant outflow port of the refrigerant flow channel are merged with each other, and a second outflow side cover unit separately including a liquid outflow tube connected to the liquid relay path connectable to the liquid outflow port and a refrigerant outflow tube connected to the refrigerant relay path connectable to the refrigerant outflow port of the refrigerant flow channel are selectable as the outflow side connection unit.
<2>
The liquid jet head according to <1>, wherein the cooling section has a cooling pipe adapted to form the refrigerant flow channel, and a cooling plate having contact with an outer surface of the cooling pipe, the cooling pipe is made of a corrosion-resistant material having corrosion resistance to the liquid, and the cooling plate is made of a highly heat-conductive material having higher thermal conductivity than thermal conductivity of the corrosion-resistant material.
<3>
The liquid jet head according to <2>, wherein the corrosion-resistant material is stainless steel, and the highly heat-conductive material is one of an aluminum simple substance and an aluminum alloy.
<4>
The liquid jet head according to any one of <1> to <3>, wherein the refrigerant flow channel is installed so that a height position of the refrigerant inflow port is lower than a height position of the refrigerant outflow port.
<5>
The liquid jet head according to any one of <1> to <4>, further comprising an elastic connection member having a ring-like shape, provided to at least one of the liquid inflow port, the refrigerant inflow port, the liquid outflow port and the refrigerant outflow port in the main body part, and including an insertion port in which one of a liquid inflow connection end part of the liquid relay path, a refrigerant inflow connection end part of the refrigerant relay path, a liquid outflow connection end part of the liquid relay path and a refrigerant outflow connection end part of the refrigerant relay path is inserted, wherein the elastic connection member has an inside end part located on the main body side, and an outside end part located on an opposite side to the main body part, and in a state in which the inflow side connection unit and the outflow side connection unit are detached, an outside diameter of one of the liquid inflow connection end part, the refrigerant inflow connection end part, the liquid outflow connection end part and the refrigerant outflow connection end part to be inserted to the insertion port is larger than an inside diameter of the inside end part of the elastic connection member, and is smaller than an inside diameter of the outside end part of the elastic connection member.
<6>
The liquid jet head according to <5>, wherein the outside end part of the elastic connection member includes a thick wall part, and a thin wall part located inside the thick wall part.
<7>
The liquid jet head according to <5> or <6>, wherein the inside end part of the elastic connection member is a duckbill valve.
<8>
The liquid jet head according to any one of <1> to <7>, wherein the first inflow side cover unit, the second inflow side cover unit, the first outflow side cover unit and the second outflow side cover unit each have a cover main body, and the liquid inflow tube and the liquid outflow tube are guided from an inside of the cover main body to an outside of the cover main body through a side surface of the cover main body.
<9>
The liquid jet head according to any one of <1> to <8>, wherein a relative position between a liquid inflow port connection end part of the liquid relay path to the liquid inflow port and a refrigerant inflow port connection end part of the refrigerant relay path to the refrigerant inflow port in the first inflow side cover unit is substantially the same as a relative position between a liquid inflow port connection end part of the liquid relay path to the liquid inflow port and a refrigerant inflow port connection end part of the refrigerant relay path to the refrigerant inflow port in the second inflow side cover unit.
<10>
The liquid jet head according to any one of <1> to <9>, wherein a relative position between a liquid outflow port connection end part of the liquid relay path to the liquid outflow port and a refrigerant outflow port connection end part of the refrigerant relay path to the refrigerant outflow port in the first outflow side cover unit is substantially the same as a relative position between a liquid outflow port connection end part of the liquid relay path to the liquid outflow port and a refrigerant outflow port connection end part of the refrigerant relay path to the refrigerant outflow port in the second outflow side cover unit.
<11>
A liquid jet recording device comprising the liquid jet head according to any one of <1> to <10>; and a carriage to which the liquid jet head is attached.
Number | Date | Country | Kind |
---|---|---|---|
2017-212924 | Nov 2017 | JP | national |