The present invention relates to inhalation devices with at least one liquid jet device for producing drops of a liquid on demand. More particularly, the present invention relates to such inhalation devices in the form of electronic cigarettes, cigalikes, e-cigarettes, vapour inhalers and related devices.
Generally, with regard to any further details, the disclosure of the applicant's applications entitled “INHALATION DEVICE WITH AT LEAST ONE LIQUID JET DEVICE, FOR CARTRIDGE AN INHALATION DEVICE AND METHOD OF CONVEYING LIQUID DROPS IN AN INHALATION DEVICE”, “CONTAINER FOR AN INHALATION DEVICE WITH AT LEAST ONE LIQUID JET DEVICE, COMBINATION OF AT LEAST TWO CONTAINERS AND METHOD OF CONVEYING LIQUID TO AN INHALATION DEVICE”, and “LIQUID JET INHALATION DEVICE” filed on the same day are incorporated herein by means of the reference.
In the arts there are several types and concepts for inhalation devices that serve a broad range of purposes including medical and therapeutic applications and also leisure and pleasure devices such as electronic cigarettes. Existing inhalation devices either change the phase of a fluid before inhalation with for example a wick and a coil so as to significantly raise the vapor temperature above human body temperature or deliver drops a room temperature by, for example, employing an ultrasonic mesh. In the above wick and coil system the vapor can be perceived as ‘warm’ by a user in the mouth, whereas in the ultrasonic mesh systems, the vapor is usually perceived as ‘cold’.
Such inhalation devices are oftentimes portable and pocket-size devices that can easily fit in the user's hand or can be handled by the user's fingers alone. In this way, the devices can be convenient for use and can be carried by a user for regular or emergency use. In the former case, a user can conveniently carry an inhalation device in the form of an e-cigarette to use and enjoy it whenever and wherever desired, whereas in the latter case a medical or therapeutic inhalation device may be ready to use when needed.
As such devices generate from a liquid drops or vapour that is to be inhaled by a user, the temperature of the inhaled aerosol/air mixture is can be of substantial importance: First, the absorption by the body of any active medical agents may highly depend on temperature. Second, also in the case of aromas and leisure applications, the temperature of the inhaled mixture may greatly affect user experience. In addition to these more or less objective reasons, the temperature of the inhaled mixture may of course also be subject to individual taste and preferences.
There is therefore a need for improved inhalation devices that not only ensure convenience in use and carriage, but also improve quality of experience and fidelity of action. It is thus an object of the present invention to provide such improved inhalation devices that can remedy the drawbacks of the conventional solutions.
The mentioned drawbacks are remedies by the subject-matter of the independent claims. Further preferred embodiments of the present invention are defined in the dependent claims.
According to one embodiment of the present invention there is provided an inhalation device with at least one liquid jet device for producing drops of a liquid on demand, said liquid jet device comprising a fluid chamber, an ejection nozzle and a supply channel embedded in a substrate, the inhalation device further comprising at least one heating element arranged to pre-heat said liquid to a predetermined temperature prior to ejection through said ejection nozzle.
Embodiments of the present invention, which are presented for better understanding the inventive concepts and which are not to be seen as limiting the invention, will now be described with reference to the Figures in which:
and
The inhalation device 1 further comprises an air conduit 13 and a mixing or mouthpiece chamber 18 in which air from said air conduit 13 is mixed with the liquid drops generated by the liquid jet device 11. The air conduit 13 further comprises at least one air inlet orifice 14 at some suitable site of said inhalation device 1. The inhalation device 1 may further comprise a reservoir 16 for storing an amount of said liquid 20 to be vaporized, a power source 15 in the exemplary form of a battery or a rechargeable battery, and a controller 17 that is configured to control all necessary parts and functions of the inhalation device 1. Liquid reservoirs, power sources and controllers (apart from the specific control program employed in the embodiments of the present invention) are as such available from the conventional arts, so that greater details of these elements are omitted here. Preferably, the inhalation device may comprise a reservoir configured to store an amount of said liquid and a reservoir heating element arranged to heat the liquid in said reservoir to a predetermined liquid reservoir temperature.
The inhalation device 1 can further comprise a mouthpiece chamber to which a mouthpiece can be connected so a user can conveniently inhale the generated aerosol/vapour/air mixture. Specifically, the air conduit 13 and the mouthpiece chamber 19 are provided so that air from said air conduit 13 can be mixed with the generated liquid drops. The inhalation device 1 can further comprise a reservoir 16 configured to store an amount of said liquid 20.
The inhalation device 1″ can comprise at least one further heating element 12-2 arranged to pre-heat a liquid to a further predetermined temperature prior to ejection through the ejection nozzle further in the substrate. In one embodiment, the liquid jet device 11 and said further liquid jet device 11-2 are provided for producing drops from respective different liquids, whereas in an alternative, the liquid jet device 11 and said further liquid jet device 11-2 are provided for producing drops from the same liquid 20. It should be clear that the embodiments of
In the embodiment, there is provided a heating element 49 arranged to pre-heat said liquid 46 to a predetermined temperature prior to ejection through said ejection nozzle 44. For example, the heating element 49 can be a resistor embedded in the substrate 48 so as to pre-heat to the predetermined temperature at least a part of the liquid 46 present in the fluid chamber 41 or supply channel 43. In this way, the resistor embedded in a substrate of said MEMS can pre-heat to a predetermined temperature at least a part of the liquid present in cavities formed in the substrate 48. The overall control (e.g. control unit 17) may be configured to drive said resistor 49 so that an amount of the liquid 46 is pre-heated before entering the fluid chamber 41 to said predetermined temperature, and then subsequently the amount of the liquid is heated to at least the vaporization temperature. In this way, the temperature of the liquid can be raised just before being ejected. Generally, said resistors can be a temperature sense resistor, TSR, embedded in the substrate.
An embodiment, in which a resistor is a temperature sense resistor 401, TSR, embedded in the substrate 40 is shown in
In a further embodiment the heating element can be realized by the heating resistor 42 arranged in a vicinity of the fluid chamber 41 and configured to heat an amount of the liquid in the fluid chamber to at least the vaporization temperature, so that the vapour bubble 47 expels a drop 45 of the liquid through the ejection nozzle 44. In such an embodiment, the control unit can be configured to drive said resistor 42 so that the amount of the liquid in the firing chamber 41 is first pre-heated to the predetermined temperature prior to heating the amount of the liquid to at least the vaporization temperature. Preferably, the control unit can be configured to apply a voltage pulse with variable width to said resistor 42, and a pre-heating pulse is shorter than a vaporization pulse. Even more preferably, the pre-heating pulse is approximately half as long as said vaporization pulse.
In general, temperatures above 150° C. should be avoided for that for example polymer layers in the fluid chamber and nozzle may start to melt. Further, if water was being ejected, at temperatures around 95° C.-100° C. drops would start to shoot out of the fluid chamber in an uncontrolled manner. So, in general, the liquid in the assembly can be heated to a similar temperature as the die, wherein an ejecting a ‘warm’ drop of fluid can also create a warmer vapor for inhalation.
Further, this purpose and functionality may also be combined with heating resistor 42 arranged in a vicinity of said fluid chamber 41 and configured to heat a first amount of the liquid 46 to at least a vaporization temperature, so that a vapour bubble 47 expels a drop 45 of the liquid 46 through the ejection nozzle 44. For example, the resistor 42 may be driven to heat the fluid chamber 41 and/or the supply channel 43 to a temperature below a threshold that would result in forming the bubble 47 and, consequently, in expelling the drop/droplet 45. Yet still, the relevant part of the liquid 46 could be at a predetermined temperature prior to ejection. In a way, this can be named as pulse warming by providing a pulse that is for example half the time as a firing pulse, wherein the heater warms up significantly but not enough to eject droplets. Through thermal conduction the liquid in the chamber can thus be increased. When this liquid is ejected also the aerosol or vapor temperature is increased for inhalation.
In such a configuration the control, for example implemented by the already mentioned control unit 17, may comprise controlling a temperature of the drops. For such a purpose, the inhalation device comprises a respective heating element arranged to pre-heat said liquid to a predetermined temperature prior to ejection through said ejection nozzle. For example, the heating element can be a resistor embedded in a substrate of said MEMS so as to pre-heat to the predetermined temperature at least a part of the liquid present in the substrate. In principle, any resistor can be used as both power delivery to the device and measurement of resistance on the device. A resistor can thus for example increase the fluid temperature before ejection in a piezo-type jet device.
In
In addition to the above, fluid intake channels 106, for example in the form of thin tubes or hollow needles, may extend downward from underneath the liquid jet devices mounted on the printed circuit board. These channels 106 may be in fluid communication with one or more reservoirs for storing one or more liquids as a base substance for vapor generation. In this way, more than one base substance can be employed to generate an adjustable and controllable mixture of several agents, flavours, etc.
Although detailed embodiments have been described, these only serve to provide a better understanding of the invention defined by the independent claims and are not to be seen as limiting.
Number | Date | Country | Kind |
---|---|---|---|
21172471.1 | May 2021 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/060709 | 4/22/2022 | WO |