Determining or estimating the level of a liquid in a reservoir can be difficult, and subject to error. Conventional arrangements include fuel tank sensors which utilize a float device which floats on a liquid surface, a measuring stick which is inserted into a tank to contact its bottom and then removed for observation of a liquid level on the stick, or even a sight glass.
Features and advantages of the disclosure will readily be appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawing wherein:
In the following detailed description and in the several figures of the drawing, like elements are identified with like reference numerals. The figures are not to scale, and relative feature sizes may be exaggerated for illustrative purposes.
An exemplary embodiment of a non-electrically powered liquid level sensor system 50 is depicted in
In the exemplary embodiment of
The system 50 includes a means responsive to the changes in column pressure to provide an indication of the level 14 of the liquid 12 within the reservoir 10. In an exemplary embodiment, the means may be provided by a head unit 100, which includes a bellows 120 having an input stem 122, a bellows expansion body portion 124, and a distal bellows face surface 126. The bellows thus provides a chamber whose volume varies with the pressure applied to the input stem 122. The only opening to the bellows chamber is provided by the input stem. The input stem is coupled to the tube 60 by a connection tube system 70 which may run from a connector end 64 of the tube 60 to the head unit 100. The length of the connection tube system may vary, depending on the requirements of a given application. In an exemplary embodiment, the connection tubing system includes a flexible tubing section fabricated of an air-impermeable plastic material. In an exemplary embodiment, the tubing section may be a length of tubing marketed as Weatherhead 4 mm MTP16004NA-100, although other tubing sections of different dimensions may alternatively be employed. The tubing system may include push-together plastic tubing connectors, in which an end of a plastic tubing section is inserted into the connector and engages in an air-tight seal, e.g. with an o-ring included in the connector.
The bellows 120 in an exemplary embodiment is fabricated of a metal such as bronze, and has a “memory” tending to return the face surface 126 to a home position in the absence of a positive or negative relative pressure in the bellows body portion, i.e. relative to ambient atmospheric pressure. The position of the bellows face surface 126 is movable linearly along axis 128 in response to changes in the column pressure in the tube 60. The input stem 126 may be a rigid tubular portion, having exterior threads formed on the exterior surface to facilitate airtight coupling to the connector tubing structure 70. In an exemplary embodiment, the bellows 120 may be adapted to provide a linear travel range of 0.050 inch over a column pressure range between a column pressure associated with a reservoir “empty” condition and a column pressure associate with a reservoir “full” condition. This linear travel range may vary depending on other parameters of the liquid level sensor system.
In an exemplary embodiment, the head 100 further provides a mechanism to convert the linear movement of the bellows face surface 126 into a rotary movement. This may provide a rotary dial readout function indicating the level of liquid in the reservoir. In an exemplary embodiment, the linear-to-rotary movement conversion may be provided by a sector gear movement 140, discussed more fully below. In an exemplary embodiment, the head 100 includes a dial plate 110 and a dial face 110A having indicia noted thereon indicative of a range of liquid levels, e.g. ranging from “E” or empty to “F” or full. A dial indicator pointer 112 (
It will be appreciated that the head 100 may be mounted at a suitable location, which may be remote from the reservoir 10. The mounting location may be an instrument dashboard in a vehicle, boat, ship or airplane, for example. Or it could be mounted at a convenient monitoring location in a service station, in the case in which the reservoir is a fuel reservoir.
In an exemplary embodiment, the head unit 100 may optionally include a printed circuit board 152 to which are attached LED assemblies 153 for provide dial illumination. A connector may be attached at 156B (
An exemplary embodiment of the sector gear movement 140 is illustrated in
The sector gear movement 140 includes a rod 144D mounted on pivots 144E to the back side of the base plate 144A for rotational movement.
The exemplary embodiment of the sector gear movement 140 includes a pinion gear 144J mounted on dial pin 142 for rotational movement with the dial pin. Teeth of the pinion gear are in engagement with teeth 144H-1 of the sector gear 144H, such that rotation of the sector gear about its mount 144I results in rotation of pinion gear 144J and dial pin 142. The gear ration between the pinion gear 144J and the sector gear 144H may be selected to provide a desired travel range of movement of the dial pin 142 for a given rotational movement of the sector gear. A bias spring 144K is connected between a stationary post 144C and the pin 142 to bias the pin to a given home position, which may be registered by a pin 144P stopping counterclockwise movement of the sector gear web 144N. The arrangement of the sector gear, the pinion gear, and the levers 144F and 144G may be selected so as to provide a relatively large dial point movement for a relatively small travel distance of the bellows face 126. In one exemplary embodiment, the arrangement may be selected to provide a 270 degree rotation of the dial pin 142 for a range of movement of the bellows face of about 0.050 inch, although this is merely one exemplary embodiment. The travel distance of the face of the bellows may depend on the spring constant of the bellows as well.
An exemplary embodiment of the liquid level sensing system may be calibrated or adjusted to provide accurate sensor readings. One adjustment for the embodiment illustrated in
An alternate embodiment of a sector gear movement 140′ is illustrated in
Exemplary embodiments of a liquid level sensor may be used, for example, to monitor lubricating oil levels in engine crankcases or oil sumps, fuel levels in fuel tanks of vehicles such as cars, trucks and aircraft, as well as fuel levels in marine applications such as ships and boats. In an exemplary embodiment, the sensor system is actuated by column pressure in the tube, and is not electrically actuated. In an exemplary embodiment, the particulars of the bellows and the sector gear movement used for a given application may be selected based on the parameters of the application, such as the type of liquid whose level is being sensed, the capacity of the liquid reservoir, the difference in the empty level and a full level in the reservoir, and the like. By way of example, the difference in an empty level and a full level for an engine crankcase in a truck engine may be on the order of 5 to 6 inches for one type of engine. The stiffness of the bellows and the gear ratio of the sector gear may be selected to provide a range of movement of the dial pointer between an empty indication and a full indication for a difference in column pressure caused by the 5 to 6 inch differential height of the liquid level in the reservoir. The same sector gear movement may be used for several different applications, with different bellows being selected to accommodate variations in the particular application. Other applications, such as a vehicle fuel tank sensor or a service station tank, may have larger or smaller differential levels between an empty and a full level, and the liquid level sensor components may be selected to provide an accurate level indication for such applications as well.
Although the foregoing has been a description and illustration of specific embodiments of the invention, various modifications and changes thereto can be made by persons skilled in the art without departing from the scope and spirit of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1383866 | Shephard | Jul 1921 | A |
1391077 | Richter | Sep 1921 | A |
1508969 | Guichard | Sep 1924 | A |
1661995 | Brown | Mar 1928 | A |
1946175 | Murphy et al. | Feb 1934 | A |
2382695 | De Giers | Aug 1945 | A |
2455200 | Wallace | Nov 1948 | A |
2989870 | Stahl | Jun 1961 | A |
3290939 | Beck et al | Dec 1966 | A |
3664365 | Ralet et al. | May 1972 | A |
3688577 | Murphy et al. | Sep 1972 | A |
3782323 | Jones | Jan 1974 | A |
3956937 | Lawford et al. | May 1976 | A |
4111044 | McClure | Sep 1978 | A |
4289027 | Gleaves et al. | Sep 1981 | A |
4417232 | Tewfik | Nov 1983 | A |
4504819 | Hosoya | Mar 1985 | A |
4541285 | Hafner | Sep 1985 | A |
4549164 | Tewfik | Oct 1985 | A |
4735100 | Hajto | Apr 1988 | A |
6040776 | Glover et al. | Mar 2000 | A |
6703635 | Yahsiro et al. | Mar 2004 | B2 |
20060053879 | Reinis et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
0045011 | Feb 1982 | EP |
1413443 | Apr 2004 | EP |
556268 | Sep 1943 | GB |
Number | Date | Country | |
---|---|---|---|
20080271516 A1 | Nov 2008 | US |